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Abstract Robin criterion states that the Riemann hypothesis is true if and only if the
inequality σ(n) < eγ × n× log logn holds for all natural numbers n > 5040, where
σ(n) is the sum-of-divisors function of n and γ ≈ 0.57721 is the Euler-Mascheroni
constant. Let q1 = 2,q2 = 3, . . . ,qm denote the first m consecutive primes, then an in-
teger of the form ∏

m
i=1 qai

i with a1 ≥ a2 ≥ ·· · ≥ am ≥ 0 is called an Hardy-Ramanujan
integer. If the Riemann hypothesis is false, then there are infinitely many Hardy-
Ramanujan integers n > 5040 such that Robin inequality does not hold and we prove

that n
(

1− 0.6253
logqm

)
< Nm, where Nm = ∏

m
i=1 qi is the primorial number of order m and qm

is the largest prime divisor of n. In addition, we show that qm will not have an upper
bound by some positive value for these counterexamples and therefore, the value of
qm tends to infinity as n goes to infinity.

Keywords Riemann hypothesis · Robin inequality · sum-of-divisors function ·
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1 Introduction

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta func-
tion has its zeros only at the negative even integers and complex numbers with real
part 1

2 [7]. Let Nm = 2×3×5×7×11×·· ·×qm denotes a primorial number of or-
der m such that qm is the mth prime number [5]. As usual σ(n) is the sum-of-divisors
function of n [1]:

∑
d|n

d
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where d | n means the integer d divides n and d ∤ n means the integer d does not divide
n. Define f (n) to be σ(n)

n . Say Robins(n) holds provided

f (n)< eγ × log logn.

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural
logarithm. The importance of this property is:

Theorem 1.1 Robins(n) holds for all natural numbers n > 5040 if and only if the
Riemann hypothesis is true [7]. Moreover, if the Riemann hypothesis is false, then
there are infinitely many natural numbers n > 5040 such that Robins(n) does not
hold [7].

It is known that Robins(n) holds for many classes of numbers n. Robins(n) holds for
all natural numbers n > 5040 that are not divisible by 2 [1]. We recall that an integer
n is said to be square free if for every prime divisor q of n we have q2 ∤ n [1].

Theorem 1.2 Robins(n) holds for all natural numbers n > 5040 that are square
free [1].

Let q1 = 2,q2 = 3, . . . ,qm denote the first m consecutive primes, then an integer of the
form ∏

m
i=1 qai

i with a1 ≥ a2 ≥ ·· · ≥ am ≥ 0 is called an Hardy-Ramanujan integer [1].
Based on the theorem 1.1, we know this result:

Theorem 1.3 If the Riemann hypothesis is false, then there are infinitely many nat-
ural numbers n > 5040 which are an Hardy-Ramanujan integer and Robins(n) does
not hold [1].

We prove if the Riemann hypothesis is false, then there are infinitely many Hardy-

Ramanujan integers n > 5040 such that Robins(n) does not hold and n
(

1− 0.6253
logqm

)
<

Nm, where Nm = ∏
m
i=1 qi is the primorial number of order m and qm is the largest

prime divisor of n. Furthermore, we show that qm will not have an upper bound by
some positive value for these counterexamples and thus, the value of qm tends to
infinity as n goes to infinity.

2 Known Results

These are known results:

Theorem 2.1 [1]. For n > 1:

f (n)< ∏
q|n

q
q−1

.

Theorem 2.2 [2].
∞

∏
k=1

1
1− 1

q2
k

= ζ (2) =
π2

6
.
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Theorem 2.3 [3]. Let n > ee23.762143
and let all its prime divisors be q1 < · · · < qm,

then (
m

∏
i=1

qi

qi −1

)
<

1771561
1771560

× eγ × log logn.

Theorem 2.4 Robins(n) holds for all natural numbers 101013.11485 ≥ n > 5040 [6].

Theorem 2.5 [9]. For qm ≥ 20000, we have

logqm < log logNm +
0.1253
logqm

.

Theorem 2.6 [8]. For x ≥ 286:

∏
q≤x

q
q−1

< eγ × (logx+
1

2× log(x)
).

Theorem 2.7 [4]. For x >−1:

x
x+1

≤ log(1+ x).

3 A Central Theorem

The following is a key theorem. It gives an upper bound on f (n) that holds for all
natural numbers n. The bound is too weak to prove Robins(n) directly, but is critical
because it holds for all natural numbers n. Further the bound only uses the primes
that divide n and not how many times they divide n.

Theorem 3.1 Let n > 1 and let all its prime divisors be q1 < · · ·< qm. Then,

f (n)<
π2

6
×

m

∏
i=1

qi +1
qi

.

Proof Putting together the theorems 2.1 and 2.2 yields the proof:

f (n)<
m

∏
i=1

(
qi

qi −1

)
=

m

∏
i=1

qi +1
qi

× 1
1− 1

q2
i

<
π2

6
×

m

∏
i=1

qi +1
qi

.

4 A Particular Case

We can easily prove that Robins(n) is true for certain kind of numbers.

Theorem 4.1 Robins(n) holds for n > 5040 when q ≤ 5, where q is the largest prime
divisor of n.
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Proof Let n > 5040 and let all its prime divisors be q1 < · · ·< qm ≤ 5, then we need
to prove

f (n)< eγ × log logn

that is true when
m

∏
i=1

qi

qi −1
≤ eγ × log logn

according to the theorem 2.1. For q1 < · · ·< qm ≤ 5,

m

∏
i=1

qi

qi −1
≤ 2×3×5

1×2×4
= 3.75 < eγ × log log(5040)≈ 3.81.

However, we know for n > 5040

eγ × log log(5040)< eγ × log logn

and therefore, the proof is complete when q1 < · · ·< qm ≤ 5.

5 Robin on Divisibility

The next theorem implies that Robins(n) holds for a wide range of natural numbers
n > 5040.

Theorem 5.1 Robins(n) holds for all natural numbers n > 5040 when a prime q ≤
1771559 complies with q ∤ n.

Proof Note that f (n) < n
ϕ(n) = ∏q|n

q
q−1 from the theorem 2.1, where ϕ(x) is the

Euler’s totient function. We have that f (n)< 1771561
1771560 ×eγ × log log(n) for any number

n > 101013.11485
. Suppose that n is not divisible by a prime q for q less than or equal to

some prime bound Q and n > N = 101013.11485
. Then,

f (n)<
n

ϕ(n)

=
n×q

ϕ(n×q)
× q−1

q

<
1771561
1771560

× q−1
q

× eγ × log log(n×q)
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and

f (n)
eγ × log log(n)

<
1771561
1771560

× q−1
q

× log log(n×q)
log log(n)

≤ 1771561
1771560

× Q−1
Q

× log log(n×Q)

log log(n)

=
1771561
1771560

× Q−1
Q

×
log log(n)+ log(1+ log(Q)

log(n) )

log log(n)

=
1771561
1771560

× Q−1
Q

×

1+
log(1+ log(Q)

log(n) )

log log(n)



So

f (n)
eγ × log log(n)

<
1771561
1771560

× Q−1
Q

×

1+
log(1+ log(Q)

log(n) )

log log(n)


for n>N = 101013.11485

. The right hand side is less than 1 for Q≤ 1771559. Moreover,
note that the inequality 101013.11485

> ee23.762143
is satisfied. Therefore, Robins(n) holds

as a consequence of the theorems 2.3 and 2.4.

6 A Main Insight

The next theorem is a main insight.

Theorem 6.1 Let π2

6 × log logn′ ≤ log logn for some natural number n > 5040 such
that n′ is the square free kernel of the natural number n. Then Robins(n) holds.

Proof Let n′ be the square free kernel of the natural number n, that is the product of
the distinct primes q1, . . . ,qm. By assumption we have that

π2

6
× log logn′ ≤ log logn.

For all square free n′≤ 5040, Robins(n′) holds if and only if n′ /∈{2,3,5,6,10,30} [1].
Robins(n) holds for all natural numbers n> 5040 when n′ ∈ {2,3,5,6,10,15,30} due
to the theorem 4.1. When n′ > 5040, we know that Robins(n′) holds and so

f (n′)< eγ × log logn′

because of the theorem 1.2. By the previous theorem 3.1:

f (n)<
π2

6
×

m

∏
i=1

qi +1
qi

.
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Suppose by way of contradiction that Robins(n) fails. Then

f (n)≥ eγ × log logn.

We claim that
π2

6
×

m

∏
i=1

qi +1
qi

> eγ × log logn.

Since otherwise we would have a contradiction. This shows that

π2

6
×

m

∏
i=1

qi +1
qi

>
π2

6
× eγ × log logn′.

Thus
m

∏
i=1

qi +1
qi

> eγ × log logn′,

and
m

∏
i=1

qi +1
qi

> f (n′),

This is a contradiction since f (n′) is equal to

(q1 +1)×·· ·× (qm +1)
q1 ×·· ·×qm

according to the formula f (x) for the square free numbers [1].

7 Proof of Main Theorem

Theorem 7.1 If the Riemann hypothesis is false, then there are infinitely many Hardy-

Ramanujan integers n > 5040 such that Robins(n) does not hold and n
(

1− 0.6253
logqm

)
<

Nm, where Nm = ∏
m
i=1 qi is the primorial number of order m and qm is the largest

prime divisor of n. In addition, qm will not have an upper bound by some positive
value for these counterexamples and therefore, the value of qm tends to infinity as n
goes to infinity.

Proof Let ∏
m
i=1 qai

i be the representation of some natural number n > 5040 as a prod-
uct of primes q1 < · · ·< qm with natural numbers as exponents a1, . . . ,am. The primes
q1 < · · · < qm must be the first m consecutive primes and a1 ≥ a2 ≥ ·· · ≥ am ≥ 0
since the natural number n > 5040 will be an Hardy-Ramanujan integer. We assume
that Robins(n) does not hold. Indeed, we know there are infinitely many Hardy-
Ramanujan integers such as n > 5040 when the Riemann hypothesis is false ac-
cording to the theorem 1.3. From the theorem 5.1, we know that necessarily qm ≥
1771559. So,

eγ × log logn ≤ f (n)< ∏
q≤qm

q
q−1

< eγ × (logqm +
1

2× log(qm)
)
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because of the theorems 2.1 and 2.6. Hence,

log logn < logqm +
0.5

log(qm)
.

From the theorem 2.5, we have that

log logn < log logNm +
0.1253
logqm

+
0.5

log(qm)
.

That is the same as
loglogn− log logNm <

0.6253
logqm

.

Then,

log logn− log logNm = log
(

logNm + log(
n

Nm
)

)
− log logNm

= log

(
logNm × (1+

log( n
Nm

)

logNm
)

)
− log logNm

= log logNm + log(1+
log( n

Nm
)

logNm
)− log logNm

= log(1+
log( n

Nm
)

logNm
).

In addition, we know that

log(1+
log( n

Nm
)

logNm
)≥

log( n
Nm

)

logn

using the theorem 2.7 since
log( n

Nm )

logNm
>−1. Certainly, we will have that

log(1+
log( n

Nm
)

logNm
)≥

log( n
Nm )

logNm
log( n

Nm )

logNm
+1

=
log( n

Nm
)

log( n
Nm

)+ logNm
=

log( n
Nm

)

logn
.

In this way, we have that
log( n

Nm
)

logn
<

0.6253
logqm

which is equivalent to

log(
n

Nm
)< log(n

0.6253
logqm )

and thus
n

Nm
< n

0.6253
logqm .

Finally, we obtain that

n
(

1− 0.6253
logqm

)
< Nm.

Moreover, we know that qm will not have an upper bound by some positive value for
these counterexamples because of the theorem 6.1. Certainly, if there is a possible
upper bound for qm, then it cannot exist infinitely many Hardy-Ramanujan integers
n > 5040 such that Robins(n) does not hold as a consequence of the theorem 6.1.



8 F. Vega

Acknowledgments

The author would like to thank his mother, maternal brother and his friend Sonia for
their support.

References

1. Choie, Y., Lichiardopol, N., Moree, P., Solé, P.: On Robin’s criterion for the Riemann hypothesis.
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pures appl 63(2), 187–213 (1984)
8. Rosser, J.B., Schoenfeld, L.: Approximate Formulas for Some Functions of Prime Numbers. Illinois

Journal of Mathematics 6(1), 64–94 (1962). DOI doi:10.1215/ijm/1255631807
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