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AI-Powered Mobile Robot Navigation System with Prioritized Double Q-Network 

(PDQN) and Multi-Objective Pumafish Optimization Algorithm (MOPFOA) 

Abstract 

Mobile robots are helping multiple sectors, including mining, health, space, the military, 

surveillance, and agriculture. Mobile robots (MR) depend mainly on complex algorithms for 

safe and efficient navigation. Perception, path planning, localization, and motion control are 

the four needs for mobile robot navigation. Although most mobile robots operate in dynamic 

situations, the number of algorithms able to navigate robots in such conditions is limited. This 

paper proposes novel reinforcement learning techniques and hybrid metaheuristic optimization 

for mobile robot navigation systems. Initially, the Multi-Objective Pumafish Optimization 

Algorithm (MOPFOA) is utilized for creating an efficient task schedule by minimizing total 

task completion time, path length, energy consumption, and robot idle time. After task 

scheduling, path planning occurs by training a deep reinforcement learning agent like a 

prioritized double Q-network (PDQN). This agent will plan collision-free paths, considering 

dynamic obstacles and optimizing multiple objectives. Additionally, novel techniques such as 

Multi-Agent Deep Deterministic Policy Gradient (MADDPG) are used for cooperative multi-

robot navigation. After that, vision transformers (ViTs) are used for precise obstacle detection. 

Then the avoidance algorithm will use a hybrid of transformer-based detection and deep 

reinforcement learning to dynamically adjust the robot's path. Lastly, the system will guide the 

robot to a charging station when battery levels reach a threshold. The Python tool is used for 

implementing this work, and the energy consumption of the proposed work is 2.67. 

Keywords: Deep reinforcement learning (DRL), Vision Transformer (ViT), Double Q-

Network (DQN), Puma Optimizer (PO), Pufferfish Optimization Algorithm (POA). 

1. Introduction 

Robots serve multiple purposes in our daily lives, including medical assistance, cleaning, 

autonomous driving, and military operations. Mobile robots must navigate without competing 

with static or dynamic challenges in those mentioned applications. Navigation is the procedure 

through which an MR goes about the environment to complete a certain job [1, 2]. Autonomous 

navigation refers to a robot's ability to operate in a given environment without the help of an 

exterior controller, including a social. Autonomous navigation is an important area of study in 



mobile robotics. Improvements in AI and computer vision have led to significant advancements 

in automated mobile robot navigation technology [3, 4]. Creating mobile robots autonomously 

in the real world remains a challenging task. Map-building navigation involves localization, 

path planning, and map construction, like simultaneous localization as well as mapping 

(SLAM). Utilizing map planning and control by transmitting high-dimensional observations, 

including camera images, into three-dimensional poses on the map [5-7]. 

It is easy to make sure that the global path is optimal; however, there are some limitations. 

Developing a complete environmental map is time-consuming and requires specialist 

knowledge. Updating and maintaining the location map over time can be expensive, especially 

with dynamic changes. The robot's control efficiency depends on its mathematical model, 

which is sometimes simplified or linearized, reducing the navigation system's accuracy [6, 8]. 

Mapless navigation eliminates the need for a map and enables straight mapping among sensory 

inputs as well as robot actions, making it a popular alternative to map-based navigation. Mobile 

robot navigational systems are at the top of robotics development and research, allowing robots 

to move easily while carrying out tasks in a variety of situations [9, 10]. These systems use 

algorithms, sensors, and operating mechanisms to help robots understand the environment, plan 

pathways, and perform movements. A navigation system's key components include 

localization, perception, path planning, mapping, and control of motion. Each component is 

essential for ensuring that the robot navigates correctly and securely, particularly in dynamic 

and unpredictable environments [11–13]. 

Mapless navigation is commonly used for jobs without stated destinations, such as collision 

avoidance, which is well known in its local coordinate border. Here, mapless navigation has 

equivalent behavior-based navigation, as it requires high-level reasoning based on prior 

environmental knowledge. Deep reinforcement learning (DRL) has become more popular over 

the past four years. Two successful examples of merging RL and DNNs yielded impressive as 

well as interesting outcomes [14–16]. The combined use of AI deep learning with optimization 

approaches has provided more powerful mobile robot navigation applications. For example, 

with autonomous delivery networks, robots can navigate difficult metropolitan environments 

while avoiding people and traffic and delivering products quickly. In industrial environments, 

mobile robots can carry materials and goods autonomously, optimizing routes for rapid 

delivery and security [17–19]. The integration of such technologies improves robot capabilities 

in rescue and search operations, allowing them to navigate hazardous settings and identify 



survivors with great precision. With these advanced technologies, they promise to increase the 

potential uses of mobile robots across multiple sectors and industries, making them important 

tools in our more automated world [20]. 

1.1 Motivation 

Mobile robots have gained popularity in a variety of sectors, like healthcare, manufacturing, 

logistics, and self-driving cars. These robots have the capacity to explore dynamic situations 

with their effectiveness and dependability. Traditional navigation systems frequently struggle 

with immediate decision-making and adaptation in a wide range of unexpected circumstances. 

Existing mobile robot navigation systems typically utilize static path planning algorithms and 

traditional RL techniques, which might not be adequate for dealing with the complexities of 

dynamic settings. To overcome these problems, advanced AI-powered navigation systems are 

introduced to adapt to changing situations while optimizing many objectives at the same time. 

The combination of powerful deep reinforcement learning methods and robust optimization 

algorithms represents a promising solution for improving mobile robot navigation skills. The 

primary contribution of this research is to develop and evaluate an AI-powered MR navigation 

scheme for dynamic decluttering applications. This includes: 

• Implementing sophisticated multi-objective optimization techniques for task 

scheduling and path planning, considering decluttering efficiency, path length, and 

energy consumption. 

• Training for Deep Reinforcement Learning agent to plan collision-free paths in 

dynamic environments, adapting to unforeseen obstacles. 

• Integrating an advanced motion control algorithm for smooth and accurate robot 

movements. 

• Incorporating a robust recharging strategy within the task schedule. 

1.2 Paper Organization 

The remaining section of this study is represented in a paper organization. Section 2 

contains related work; section 3 contains system design; section 4 has proposed methodology; 

section 5 contains results as well as a discussion part; and section 6 contains a conclusion and 

future study. 



 

2. Related Works 

Surmann et al. [21] suggested a DRL that allows autonomous MR navigation within interior 

settings. This study provides a modern concept for unsupervised self-learning robots navigating 

within an unfamiliar area without a map or plan. The robot receives input through a 2D laser 

scanner and an RGB-D camera, along with orientation to the target. The asynchronous 

Advanced Actor-Critic network generates angular and linear speeds on the robot. To accelerate 

learning, the navigator network was trained inside a self-implemented simulation environment 

before being attached to the actual robot. To prevent overfitting, train minor networks as well 

as incorporate Gaussian noise into the input laser information. 

For the navigation of mobile robots, Lee et al. [22] introduced deep reinforcement learning. 

This research proposes two DQL agents, DQN and DDQN, for helping mobile robots study 

avoiding collisions as well as navigation within new environments. To navigate autonomously 

in an unknown environment, a DNN is used to detect the target item, followed by the DQN or 

DDQN algorithm. 

Li et al. [23] suggested a deep learning-based robot vision navigation system in an edge 

computing environment. The method employs a cascaded DCN as well as hybrid expanded 

convolution fusion for processing images from a vision scheme. Then the path of the needed 

images was extracted using the enhanced Hough transform technique. The position of farming 

robots was changed to provide autonomous navigation. This existing technique is verified using 

both non-interference and noisy experimental settings. 

For mobile robot navigation, Liu et al. [24] introduced a lifelong learning method. This letter 

suggests and executes the initial self-supervised Lifelong Learning for Navigation framework 

(LLNf). The robot uses a static sampling method for predictive control, which doesn’t expand 

with experience. It can identify inadequate actions, which contain similar scenarios with good 

actions, learn, and continuously improve its navigation. Furthermore, within a multi-

environment context, LLfN can adapt to new surroundings while not overlooking the old ones. 

Replicated trials evaluate LLfN's ability to learn in and across environments. 



For the autonomous navigation of mobile robots, Sadeghi Esfahlani et al. [25] introduced deep 

convolutional neural networks. This framework combines a 2D laser digital scanner, an RGB-

D MYNTEYE photographic camera, and inertial measurement units (IMU) into an embedded 

scheme for DL. Real-time decision-making as well as tests were shown using an integrated 

image capture as well as a signal processing scheme for continuous data investigation. Then 

we used innovative real-time graph-based SLAM and Deep-CNN for mapping indoor 

surroundings. Enforcing Deep-CNN increased RTAB-Map SLAM performance. Table 1 

shows the existing comparison table. 

Tabel 1: Existing Comparison 

Authors Techniques Advantages Limitations 

Surmann et al. [21] GA3C 

Actor-critical methods 

learn efficiently with 

less data. 

Computational cost 

Lee et al. [22] DNN 
It can handle complex 

data. 

DNNs are vulnerable 

to overfitting. 

Li et al. [23] 
DNN and Hough 

transform 

It can detect various 

shapes. 
Very expensive 

Liu et al. [24] LLfN 

Robots learn 

autonomously, 

eliminating reliance on 

labeled data. 

Training and testing 

will take time. 

Sadeghi Esfahlani et 

al. [25] 

Deep-CNN and 

SLAM 

Real-time graph-based 

SLAM 
Computational cost 

2.1 Problem Statement 

While A3C significantly increases learning efficiency by training several agents at the same 

time, it frequently needs large amounts of CPU resources and can be inconsistent during 

training, particularly in highly dynamic situations. DQN has achieved outstanding success in a 

variety of applications; however, it faces limitations like overestimation bias and weak 



convergence. The Hough Transform, which is widely employed for feature detection, is 

computationally demanding and frequently fails to cope with noise and complexity in real-

world settings. Graph-based SLAM delivers accurate and consistent mapping. However, it is 

computationally costly and scales poorly in large regions. The Lifelong Learning for 

Navigation System intends to continuously modify and enhance the robot's navigation abilities 

over time. Because of such limitations in existing studies, this proposed study creates a novel 

prioritized double Q-network and hybrid optimization for mobile root navigation systems. 

3. Software System Design 

The mobile robot's software system was designed using Ubuntu 18.04. The architecture 

included three layers: application, control, and driver. The ROS-based control layer was the 

most important component. The system gathers, fuses, and processes data gathered by robot 

sensors before constructing diagrams, planning paths, and navigating autonomously based on 

control commands. The ROS framework's distributed architecture allows for individual module 

design, compilation, and loose coupling at runtime. Figure 1 shows the architecture of a mobile 

robot navigation system. The application layer handles high-level operations like scheduling 

and navigation. It provides the general goal for the robot's navigation. The control layer 

connects the application and driver layers. It uses environmental information, like a map it 

develops and the goal path, to plan where the robot should navigate. The driver layer is 

responsible for directly controlling the robot's movements. It turns the control layer's 

navigation commands into robot-specific motor controls, like linear as well as angular 

velocities.  
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Figure 1: Architecture of mobile robot navigation system 



4. Proposed methodology 

Mobile robots are increasingly adopted for tasks in various environments. This research 

proposes an AI-powered mobile robot navigation system specifically designed for dynamic 

decluttering applications. The system will leverage advanced deep learning for environment 

perception, sophisticated multi-objective optimization for task planning, and DRL for advanced 

path planning in active environments. This project aims to develop a robust, efficient, and 

adaptable solution for automated decluttering tasks. Figure 2 shows the architecture of the 

proposed method. Here, the Multi-Objective Pumafish Optimization Algorithm is used for task 

scheduling and will explore and exploit search spaces to find a set of solutions representing 

trade-offs between conflicting objectives. Path planning is taking place through a prioritized 

double Q-network, which is used for optimizing multiple objectives. A novel technique like 

MADDPG is used for multi-robot navigation. A vision transformer is used for detecting 

obstacles in the path. After that, the robot will recharge under the guidance of the system.  
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Figure 2: Architecture of Proposed methods 

4.1 Task Scheduler using Multi-Objective Pumafish Optimization Algorithm 

The Multi-Objective Pumafish Optimization Algorithm (proposed) is used for task scheduling, 

which combines the best features of both Puma and Pufferfish optimization. This hybrid 

method is designed to handle many objectives, such as maximizing resource use, lowering job 

completion time, and balancing stress. 

4.1.1 Initialization stage 

The Puma Optimization Algorithm is motivated by cougar hunting habits and excels at 

exploring and discovering multiple options in the early stages of the search. PO members 

provide values to the problem's decision variables based on their search space location. Each 



PO member provides an alternate approach to the problem and can be described 

mathematically as a vector with each element representing a decision variable. A matrix can 

be used to model the community of vectors and initializes the primary location of each PO 

member is shown in Equation 1 and 2. 
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Where, Y  indicates the PO population matrix, 
jY  stands for the thj  candidate solution, 

,j dy  indicates the thd  dimension within the search area, M  stands for the amount of population 

followers, n  denotes the amount of decision parameters, t  represents a random quantity from 

[0, 1], and 
dka  as well as 

dva  represent the upper as well as lower bounds of the thd  decision 

parameter, respectively. The evaluated results for the difficult objective function could be 

written as a vector using the Equation 3. 
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The vector E  indicates the evaluated objective purpose. 

4.1.2 Exploration phase using Puma Optimization 

The exploration phase, which employs Puma Optimization, focuses on varying the 

search process in order to identify a wide range of possible answers. In this phase, many 

techniques are used to make sure that the method effectively explores different areas of the 

solution space. When designing a search agent for a feature, the position of other search 

agents with higher objective function values is used to determine the candidate search agent for 

attack. To identify the set of search agent for every population member, use the Equation 4. 
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Where, 
jZQ  indicates the established potential pufferfish locations in the thj  predator, 

lY  indicates the population member through a higher detached function values of thj predator. 

If the goal function value improves at a new position, it will replace the prior location of the 

equivalent member, as per Equation 5 and 6. 
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Where, 
jPQ represents the randomly chosen search agent for the thj predator from the 

jZQ set. Where, 
,j iPQ is the thi dimension, 1q

jY indicates the novel position estimated through 

thj predator depending upon the first stage of proposed PO. 

4.1.3 Exploitation phase using Pufferfish Optimization 

In this phase of POA, population members' locations are updated utilizing a imitation 

of a pufferfish's defense device opposing feature attacks. When threatened by a predator, a 

search agent forms a scope of pointed spine by satisfying its flexible stomach by water. When 

calculating a new position for a POA member, objective function values are compared to 

determine if the new position provides an improved solution for the issues. If the outcome is 

yes, the novel position is accepted through the relevant POA search agent. If not, the innovative 

position is improper and attains a weaker result, therefore the member remains in their previous 

position. The updating process of every POA member depends on increasing the cost of the 

objective function is given in Equation 7 and 8. 
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Where, 2q

jY represents the novel position estimated through thj predator depending 

upon second stage of the suggested POA, 2

,

q

j iy indicates the 
thi dimension, 2q

jE indicates the OF 



value, 
,j it indicates random integers within the interval [0, 1], as well as r represents the 

iteration timer. Figure 3 shows the flow work of hybrid optimization techniques. 

 

Figure 3: Flow chart of Hybrid Optimization 

4.2 Path Planning Using Prioritized Double Q-Network 

Train a Deep Reinforcement Learning agent like Prioritized Double Q-Network 

(PDQN), which is the combination of Double DQN with Prioritized Experience Replay in a 

simulated environment. The agent will plan collision-free paths considering dynamic obstacles 

and optimizing multiple objectives, including navigation speed, collision risk, and energy 

usage. In this research, apply DDQN to a prioritized replay of experiences method. This method 

uses two types of neural networks that have various parameters, temporary freezing the 

correlation technology, and prioritized experience replay (PER) to address overestimation in 

natural DQN and decrease the quantity of knowledge needed for learning. Choosing the 

minibatch for reducing iterations and training time for the model. Figure 4 shows the 

architecture of PDQN. 



 

Figure 4: Architecture of PDQN 

The agent analyzes the atmosphere's state, next chooses an action using q-eval-net that 

proceeds into the environment. Then it provides the reward as well as the following state for 

the agent. Then this agent modifies the state also saves ( ), , , 'p b t q  to the experience lake. 

During the learning method, the agent selects experiences through the pool and selects most 

beneficial action for the next step using q-eval-net. After that, the activity and state were fed 

through q-target-net for generating q-target. This state is fed through q-eval-net, which 

calculates the action's q-eval as well as the error among desired q-eval. Then gradient descent 

algorithm changes the variables. Lastly, the importance of understanding is changed within the 

pool. Later an established chapter interval, q-eval-net variables are transferred to q-target-net.  

Experience's priority and possibility of selection were given in Equation 9 and 10: 
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Where, 
jq  has the importance of experience; 

j  represents the TD fault of experience, 

  indicates the hyperparameter that prevents experience with TD equivalent to 0 being chosen, 

( )q j  becomes the possibility of sampling that have being designated;   represents the 



hyperparameter that controls the sampling preference in uniform along with greedy sampling; 

and ( )0,1 . When   = 0, sampling is uniform, when   = 1, sampling is greedy. Prioritized 

experience replay changes sample distribution, possibly leading to varying model values. 

Then employ importance sampling to ensure that every sample has a unique chance of selection 

and has the similar impact on GD. The sample weight 
jv , which was included in the loss 

function and this has been given in Equation 11 and 12. 
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Where, 
jv  represents the weightiness of the experience within the retention pool, 

jv  

becomes the weightiness on the knowledge within the minibatch, M  represents the size of the 

memory, and   represents a hyperparameter utilized for offsetting the influence of ranked 

experience playback on conjunction outcomes ( )0,1  . The priority samples of loss function 

are calculated by Equation 13 to 15, 
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So, this technique can minimize the obstacles in the path. 

4.2.1 Multi-Agent Deep Deterministic Policy Gradient (MADDPG) 

MADDPG provides an effective technique for cooperative navigation within multi-

robot schemes. It is effectively a RL method designed for scenarios with numerous agents 

working together. Figure 5 shows the architecture of MADDPG model. 



 

Figure 5: Architecture of MADDPG model 

In RL studies, DDPG developed as PG → DPG → DDPG. The PG solution technique 

uses a probability distribution function ( )b p  to describe the optimal strategy for each step, 

which are followed by action sampling based on the probability distribution at each step to 

produce the current optimal action value ( ),S p b . The procedure of generating actions is 

random, and the learned policy is equally stochastic. A gradient of the approach can be 

expressed as: 
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After getting the stochastic strategy, researchers need to sample the optimal probability 

distribution to determine the exact action. Frequent sample of a high-dimensional vector can 

be highly computational. The function  , represents the ideal behavior policy 

which eliminates the necessity for sampling. The policy gradient can be expressed as Equation 

17: 
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The centralised states' action value function is updated utilizing temporal difference 

error, identical to the DQN, as seen in Equation 18. 
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Where, '  represent the set of target policies having delayed parameters '

j . Training 

data is randomly obtained from the experience replayed buffer. Each agent has four different 

networks to learn: actor, critic, and two target networks. 

4.3 Obstacle Detection using Vision Transformers (ViT) 

The Vision Transformer (ViT) is a DL model which has gained importance for its 

effectiveness in computer vision applications once dominated by CNN. The Vision 

Transformer can also use for detecting obstacles. The Vision Transformer accepts an input 

image that frequently divides into patches. Every patch represents a smaller rectangular or 

square portion of the original image. Patch Embedding is the linear embedding of an input 

image into a lower-dimensional vector. This embedding technique helps in the conversion of 

the image's spatial information into a suitable processing of Transformer design. Figure 6 

shows the architecture if vision transformer. 
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Figure 6: Architecture of ViT transformer 

The Transformer Encoder is important to the Vision. Transformer is made up of many 

Transformer encoder blocks. Each block usually contains some mechanisms. The model's 

Multi-head Self-Attention technique allows it to focus on different portions of the image while 

analyzing each patch, collecting global dependencies. Feedforward NN analyze the attention 

mechanism's output to generate each patch's final features. Layer Normalization as well as 

Residual Connections are utilized to stabilize and enhance information flow across the network. 

After the patches have been handled by the Transformer blocks, the model gets fitted with a 



classification head. For obstacle detection, this head often includes a few more layers that 

convert the final features to predictions. The model's final result could be a probability 

distribution across different types of obstacles or a segmentation map highlighting obstacle 

regions. The avoidance algorithm will use a hybrid of Transformer-based detection and Deep 

Reinforcement Learning to dynamically adjust the robot's path. 

4.3.1 Avoidance Algorithm 

An avoidance algorithm supports a robot in navigating its surroundings by detecting 

and avoiding obstacles. It utilizes sensor data to identify obstacles and subsequently calculates 

a path to get to its target. The avoidance system will utilize a combination of Transformer-

based detection as well as Deep Reinforcement Learning to continuously alter the robots 

naturally. Figure 8 shows the flow chart of avoidance algorithm. 

 

Figure 8: Flowchart of avoidance algorithm 

The robot starts its navigation duty. Sensors such as LiDAR and cameras collect 

information about the surroundings. The program analyzes the sensor data to identify whether 

there is an obstacle on the robot's route. If yes, a challenge is spotted, the algorithm will prepare 

an avoidance move. If no obstacles are discovered, the robot can proceed directly to its 

destination. The algorithm generates a new path which avoids the obstacle based on its position 



and the capabilities of the robot. This could include halting, turning, or taking a detour. The 

robot carries out the anticipated avoidance move. This could include controlling motors or 

steering devices. If no obstacles are identified after an avoidance maneuver or initially, the 

robot travels directly to its destination. 

4.4 Recharging Module 

This method creates a symbiotic connection among a robot's task schedule with an 

intelligent recharging approach, which helps to optimise the robot's functioning. The task 

scheduler serves as the robot's brain, providing its goals including the order in which they 

should be completed. It generates a thorough roadmap for the robot's workday based on criteria 

such as task location, length, and expected energy consumption. However, the intelligent 

recharging approach serves as a smart assistant, continually checking the robot's battery 

capacity and power consumption to make sure it has enough energy to complete its job. These 

two technologies can ensure that the robot runs at optimal efficiency, executing tasks on 

schedule and without run out of power.  

According to the task schedule and expected energy usage, the algorithm estimates 

when the robot will require a recharge to finish its tasks. If the next task is close to a charging 

station, the robot may recharge before beginning the task to avoid having to return later with a 

low battery. If the system connects to the electric grid, it may prioritize charge during off-peak 

hours while electricity is less expensive. The technology can modify charging patterns to 

reduce battery stress and extend its life. 

5. Result and Discussion 

The proposed system will be evaluated in a simulated environment with varying 

degrees of clutter and dynamic obstacles. The modelling has been done in Python. Metrics for 

evaluation will include energy consumption, success rate etc. Table 2 shows evaluation metrics 

of proposed study. 

Table 2: Evaluation Metrics 

Metrics Formula 

Energy Consumption 
1

m

j jj
E Q r

=
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Success rate ( ).
100

.
rate

No of successful trials
success

Tot Noof Trials
=   

Path length 
1

n

jj
L g

=
=  

5.1 Performance Analysis 

The performance of the proposed study is compared with other existing techniques to 

prove the efficiency of the proposed work. Energy consumption, success rate, as well as path 

length, are the major metrics examined, and they provide data on the system's efficiency, 

dependability, and efficacy. Figure 9 shows the 2-robot path planning. 

 

Figure 9: Path Planning 

Robot 1 is denoted by a blue line that begins at "Start 1 (S)" and ends at "Goal 1 (G)". 

Robot 2 is represented by an orange line that begins with an orange dot marked "Start 2 (S)" 

and ends at a red dot labeled "Goal 2 (G)". The black squares indicate impediments within the 

environment that robots must negotiate. The paths of both robots are designed to prevent 

collisions involving the black square obstacles while achieving their respective goals. The 

pathways are designed to avoid collisions among the robots, exhibiting good multi-robot path 

planning. Both robots take extremely direct pathways to their destinations while avoiding 

obstacles suggesting good path planning. Figure 10 shows the 3-robot path planning. 



 

Figure 10: Multi-robot path planning 

The robot's starting position is the point where the robot starts its excitement. The route 

that every robot will travel from its starting point (S) to its destination (G). The program 

determines all possible courses for each robot and chooses one that prevents collisions between 

other robots as well as obstacles within the environment. An obstacle in the surroundings that 

robots have to avoid while getting to their destination. Obstacles can be either immovable items 

like walls or furniture, or mobile objects such as people or other robots. Figure 11 shows the 

energy consumption of proposed and existing approaches. 

 



Figure 11: Energy Consumption 

Energy consumption provides a significant factor in mobile robot growth and operation. 

It directly impacts a robot's mission duration, operational range, as well as overall efficacy. 

Robots require battery life to function, thus improving their efficiency is critical to ensuring 

they can accomplish their work without regular recharging. This is especially important in 

robots deployed in distant or hazardous environments wherever access to power sources may 

be restricted. Here, the energy consumption of proposed has a low value compared with other 

existing studies. Figure 12 shows the success rate of navigation. 

 

Figure 12: The success rate navigation of proposed and existing techniques 

Navigation systems depend on complex relationships among real-world objects (maps, 

GPS, sensors) as well as software components. OOA could result in an extremely detailed 

model that is difficult to preserve and adjust. Navigation involves real-time processing and 

decision-making. OOA does not specifically address these issues, which may result in 

inefficiencies or delays. Because of such limitations, the proposed achieve a success rate in 

navigation. Figure 13 indicates the path length of the proposed and existing approaches. 



 

Figure 13: Path length of existing and proposed study 

The average path length is an essential metric in network analysis that calculates the 

average amount of steps taken along the shortest distances for all feasible network node pairs. 

This measure shows how well data or assets may be carried over a network. The average path 

length changes by method, with the proposed having the lowest distance than HBO, OOA, and 

PCO. The proposed strategy looks to be the most effective, with the robot traveling only around 

6 feet on average. HBO ranks second at approximately 8 feet, while OOA has a path length of 

10 feet. PCO appears to be the least effective approach, averaging approximately 14 feet. 

Figure 14 shows the overall score of the existing and proposed technique. 



 

Figure 14: Overall score 

OOA excels in replicating object behavior and interaction. However, path planning 

considers the complete environment and optimizing the total path, which OOA may not fully 

capture. PCO could be a method that promotes reducing individual path segments over total 

path length. Some advanced path-planning techniques are computationally expensive, 

especially in complicated situations. Here, the proposed method attains better results as 

compared with other existing approaches. Table 3 shows the comparison analysis of the 

suggested approach. 

Table 3: Overall Comparison Analysis 

Method Path 

Length 

Energy 

Consumption 

Navigation 

Success Rate 

Score 

OOA 15.327 4.26 90 96.29 

PCO 12.289 8.58 74 93.83 

HBO 14.86 6 83 95.61 

Proposed 3.942 2.67 95 99.26 

 

 



6. Conclusion and Future Scope 

Mobile robots are widely used and require good navigation, particularly for path 

exploration. Aiming at navigational problems, this research aims for developing a new 

approach for the navigation of mobile robots which incorporates state-of-the-art optimization 

and machine learning methodologies. The Multi-Objective Pumafish Optimization Algorithm 

(MOPFOA) is used to schedule tasks and prioritized double Q-network (PDQN) is used for 

collision free path planning for single robot system and Multi-Agent Deep Deterministic Policy 

Gradient (MADDPG) for multiple robot system. ViTs improve the perception of obstacles, and 

a dual method using transformer-based detection and deep reinforcement learning improves 

path corrections. Lastly, an independent battery charging system keeps the operation going on 

and performance achieved for this proposed work in path length is 3.94, energy consumption 

is 2.67, navigation success rate is 95 and overall score is 99.26. In the future, researchers aim 

to investigate the efficacy of novel RL algorithms in increasing complex situations. 
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