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Abstract. High frequency oscillations (HFOs) have been presented as a promising clinical 

biomarker of regions responsible of epileptic seizure onset zone (soz) and thus a potential aid 

to guide epilepsy surgery. Visual identification of HFOs in long-term continuous intracranial 

EEG (iEEG) is cumbersome, due to their low amplitude and short duration. The objective of 

our study is to improve and automate HFO detection by developing analysis tools based on 

an unsupervised clustering method. First, we used a temporal basis set from Jmail et al 2017 

while exploiting the time-frequency content of iEEG data. Subsequently, we used a CNN 

(resnet 18) feature extractor. Then, we applied the clustering method based on reducing the 

events dimension per frame while preserving the distance between points when displaying 

from high-dimensional space to a low-dimensional one. The clustering method (Deep Clus-

ter) is based on a standard k-means clustering algorithm. This algorithm successfully isolated 

HFOs from artifacts, peaks and peaks with ripples. Using this algorithm, we were able to 

locate the seizure onset area. 

Keywords: epileptic seizure, intracranial EEG (iEEG), high frequency oscillations (HFOs),  
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1 Introduction  

Epilepsy is characterized by increased electrical activity in the brain, resulting in 

temporary disruption of communication between neurons. In addition, Intracranial 

EEG (iEEG) is recorded as a traumatic technique where electrodes are placed di-

rectly on the brain to visualize cortical sub-zones interactions. iEEG has been 

widely used by neurologists to detect seizure onset area and accurately identify sei-
zure onset [1, 2, 3,4]. In epilepsy, IEEG signals depict spikes, oscillations at differ-

ent frequencies, and superimposed spikes and oscillations [5]. 

Pathological high-frequency oscillations (HFOs) between 80 and 500 Hz have re-

cently been proposed as a potential biomarker of the onset zone of epileptic seizures 

and have shown superior accuracy to interictal epileptiform discharges. HFOs are 
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field potentials that reflect short-term synchronization of neuronal activity [6]. Fur-
ther studies proposed sub-HFOs as ripples (80-250Hz) and fast ripples (FR, 250-

500Hz) [7,8]. 

In fact, HFOs appear as transients with a low amplitude in intracranial EEG. There-

fore, visual identification of these events remains such a difficult task. This chal-

lenge required a robust and high precision automatic detector. 

However, most studies of HFO detections have been performed by simple thresh-

olding, defining context energy by calculating root mean square (RMS) [9], or sig-

nal line length [10],[11]. 

In semi-automatic detectors, visual inspection is performed after initial detection 

[12],[13], while in fully automatic detectors, supervised classifiers or advanced sig-

nal processing steps are required [14],[ 15]. 
Therefore, we propose to study an automatic unsupervised clustering detection of 

HFOs to map the detected events and investigate their spatial diffusion. First, we 

proposed a database of simulated IEEG data (in the HFO frequency range) where 

we evaluated them for different constraints (SNR, overlap rate, relative amplitude 

and frequency range). Second, explored the spectrum of iEEG signal in high fre-

quency band. These results would help us to identify the channel with a maximum 

of HFOs. 

Thus, in the first section, we described our simulated data and the method used for 

clustering. In the second section, we exposed our obtained results and finally we 

concluded and discussed our results. 

 

2 Materials and methods 

2.1 Materials 
 
All signal processing steps of our study is processed in Matlab software (Math-

works, Natick, MA). 

 

Simulated data: is obtained by a combination of a peak and HFO shapes as real 

IEEG signal, sampled at 512Hz and of duration 2s, with 1024 samples. Thanks to 

different tests, we have prepared five classes of signals composed of spikes, HFO 

(Ripple, Fast Ripple) and superimposed ripple and spike. By varying different pa-
rameters: relative amplitudes, frequency of oscillations, signal to noise ratio (SNR) 

and overlap rate: we obtained 120 sets of simulated data composed of spikes and 

HFO events in this range [85,105,200,350,450] Hz (ripples and fast ripples). 
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2.2 Methods  

In this paper we propose a solution for automatic detection using unsupervised 

clustering. The schematic diagram shows our clustering.  

Fig. 1 depicted three steps in the clustering pipeline. In the first step, we recovered 
a simulated IEEG time base where it is presented of mixed of pure HFO 

combinations, artifact, spike, and spiky event with ripples. These events produce a 

complex shape in which it is difficult to distinguish the basic elements. In the 

second step, we presented the frequency plan of the studied events. In the last step, 

we used clustering algorithm based a CNN for feature extraction as well as a PCA 

method and t-SNE for dimension reduction. then, we applied a standard K-means 

clustering algorithm. 

 

Fig. 1.  clustering steps of HFO. 

 
The approaches described above solve the clustering problem of pathological 

HFOs. 

In fact, clustering is a quiet difficult task since original signal are not suitable for 

algorithms and require a step of feature extraction, i.e. a feature description vector. 

 

CNN Feature extraction  

 

A convolutional neural network [16, 17] is a neural network that uses a mathemat-

ical operation called convolution or convolution product (a linear operation). Each 

convolutional neural network contains at least one convolution layer. Let f and g be 

two functions defined on R, the convolution product between f and g is denoted f 

∗g and it is defined by the following equation: 

𝑠(𝑥) = (𝑓 ∗ 𝑔)(𝑥) = ∫ 𝑓(𝑡)𝑔(𝑥 − 𝑡)𝑑𝑡 
+∞

−∞
         (1) 

In machine learning, the input is always a multidimensional array of data, and the 

kernel is always a multidimensional array of parameters that will be adapted by the 

learning algorithm. Convolution is always used with a dimension greater than 1. 

The most used convolution is a 2D convolution. In this case, for an image input I 
and for a kernel K, the discrete convolution is written: 
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𝑠(𝑖, 𝑗) = (𝑘 ∗ 𝐼)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝑘(𝑚, 𝑛)𝑛𝑚           (2) 

 

The convolutional neural network (CNN) is widely used in automatic image extrac-

tion feature. The feature dimension extracted by this method is very high, and sev-

eral features have strong correlations. CNN is respectively composed by convolu-

tion layer, clustering layer, fully connected layer and classifier. 

Features extracted by the convolution layer in CNN structure are called feature map. 

The design of convolutional neural network architectures vary, but in general terms 

they can be divided into several functional blocks (a block of convolution layers, a 

block of pooling layers, and a block of fully linked layers). 

The most common output of a neural network in classification tasks is the member-
ship probability of the input image, obtained using a function (softmax), which is a 

generalization of the logistic function of multidimensional case. 

 

 

Fig. 2.  Schematic of image feature extraction from a CNN. 

. 

Dimensionality reduction methods 

 

Dimensionality reduction methods preserve the distance between points when going 

from a high-dimensional space to a low-dimensional space. Typical representatives 
are depicted using principal components analysis (PCA) and multidimensional scal-

ing (MDS). The feature space dimensionality reduction problem can be solved using 

linear methods, such as the principal component analysis method (PCA). 

Assessment by t-SNE 

The methods used are stochastic neighbor method with t-distribution (t-SNE) and 

uniform spatial approximations and projections (UMAP) [18]. In general, the appli-

cation of these methods produces similar results, but UMAP is more computation-

ally efficient than t-SNE.  

Methods for finding nearest vectors in high-dimensional spaces by K-means. 

The most popular algorithms for solving this kind of problems are the approximate 

nearest neighbor method. in [19] the set of algorithms based on a modified K-means 

method and allows calculations on GPU. 
Silhouette Scoring 
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is a metric for evaluating a clustering algorithm, calculated from two scores, a and 
b.  

a is the average distance between a sample and all other points in the same cluster 

and b is the average distance between a sample and all other points in the nearest 

cluster. The silhouette score of a sample is calculated by the following formula: 

𝑠 =
𝑏−𝑎

max (𝑎,𝑏)
            (3) 

3 Results 

Our result represents the clustering approach using spectral representation of iEEG 

to isolate ripples and other events such as spikes and contaminated noise. 

In Fig. 3 we depicted the simulated data set in the frequency plan. At each line, we 

find events in the frequency plan. As well as pure HFOs in the form; Ripples in the 

frequency range [80-250Hz], fast Ripples in [250-450Hz], spike, artifacts (high 

noise) and a spike event with a ripple. 

 

 

Fig. 3.  Time-frequency distribution of simulated IEEG data. 

 

Fig. 3. shows the spatial pattern of HFO distribution. These Color Maps represents 

a state dispute (Spike, Ripple,Fast ripple and Artifact) from 2D t-SNE visualization 

after different feature extractors. 
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According to [20] our results show that extracted features with ResNet18 have a 
better contribution to the test between VGG16, VGG 19, ResNet50, Resnet101 and 

Resnet34. 

 Therefore, it is expected that the feature representation will be more compact and 

well separated as we progress through the used pipeline. 

 

 
 

Fig. 4.  2D t-SNE visualization of extracted features using resnet18. 

 
Fig.5. represents Spatial distribution of simulated IEEG data after initial detection 

and final clustering using k-means of extracted CNN feature (ResNet18).  

Indeed, the clustering result presents 5 classes, where the upper line is a frequency 

plan of artifact. Thus, in the second line we found a class of peaks and a peak 

event with a ripple. In the third line, there is a well-ranked fast ripple class. Then 

in the following line, we got a class of spike overlaid, a little bit with spike ripple. 
The bottom line represents the perfectly ranked ripple frequency plan. 
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Fig. 5.  Spatial distribution of HFOs after final grouping. 

 
in Fig. 6.  we depicted the HFOs clustering algorithm silhouette score. 

Note that the silhouette score can range from -1 to +1. A silhouette score of -1 

means incorrect clustering and +1 means correct and very dense clustering. A sil-
houette score of 0 means the clusters overlap. 

 

 

 
Fig. 6.  silhouette score of HFOs clustering algorithm. 
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4 Conclusions 

 

In this study, we applied the HFO clustering approach to detect IEEG events such 

as epileptic spikes, ripples, and fast ripples in intracranial EEG datasets (simulated 

IEEG). The HFO clustering network described follows time frequency representa-

tion of simulated iEEG. This network is created through a novel automated ap-

proach based on sequential feature extraction through pre-trained neural networks 

and t-SNE methods for dimension reduction. 

First, we applied a CNN feature extraction (resnet18). then we used the t-SNE 

method for downsizing. The algorithm succeeded in isolating a selection of events 

from five classes, namely spikes, ripples and fast ripples, contaminated noises as 
well as spikes with superimposed ripples. 

 The clustering result should be recommended as a guide to identify the channel 

with a maximum number of HFOs which subsequently can be identified as a strong 

indicator at seizure onset. As perspective, we propose to use our results in order to 

localize HFO and define their networks connectivity for an accurate definition of 

epileptogenic zones, which would imply a significant impact on surgical interven-

tion for drug-resistant patients in order to delineate epileptogenic tissue. 
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