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Abstract: The digital era has come, the use of data analytics, cloud applications and environ-
ments is growing faster than years ago in oil and gas subject. The industry own a huge quantity of
data storage from Instrumentation, logging and sensors. In the other side reservoir simulation has
a vital role in petroleum engineering due it application to fluids flow rates forecasting specially
for exploitation strategic definition. The complexity of using sophisticated mathematical models
can define a specific simulation study scenario and even with simplifications it needs the
domain knowledge in different areas such as reservoir, production, engineering and geosciences.
Some ideal assumptions can simplify the differential equations making not representative of
the complex behavior of the underground fluid and without these assumptions the reservoir
complexity increase greatly. In this paper, we use a public data from Volve field corresponding
to the production years 2008 to 2018. We built an assemble model based on system identification,
with a Non Linear Auto-Regressive (NARX) model and Artificial Neural Network (ANN)
architecture to simulate reservoir model and forecast real time the downhole pressure for short-
term decisions. The ensemble method did not provide better prediction compared to standalone
short-term simulations techniques. We use the initial dynamic data to build a consistency model
able to downhole pressure forecasting helping the oil production optimization with significant
error decrease.

Keywords: NARX, artificial neural network, hybrid model, ensemble, production simulation,
production data, volve field

1. INTRODUCTION

The use of the data driven approach in Oil and gas area in
increasing powered by the machine learning techniques and
power processing evolution (Koroteev and Tekic (2021)).
Reservoir simulation and production engineering request
a huge quantity for the decision making strategy (Onalo
et al. (2019)). Usually these areas request reservoir in-
formation for building complex mathematical models to
discover any physical relationship (Li et al. (2019)). In the
real case considering all relation between properties require
a huge computational power. So some ideal assumptions
can make the simplified equations unrepresentative of the
complex subsurface fluid behaviors (de Oliveira Werneck
et al. (2022)).

Many companies already own a consolidated data storing
pipeline from sensors measuring pressures, temperatures,
vibrations, flow rates and logging. They are dealing with
huge volume of data but, in the most of cases, without
processing data capability (Mohammadpoor and Torabi
(2020)).

⋆ This work was conducted in association with the ongoing Project
registered under human resources program for the oil and gas sector
(PRH-10) powered by ANP/FINEP, Brazil.

The oil industry plant digitalization help to reach higher
efficiency, improve the fault detection and controlling and
the income, production or flow rate forecasting (Aggoun
and Chetouani (2021); Bo et al. (2020); Solanki et al.
(2022); Lei et al. (2020)).

In their technical paper, Koroteev and Tekic (2021) con-
ducted a thorough analysis of the potential applications of
AI, focusing several examples such as the use of real-time
drilling telemetry to detect rock type and predict potential
failures through a dedicated tool, and the optimization
of production efficiency through a data-driven tool that
provides objective forecasts for well treatment campaigns.

Several models based on deep learning and recurrent neu-
ral networks were developed with different architectures,
input data and combinations of characteristics present in
the data set to estimate bottom hole pressure throughout
the production period (Alakeely and Horne (2021); Li et al.
(2019); Chen et al. (2021)). The impacts of using different
pre-processing techniques were analysed, various configu-
rations of stacked Recurrent Neural Networks (RNN) were
also varied, windows and time scales arranged for training
these models using real data and synthetic benchmark
data (de Oliveira Werneck et al. (2022)). The optimization
attempts were made with the input variables present in the



database, such as temperature, gas-oil ratio, valve opening
percentage, gas flow in order to obtain a set of data of
minimum inputs that allow the generation of a model that
represents the phenomenon of interest well and at the same
time has the lowest possible complexity.

Alakeely and Horne (2021) evaluated the impacts of us-
ing autoencoders in feature extraction or dimensionality
reduction for forecasting well liquid and multiphase re-
stricted flow rate using wellhead surface measurements and
demonstrated the application to real field data. They built
several architectures using feed forward, recurrent neural
networks and auto encoders.

Heghedus et al. (2019) developed a model prediction for
well flow rate time series based on pressure time series
from Permanent Down hole Gauges wells using the non-
linear autoregessive (NARX) and the long short term
memory (LSTM) neural networks were assembled and
tested on a synthetic data set to compare results of
pressure prediction.

Zha et al. (2022) studied the use of combining for forecast-
ing CNN and LSTM models monthly gas field production.
In their research the CNN is used for automatic feature
extraction to simplify feature extraction, while LSTM is
used to learn the sequence dependence of the time series
prediction.

In another study, Siavashi et al. (2022) proposed an up-
scaling approach for macroscopic properties of single and
two-phase flow. The approach combines CNNs and down-
sampling techniques to improve the prediction accuracy.

Lei et al. (2020) employed the NARX model to estimate
real-time flow rates in multi-product pipelines. The au-
thors developed data-driven adaptive models at local pres-
sure mutation points and demonstrated that the NARX
model outperforms standard recurrent neural networks by
maintaining input pressure signals for two to three times
longer. This allows the NARXmodel to effectively simulate
the time-delay characteristics of flow processes, making it
a promising tool for real-time flow rate estimation in the
oil and gas industry.

However, the possibility of developing dynamic models was
identified, and no longer static as seen in the literature,
for solving problems involving estimation of some target
variable such as oil production flow over time or iden-
tification of patterns present in a data set for fault and
anomaly detection for example. It has already been shown
these NARX models allow the detection of patterns of a
given time series (Tian and Horne (2017)). This technique
uses input and output delays to develop a dynamic model
capable of generating a reliable output from estimated
parameters and errors between the true value and those
obtained.

In the other side, the usual machine learning approach
for any measurement foresting like flow rate, oil and gas
production rate are based on the soft sensor technology.
They are commonly used for determine physical quantities
and require minimal process knowledge (Lei et al. (2020)).
The main problem of this approach is the need of updated
input information and for real time this can be quite
challenging.

To overcome the limitations of soft sensor approach, a
hybrid method is proposed to improve the accuracy of the
oil production estimation. The NARX model and ANN are
adopted for use as data-driven adaptive models.

The objective of this paper is to introduce a novel ensemble
data-driven approach that can aid short-term decision-
making for well production and pressure simulation in the
oil and gas industry.

The proposed solution employs a window prediction ap-
proach based on the initial record to develop a model
that can predict upcoming production rates and pressures
for several days without relying on real-time data inputs.
This approach aims to enhance the accuracy of short-term
predictions, allowing for more effective decision-making.

To develop the model, historical production data was used
for calibration and validation purposes. The dataset was
divided into a training sample to train the model and a test
sample to evaluate its accuracy. The resulting model was
able to predict future production rates and pressures with
a high level of accuracy, making it a potentially valuable
tool for optimizing well production in the oil and gas
industry.

This work is organized as follows: in Section 2 is presented
the description of the case study, in Section 3 it is ex-
plained the adopted methodology, in Section 4 we show
the achieved results. Finally, in Section 5 we state the
conclusion.

2. CASE STUDY DESCRIPTION

Regarding the dataset, it is from a real-life well in Volve
field (one of the latest databases released by Equinor
(2018) to the public for research purposes) used to build
the models. The details regarding the data will follow
later. A portion of the data from the well is employed to
develop the models whereas the remaining part of the data
is used as the blind case to further verify the predictive
performance of the models.

In May 2018, Equinor (2018) provided a dataset from
a real-life well in Volve field to the public for research
purposes used to build the models. It includes geological,
geophysical, and reservoir engineering data from the Volve
oil field, which is located in the North Sea, approximately
200 km west of Stavanger, Norway.

The Volve dataset includes well logs, seismic data, pro-
duction data, and reservoir engineering data, among other
types of information. It is intended to provide a compre-
hensive and realistic dataset for testing and benchmarking
subsurface technologies and workflows, and to promote
collaboration and innovation in the oil and gas industry.

Regarding the production data, it consists of the data of
7 wells and each well consists of the data, like On stream
hours, Average Downhole Pressure and Temperature, Av-
erage Choke Size Percentage and others.

In this study, we utilized data from well NO 15/9-F-1 C
in the Volve field for illustrative purpose, which has been
made available for research purposes by Equinor (2018).
For this well, the production period lasts from April
2014 to April 2016, encompassing a range of information



relevant to the study, this result in 741 daily records for
all mentioned variables.

Although this well have information about several vari-
ables we focuses in studding Average Downhole Pressure,
Average Downhole Temperature, On stream hours, Oil,
Gas and Water Volume from Well and Average Choke Size
Percentage only.

To enhance the readers’ comprehension of the production
scenario, we have computed and presented the mean,
standard deviation (SD) minimum and maximum values
of each variable in table 1.

Input and Output Mean SD Min. Max.

Avg Pressure (bar) 247.33 27.99 207.22 313.87
Avg Temp. (◦C) 105.20 3.44 95.87 108.50
On stream hours 13.47 11.64 0.00 25.00

Avg Choke Size (%) 29.79 25.45 0.00 93.63
Gas Volume (m3) 36.84 44.64 0.00 521.00

Water Volume (m3) 235.11 309.89 0.00 991.00
Oil Volume (m3) 219.80 245.35 0.00 245.35

Table 1. Mean, standard deviation, minimum
and maximum of input and output parameters
of the production case considering all the data

points.

In figure 1, we present the correlations between the vari-
ables in our dataset. The distribution of average downhole
pressure is found to be less concentrated than other vari-
ables such as stream hours and average downhole temper-
ature. Notably, we observe a stronger relationship between
average choke opening and the other variables.

Figure 1. The pairwise relationships and distribution of
average temperature, pressure, choke size opening,
and stream hours in the volve dataset, highlighting
potential correlations and patterns.

3. METHODOLOGY

In this work, we applied different numerical proce-
dures to simulate the downhole temperature. We used
the system identification technique AutoRegressive with
eXogenous input and theNonlinearAutoRegressive with
eXogenous input (NARX) Billings (2013) and Neural
NARX (NNARX) to assemble two simulations strategies.

The ARX model is described as exposed in Eq. 1.

y(k)+a1y(k − 1) + · · ·+ anay(k − na) =

b1u(k − 1) + · · ·+ bnbu(k − nb) + ξ(k),
(1)

where y(k) is the k − th sample from the output signal,
u(k) is the k − th sample from the input signal and a
and b are the parameters that tune the model. na and nb
are the number of model coefficients. We can consider the
model in terms of a product of matrices. Therefore, we
present the input and the output as vectors, u and y. The
parameters are sorted in a parameter vector Θ. The signal
considered is composed of N samples. Then, we take the
auxiliary number p = 1 + max(na, nb). The vectors are
defined as exhibited in Eq. (2).

y = [y(p), y(p− 1), · · · , y(N)]

Θ = [a1, · · · , ana, b1, · · · , bnb]
(2)

It is necessary define a regression matrix, Φ, to compose
the system. The matrix is filled with the vectors

ϕ(k) = [−y(k−1), · · · ,−y(k−na), u(k−1), · · · , u(k−nb)].
Then, the matrix is as follows in Eq. (3).

Φ = [ϕT (p),ϕT (p+ 1), · · · ,ϕT (N)]T (3)

Therefore, the system may be rewritten as in Eq. (4).

y = ΦΘ+ ξ (4)

The solution θ̂ =
(
ΦTΦ

)−1

Φy defines the ARX model

Billings (2013).

Lastly, a Neural Nonlinear AutoRegressive eXogenous
(NNARX) was used to simulate the error as present in
(5).

error(k) = y(k)− ŷ (5)

The NNARX model consists of several layers of neurons,
including input, output, and hidden layers. In this model,
past outputs and input variables are used as inputs to
predict the future output of the system. The model learns
the relationship between past inputs and outputs to pre-
dict future outputs. The neural network adjusts its weights
during the training process to minimize the error between
the predicted and actual outputs. NNARX models have
been shown to be effective in a variety of applications, in-
cluding flow rate estimation in pipelines (Lei et al. (2020)),
stock price prediction (Agung (2022)), and power grid
forecasting (Sharkawy et al. (2023)).



4. RESULTS

We first attempted to simulate the average downhole
pressure using an ARX model varying the variables used
as inputs, as well as the number of model coefficients na
and nb. The ARX and NARX estimation has been done
by the SysIdentPy python library (Junior et al. (2020)).

Although the relative good performance for the ARX, it
was not capable to incorporate all the system dynamic
verified in the validation tests as plotted in figure 2.
The developed model was built using average downhole
temperature as input and na = nb = 15 and result in
RMSE = 0.3305 and R2 = 0.9082.

Figure 2. Free Run (FR) simulation for the best developed
ARX model.

Figure 3. Free run simulation for the best developed NARX
model.

To enhance the NARX model, we implemented a poly-
nomial NARX model varying the degrees of the model.
The model utilized the average downhole temperature as
input with optimal hyper parameters of na = nb = 10, as
shown in Figure 3. We set ylag and xlag to the same order
number value of 10 in this case. Despite the ability of the
model to incorporate nonlinear behavior, the results were
light better than those obtained from the ARX model, as
evidenced by the RMSE of 0.2841 and R2 of 0.9264.

The Error Reduction Ratio (ERR) for the regressors of
that responsible for the biggest reduction are shown in
Table 2.

Figure 4 shows that using output feedback resulted in good
performance in both one-step-ahead and free run simula-
tions. One-step-ahead simulation involves predicting the
output of a system at each time step using historical

Regressors Parameters ERR

0 y(k-1) 1.1837E+00
1 y(k-9)y(k-3) 1.8132E-07
2 x1(k-1)y(k-2) 1.8155E-03
3 y(k-2)y(k-1) -6.4768E-04
4 x1(k-2)ˆ2 1.9229E-03
5 x1(k-3) -1.1813E-01
6 x1(k-20)x1(k-18) -7.1323E-04
7 y(k-19)y(k-6) -2.5525E-03
8 x1(k-10)x1(k-5) 2.2329E-03
9 x1(k-1)y(k-10) -2.0845E-03

Table 2. ERR according to each selected re-
gressor

Figure 4. Comparison of one-step ahead simulation and
free run methods for system identification.

data, while free run involves predicting the output over
a longer period without any knowledge of the inputs or
initial conditions. Verification of the simulations was done
by using raw inputs.

One final attempt was made to simulate the NARX
model error using the NNARX model, using the choke
size opening as the input variable. However, despite the
increased ability of the neural network to recognize the
system dynamics, this did not result in an improvement in
accuracy as plotted in figure 5 and 6. In this study, it was
found that mapping the error signal was not a trivial task,
and the observed increase in noise and floating point error
was likely attributed to the inherent chaotic behavior of
the system.

For this study, we used a neural network with 30 neurons in
the input layer and three hidden layers, each consisting of
100 neurons with dropout layers set to 0.2. We employed
the hyperbolic tangent (tanh) function as the activation
function and a learning rate of 1x10−3. Early stopping was
used with a patience parameter of 16. The neural network
was trained using 128 epochs and a batch size of 32.

5. CONCLUSION

In this study, we developed ARX, NARX, and NNARX
hybrid models to simulate the average downhole pressure
of a well in the Volve field. The models were trained and
tested to ensure that they accurately captured the input-
output relationship before conducting blind validation.



Figure 5. Comparison of one-step ahead simulation and
free run methods including the NARX error simula-
tion model in the train dataset

Figure 6. Comparison of one-step ahead simulation and
free run methods including the NARX error simula-
tion model in the test dataset

This study demonstrate the potential benefits of using
system identification techniques for production oil opti-
mization by providing accurate and timely insights into
the behavior of the production system. This approach can
help operators to improve the efficiency, reliability, and
profitability of their operations.

Although we attempted to improve the simulation results
by using a more complex model to estimate the NNARX
estimation error, it did not yield the expected improve-
ments. The simulation error proved to be challenging to
manage using the neural NNARX approach for system
identification due to the inherent chaotic behavior of the
system.

Our analysis revealed that the use of system identifica-
tion techniques can improve production oil optimization
by accurately predicting the behavior of the production
system, the model was able to identify optimal production
strategies that resulted in higher production rates and re-

duced operational costs. The model also provided valuable
insights into the performance of the production system,
highlighting areas for improvement and potential areas of
failure.

Future research in this area could focus on developing
more sophisticated models that incorporate additional
data sources and advanced analytics techniques, as well as
exploring the potential benefits of real-time optimization
and control.
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Davólio, A., Schiozer, D., and Rocha, A. (2022). Data-
driven deep-learning forecasting for oil production and



pressure. Journal of Petroleum Science and Engineer-
ing, 210, 109937. doi:https://doi.org/10.1016/j.petrol.
2021.109937. URL https://www.sciencedirect.com/
science/article/pii/S0920410521015515.

Equinor, E. (2018). Volve data village. Equinor Data
Portal Beta.

Heghedus, C., Shchipanov, A., and Rong, C. (2019). Ad-
vancing deep learning to improve upstream petroleum
monitoring. IEEE Access, 7, 106248–106259. doi:10.
1109/ACCESS.2019.2931990.

Junior, W.R.L., da Andrade, L.P.C., Oliveira, S.C.P., and
Martins, S.A.M. (2020). Sysidentpy: A python package
for system identification using narmax models. Journal
of Open Source Software, 5(54), 2384. doi:10.21105/joss.
02384. URL https://doi.org/10.21105/joss.02384.

Koroteev, D. and Tekic, Z. (2021). Artificial in-
telligence in oil and gas upstream: Trends, chal-
lenges, and scenarios for the future. Energy and
AI, 3, 100041. doi:https://doi.org/10.1016/j.egyai.
2020.100041. URL https://www.sciencedirect.com/
science/article/pii/S2666546820300410.

Lei, H., Kai, W., Changchun, W., Jing, G., and Xie,
P. (2020). Hybrid method based on particle fil-
ter and NARX for real-time flow rate estimation in
multi-product pipelines. Journal of Process Con-
trol, 88, 19–31. doi:https://doi.org/10.1016/j.jprocont.
2020.02.004. URL https://www.sciencedirect.com/
science/article/pii/S0959152419304342.

Li, Y., Sun, R., and Horne, R. (2019). Deep Learning
for Well Data History Analysis. OnePetro, Day 1
Mon, September 30, 2019. doi:10.2118/196011-MS.
URL https://doi.org/10.2118/196011-MS.
D011S008R002.

Mohammadpoor, M. and Torabi, F. (2020). Big
data analytics in oil and gas industry: An
emerging trend. Petroleum, 6(4), 321–328. doi:
https://doi.org/10.1016/j.petlm.2018.11.001. URL
https://www.sciencedirect.com/science/article/
pii/S2405656118301421. SI: Artificial Intelligence
(AI), Knowledge-based Systems (KBS), and Machine
Learning (ML).

Onalo, D., Oloruntobi, O., Adedigba, S., Khan, F.,
James, L., and Butt, S. (2019). Dynamic data
driven sonic well log model for formation evalua-
tion. Journal of Petroleum Science and Engineering,
175, 1049–1062. doi:https://doi.org/10.1016/j.petrol.
2019.01.042. URL https://www.sciencedirect.com/
science/article/pii/S092041051930049X.

Sharkawy, A.N., Ali, M.M., Mousa, H.H.H., Ali, A.S.,
Abdel-Jaber, G.T., Hussein, H.S., Farrag, M., and Is-
meil, M.A. (2023). Solar pv power estimation and up-
scaling forecast using different artificial neural networks
types: Assessment, validation, and comparison. IEEE
Access, 11, 19279–19300. doi:10.1109/ACCESS.2023.
3249108.

Siavashi, J., Najafi, A., Ebadi, M., and Sharifi,
M. (2022). A cnn-based approach for upscal-
ing multiphase flow in digital sandstones. Fuel,
308, 122047. doi:https://doi.org/10.1016/j.fuel.2021.
122047. URL https://www.sciencedirect.com/
science/article/pii/S0016236121019232.

Solanki, P., Baldaniya, D., Jogani, D., Chaudhary,
B., Shah, M., and Kshirsagar, A. (2022). Artificial

intelligence: New age of transformation in petroleum
upstream. Petroleum Research, 7(1), 106–114. doi:
https://doi.org/10.1016/j.ptlrs.2021.07.002. URL
https://www.sciencedirect.com/science/article/
pii/S2096249521000491.

Tian, C. and Horne, R.N. (2017). Recurrent Neural
Networks for Permanent Downhole Gauge Data Anal-
ysis. OnePetro, Day 1 Mon, October 09, 2017. doi:
10.2118/187181-MS. URL https://doi.org/10.2118/
187181-MS. D011S008R007.

Zha, W., Liu, Y., Wan, Y., Luo, R., Li, D., Yang,
S., and Xu, Y. (2022). Forecasting monthly gas
field production based on the cnn-lstm model. En-
ergy, 260, 124889. doi:https://doi.org/10.1016/j.energy.
2022.124889. URL https://www.sciencedirect.com/
science/article/pii/S0360544222017923.


