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Abstract. Sparse Matrix-Vector Multiplication (SpMV) plays a critical
role in many areas of science and engineering applications. The storage
space of value array in general real sparse matrices accounts for costly.
However, the existing compressed formats cannot balance the compressed
rate and computational speed. To address this issue, we propose an ef-
ficient value compression format implemented by AVX512 instructions
called Compressed Sparse Row and Repetition Value (CSR&RV). This
format stores each different value once and uses the indexes array to store
the position of values, which reduces the storage space by compressing
the value array. We conduct a series of experiments on an Intel Xeon pro-
cessor and compare it with five other formats in 30 real-world matrices.
Experimental results show that CSR&RV can achieve a speedup up to
3.86× (1.66× on average) and a speedup up to 12.42× (3.12× on aver-
age) for single-core and multi-core throughput, respectively. Meanwhile,
our format can reduce the memory space by 48.57% on average.

Keywords: Sparse Matrix-Vector Multiplication · Value Compression ·
Storage Format · AVX512.

1 Introduction

Sparse Matrix-Vector Multiplication (SpMV) is a kernel operation in many vital
fields, such as parallel computing, scientific computation, and machine learning
[1, 2]. The expression of SpMV is Y ← A∗X, where A is a sparse matrix and both
X and Y are dense vectors. There are some classic sparse matrix storage formats
have been proposed. For example, the Coordinates (COO) and the Compressed
Sparse Row (CSR) [1]. The former uses the triple form (row, col, value) to store
all nonzero elements (nnz) while the latter compresses the row array to the
row_ptr array, which only stores the start and end index of each row.

Recent researches suggest that certain new features have arisen in the modern
architecture of CPUs, for example, the increased number of cores and threads,
the enhanced capacity of caches, and the improvement of Single Instruction Multi
⋆ Junjun Yan and Xinhai Chen contributed equally to this work.
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Data (SIMD) units[8]. There is a growing body of literature that redesigns and
optimizes the classic formats by using those new features [2]. We generalize
into two primary parts: first, taking full advantage of SIMD instructions for
vectorization and using blocking algorithms to improve the data locality [8, 10,
2]; second, compressing the storage space to reduce the memory access [4, 5, 7],
which depends on the feature of matrices [1].

In some applications, the sparse matrices have numerous repetitive values,
which instructs us to compress the repeated elements in the value array to reduce
memory access times and improve the SpMV efficiency [2]. Until recently, there
are only litter studies about compression and optimization of the value array:
Kourtis et al. [5] proposed the index and value compression approach to saving
the memory of the value array but still not efficient in modern CPUs. Grigoras
et al. [4] use the same idea in FPGA but also do not suit CPUs architecture.
Therefore, it is necessary to design a new format to solve those problems.

This paper proposes an efficient value compression storage format named
CSR&RV. The proposed format only stores the repetitive values once and com-
presses the original value array to a non-repetition value array and an index
array. For each nnz, it uses the index array to store the position of the value ar-
ray and loads the value indirectly. This operation compresses the storage space of
the value array because the number of non-repetition values is much less than the
number of nnz. What’s more, we can further compress the storage space of the
index array by using uint8 and uint16 to store the indexes (index compression).

We compare the CSR&RV format to five other formats with different eval-
uating criteria. The experimental results show that CSR&RV has the highest
throughput and the lowest memory space overhead. Compared to the MKL-
CSR [9], the proposed format can get an average of 1.66× and 3.12× speedup
in single-core and multi-core throughput, respectively. Compared to other state-
of-art formats [9, 8, 10, 6], it achieves an average of 1.36× and 1.86× speedup
in single-core and multi-core throughput, respectively. With index compression,
our format reduces an average of 48.57% (maximum of 58.13%) memory space
on matrices saved in CSR format.

2 The Compressed Sparse Row and Repetition Value
Format

2.1 CSR&RV Representation

The CSR-based storage format is not efficient enough in the matrices have ex-
tensive repetitive elements. Because SpMV will access the repetitive values in
the value array many times, which leads to the precious memory bandwidth
wasted. To overcome this disadvantage, the proposed format, as shown in Fig. 1,
compresses the repetitive values in csr_vals. In CSR&RV, the csrv_values only
stores each unequal value once. And for each nnz, we use an index array called
csrv_vals_idx to point to the location of the value array. Therefore, the memory
access for values indirectly uses csrv_vals_idx as indexes. Because the number of
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non-repetition values is much small than nnz, the csr_vals can be compressed
to a same-length array csrv_vals_idx and a negligible array csrv_values. By
changing the type of csrv_vals_idx (e.g. uint8), we can save the space further.

0 2 4 5 1 3 0 3 5 2 0 2 4csr_cols / csrv_cols

0 4 6 9 10 13csr_rows_ptr / csrv_rows_ptr

(a) The common rows and cols in CSR and CSR&RV

(b) The values in the CSR format

a a b b b acsr_vals
b a b b a b a

(c) The values in the CSR&RV format

a bcsrv_values

csrv_vals_idx 0 0 1 1 1 0 1 0 1 1 0 1 0

Fig. 1. The CSR&RV format.

2.2 SpMV Algorithm

Fig. 2 shows the SpMV method implemented by AVX512 instructions. The pro-
posed method vectorize the data by rows which means the elements in the same
rows will be packed together into several vectors. There are five main steps to
accomplish once floating multiply and add operation, which is a fundamental
operation in SpMV (the type of val_idx array is uint8 as an instance):

(1) Loading eight indexes to the _val_idx_uint8 vector.
(2) Converting the indexes vector from uint8 to int32.
(3) Loading the columns from the csrv_cols array.
(4) Gathering the vector operand _x and _val.
(5) Executing once floating multiply and add operation in the FMA units.

Looping above five steps until the computation of one row is accomplished.
After that, we can use the reduce_add instruction to sum the _y vector horizon-
tally and write back the result to the y array corresponding to the row rank. The
write position in y is prefetched before writing back. Repeating the procession
until all the rows are computed and stored to y.

Memory/cache

+

_m512d _y

_m512d _val _m512d _x

_m256i _val_ptr _m256i _col_ptr

_m128i _val_ptr_int8

5) _mm512_fmadd_pd

1) _mm_loadu_epi8

4) _mm512_i32gather_pd

3) _mm256_loadu_epi32

4) _mm512_i32gather_pd

_mm512_reduce_add_pd

off-chip write back

2) _mm256_cvtepu8_epi32

y[i]

Fig. 2. The data flow in the SpMV algorithm.
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3 Experimental Results

We compare our work with state-of-art open-source sparse matrix storage for-
mats and SpMV algorithms. All the formats are implemented with the AVX512
instructions. The following 5 formats are compared: MKL-CSR [9], MKL-OPT
(using the mkl_sparse_optimize function based on MKL-CSR), CSR5 [8], CVR
[10], SPV8 [6]. We use 30 real-word sparse matrices downloaded from the SuiteS-
parse Matrix Collection [3]. Each matrix runs 1000 iterations and uses the single-
iteration average time to evaluate. We run SpMV in double precision and record
the run-time in different formats and threads (increased from 1 to 48). When
evaluating the multi-core performance, we use the best run-time among all run-
times. Normally, the maximal thread numbers (48) can get the best results.

3.1 Performance Comparison

Fig. 3(a) presents the single-core performance of different formats. Compared to
the MKL-CSR, CSR&RV can achieve an average of 1.66× and a maximum of
3.86× speedup. Fig. 3(b) provides the multi-core performance. Compared to the
best state-of-art formats, the proposed format can attain an average of 1.85×
and a maximum of 7.92× speedup. These results suggest that the CSR&RV is
better than other formats and the multi-core performance is better than the
single-core. The possible reason for the phenomenon is that the optimization of
arithmetic instructions can mainly influence the single-core performance because
the bandwidth ability for one thread is enough. However, when considering multi-
core, the increasing of thread numbers will gradually limit the bandwidth, which
leads to the memory-access ability being the major influence and reflected by
the storage space of formats.
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Fig. 3. The performance (GFlops) of different formats on the benchmark matrices.
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3.2 Memory Overhead

Cause the memory space in the baseline formats is similar to the CSR format,
we only compare our format with CSR. Fig. 4 shows the memory overhead of
different benchmark matrices. The memory space token by CSR&RV is smaller
than CSR in all matrices. This article calculated the memory-reduction rate as
the reduced size of CSR&RV divided by the original size of CSR. Compared
with CSR, the memory space in the CSR&RV format is reduced by 48.57% on
average and 58.13% on maximum. By reducing the memory overhead, we can
reduce the memory-access bandwidth, which makes SpMV more efficient.
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Fig. 4. Memory reduction in the CSR&RV format comparing to CSR.

3.3 Pre-processing

For the purpose of evaluating the practicability, this paper arranges all the tested
matrices in the CSR format and measures the converting time from CSR to
corresponding formats (except the MKL-CSR), which is called pre-processing in
serval articles [7, 6, 10]. The pre-processing overhead is calculated as once single-
core converting time divided by once single-core SpMV time. Table 1 shows that
the pre-processing overhead in CSR&RV is the second lowest and only CVR is
faster than it. This result indicates our format has the capability for actual use.

Table 1. The average processing overhead in different formats.

CSR&RV CSR5 MKL-OPT SPV8 CVR
Processing overhead 3× 5× 10× 8× 2×

4 Conclusion

This paper proposes an efficient value compressed format named CSR&RV. The
main idea of the proposed format is compressing the value array in CSR format to
reduce the memory space and using AVX512 to improve the SpMV efficiency. We
conduct a series of experiments on an Intel Xeon CPU and compare it with five
state-of-art formats in 30 real-world sparse matrices. The experimental results
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show that CSR&RV can achieve the best throughput both in single-core and
multi-core. Meanwhile, CSR&RV can reduce an average of about 50% (maximum
of near 60%) of memory space compared to CSR. Moreover, this format has the
advantage of being program-friendly and having low pre-processing overhead,
which shows the potential to be employed in real-world applications. However,
the CSR&RV format is mainly suited for sparse double-precision real matrices
with many repetitive values. In future work, we will further extend our format
to improve generality.
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