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Abstract

This letter aims to investigate thermodynamic processes in small systems in the Onsager region

by showing that fundamental quantities such as total entropy production can be discretized on the

mesoscopic scale. Even the thermodynamic variables conjugate to the thermodynamic forces and

the Glansdorff-Prigogine’s dissipative variable may be discretized. The Canonical Commutation

Rules (CCRs) valid at the mesoscopic scale are postulated and the measurement process consists of

determining the eigenvalues of the operators associated with the thermodynamic quantities. The

nature of the quantized quantity β, entering the CCRs, is investigated by a heuristic model for

nano-gas and analyzed through the tools of classical statistical physics. We conclude that according

to our model, the constant β does not appear to be a new fundamental constant but corresponds

to the minimum value.
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Mesoscopic structures have emerged as a dynamic and rapidly advancing research frontier,

captivating scientists across disciplines from physics, chemistry, and mineralogy to the life

sciences. The relentless push towards miniaturization, with devices now spanning mere

nanometers, is not only revolutionizing the creation of new materials but also deepening

our grasp of the fundamental laws that dictate the behavior of systems at the mesoscopic

scale. Based on recent experimental results and previous theoretical research, we investigate

thermodynamic processes in small systems in Onsager’s region. To this end, we begin with

a brief overview of the key aspects of Prigogine’s formulation of thermodynamic processes

within Onsager’s regime. Let us consider a system characterized by n degrees of advancement

ξ1, · · · , ξn. The deviations of ξi from the values ξeq.µ , assumed by the degrees of advance when

the system is in local equilibrium, are denoted by ᾱµ, that is ᾱµ ≡ ξµ − ξeq.i . So, ᾱµ may

represent the fluctuations of the various thermodynamic quantities such as temperature,

pressure, etc. According to the principles of thermodynamics, one can introduce for any

macroscopic system a state function S, the entropy of the system, which has the following

properties. The entropy variation due to the fluctuations reads [1]

∆S = ∆eS + ∆IS (1)

where

∆S =

∫ ξ

ξeq.
dS = S(ξ)− S(ξeq.) ; ∆eS =

∫ ξ

ξeq.
deS ; ∆IS =

∫ ξ

ξeq.
dIS (2)

∆eS denotes the entropy supplied to the system by its surroundings, and ∆IS is the entropy

produced inside the system, respectively. The second law of thermodynamics states that

dIS must be zero for reversible (or equilibrium) transformations and positive for irreversible

transformations of the system i.e., ∆IS ≥ 0. The entropy supplied ∆eS, on the other hand,

may be positive, zero, or negative, depending on the interaction of the system with its

surroundings. We also have [2]

σ̄ =
δ

δV

(d∆IS

dt

)
=

d

dt

(δ∆IS

δV

)
=
∂∆Is

∂ᾱµ

dᾱµ
dt

= xµjµ with jµ ≡
dᾱµ
dt

(3)

with jµ denoting the thermodynamic fluxes conjugate to the thermodynamic force xµ, and

δV denotes an infinitesimal spatial volume element occupied by the system. In Eq. (3)

we have adopted the Einstein convention of repeated indices. Unless stated otherwise, this

convention will also be adopted in the sequel of this manuscript. To work with entropy

production strength, which has dimension [Energy]/([Temperature] × [time]), we adopt
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the following definition for the thermodynamic forces, the thermodynamic fluxes, and the

thermodynamic variables, respectively:

Xµ(r, t) ≡
√
V xµ ; Jµ(r, t) ≡

√
V jµ ; αµ(r, t) ≡

√
V ᾱµ (4)

with (r, t) denoting the space-time. Eq. (3) links the entropy production strength with the

thermodynamic forces and the conjugate fluxes. To obtain the expression for the entropy

production strength solely in terms of the thermodynamic forces, it is necessary to relate the

dissipative fluxes to the thermodynamic forces that produce them. These closure relations

are called transport flux-force relations. For thermodynamic systems in Onsager’s region,

the most used transport relations are [2]

Jµ = LµνX
ν (5)

with Lµν = Lνν . Lµν is called Onsager’s Matrix where the entries are the transport coef-

ficients, independent of the thermodynamic forces. Note that to perform calculations, the

transport coefficients must be written in a dimensionless form. In terms of the transport

coefficients, in Onsager’s region, the local entropy production strength can be brought into

the form

σ = LµνX
µXν = V Lµνx

µxν = V σ̄ (6)

So, as we wish, σ has dimension [Energy]/([Temperature]×[time]) while σ̄ has dimension

[Energy]/([Temperature]×[time]×[Volume]).

A. The Space of the Thermodynamic Forces

To continue with the formalism it is necessary to define the space where we can perform

calculations. For this, we have to specify two quantities: the metric tensor and the affine

connection [3], [4], [5], [6], [7], [8]. The metric tensor and the affine connection are determined

by physics. More specifically, the metric tensor is identified with the symmetric piece of the

transport coefficients, and the expression of the affine connection is determined by imposing

the validity of the Glansdorff-Prigogine Universal Criterion of Evolution [5], [8]. For the

second law of thermodynamics, the square distance between two infinitely close points in

the space of the thermodynamic forces is always a nonnegative quantity. Additionally, in
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the thermodynamic space, the total entropy production σT in Onsager’s region reads

σT (t) =
1

V

∫
V

LµνX
µXν
√
LdnX (7)

with L denoting the determinant of Onsager’s matrix and V the volume occupied by the

system, respectively.

I. QUANTIZATION OF THE ENTROPY PRODUCTION STRENGTH

A. A Heuristic Approach

One of the main objectives of the Brussels School of Thermodynamics, founded by Théphile

De Donder and Ilya Prigogine, was to investigate systems on a mesoscopic scale to discover

the fundamental laws governing them. We start our analysis with the following (heuristic)

observation. A quasi-localized disturbance of entropy production can be obtained using a

linear superposition of modes with close mode numbers. So, if the system is subject to ”n”

independent thermodynamic forces, a local disturbance of entropy production strength can

be represented as a superposition of plane waves with the generic wave number K compatible

with periodicity conditions:

σ(X, t) =
1

(2π)n

∫ +∞

−∞

(
σKe

i(K·X−ωKt) + σ?Ke
−i(K·X−ωKt)

)
dK (8)

Notice that the modes are in the space of thermodynamic forces (and not in the ordinary

space). As known, Fourier’s theorem requires:

∆t∆ω ≥ 1 ; ∆Kµ∆Xµ ≥ 1 (no summation convention on µ; µ = 1, · · · , n) (9)

Recent experimental results lead to postulate the heuristic idea where, on mesoscopic scale,

in the space of the thermodynamic forces the entropy production strength is proportional to

the frequency and the thermodynamic variable αµ, conjugate to the thermodynamic forces

Xµ, is proportional to the wave-vector Kµ i.e.,

σ = /kBω ; αµ,K = /kBKµ with /kB ≡ βkB (10)

with /kB denoting Boltzmann’s constant kB times a pure number, say β, undetermined at

this stage. A combination of Eq. (9) with Eq. (10) yields

∆t∆σ ≥ /kB (11)

∆αµ∆Xµ ≥ /kB ∀µ (no summation convention on µ; µ = 1, · · · , n)
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These inequalities establish a fundamental limit on the precision with which certain pairs

of physical quantities, such as entropy production rate and time or thermodynamic force

and its corresponding thermodynamic variable, can be predicted from initial conditions. In

other words, we cannot precisely determine both the entropy production rate of a system and

time simultaneously; the more accurately we know the system’s entropy production, the less

accurately we know the time, and vice versa. Similarly, there is an uncertainty relationship

between a thermodynamic force and its corresponding thermodynamic variable. The pairs

of variables (t, σ) and (αµ, X
µ) may be called canonically conjugate (in analogy with the

quantum mechanics’ terminology).

B. The Formalism of Second Quantization and the Thermodynamic Commutation

Rules

We are now faced with two issues: i) The heuristic intuitions expressed in the previous

subsection must be supported by a rigorous formalism, and ii) We are dealing with many

entities with infinite degrees of freedom as these entities are continually being produced and

absorbed. The appropriate mathematical tool to treat these problems is provided by the

formalism of the second quantization (SQ) largely used in quantum field theory. The second

quantization is a mathematical algorithm for dealing with a large assembly of identical

entities [9]. This mathematical algorithm is based on introducing canonical commutation

rules (CCRs) where the physical quantities are ”promoted” to operators. Note that the

introduction of the CCRs do not necessarily concern quantum mechanics. Still, they are an

indispensable tool for treating a very large number of identical entities that can be produced

and absorbed. Hence, by the SQ-formalism, we have to promote the single variables σ and

t, and Xµ and αµ to operators, which act on some state space of the system, separately,

imposing a ”bind” between them so that their products behave ”as we wish” (see also [10]).

At the mesoscopic scale, we have to write:

[t, σ] = i
/kB
2

(12)

[αµ,K, X
ν
K′ ] = i

/kB
2
δµνδKK′ with /kB = βkB

with [· · · ] denoting the commutator between two operators: [A,B] = AB − BA and δµν

the Kronecker delta, respectively. In [11] we can find recent experiments where the entropy
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production in non-equilibrium systems has been measured. To the best of our knowledge,

[11] provides the most accurate value of the lowest limit of this constant that appeared up

to now in the literature. In [11] we find several examples of experimental traces for the

tip position of different mechano-sensory hair bundles as a function of time. The authors

estimated the local irreversibility measure obtained from single 30 sec. recordings of the

oscillations shown in these examples. The sampling rate was ω = 2.5kHz. From these

experiments, we can estimate (albeit approximately) the numerical value of β. We find

β ∼ 1.2 × 10−8 so, /kB ∼ 1.6 × 10−31 J/K. In the forthcoming section, we shall provide a

(rough) estimation of constant β for a quasi-ideal gas. We shall see that, in this case, β does

not appear to be a new fundamental constant but corresponds to the minimum value.

II. DISCRETIZATION OF THE TOTAL ENTROPY PRODUCTION STRENGTH

IN ONSAGER’S REGIME

The total entropy production strength reads

σT (t) =
1

V

∫
V

σ(X, t)
√
LdnX =

1

V

∫
V

LµνX
µXν
√
LdnX (13)

The local entropy production strength can be split into two contributions

σ(X, t) = LµνX
µXν =

1

2
LµνX

µXν +
1

2
LµνJµJν (14)

Let us now perform the following linear coordinate transformation:

X ′
λ

= AλκX
κ, with Aµν such that AαλL

λκAβκ = Iαβ (15)

with Iαβ denoting the Identity matrix. So, after transformation,
√
L→ 1. Notice that, since

the matrix Lµν is a positive definite matrix, there exists always a matrix Aµν , which satisfies

condition (15). After transformation we get

σT (t) =
1

V ′

∫
V ′
σ(X′, t)dnX ′ with σ(X′, t) =

1

2

n∑
µ=1

(
| X ′µ |2 + | J ′µ |2

)
(16)

In the space of the thermodynamic forces, the Fourier expansion in a finite box of volume

V of the thermodynamic fluxes reads

J ′µ(X′, t) =
∑
K

(
Jµ,K(t)ei(K·X

′) + J?µ,K(t)e−i(K·X
′)
)

(17)
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where

Jµ,K(t) = iωKαµ,K(t) and J?µ,K(t) = −iωKα
?
µ,K(t) (18)

By plugging Eq. (17) and the expression for Xµ
K(t) (in this case, Xµ

K = Xµ?
−K′) into Eq. (16)

yields

σT (t) = 2
n∑
µ=1

∑
K

(
| Xµ

K(t) |2 + | Jµ,K(t) |2
)

= 2
n∑
µ=1

∑
K

(
| Xµ

K(t) |2 +ω2
K | αµ,K(t) |2

)
(19)

where the orthogonality relation

1

V

∫
V

eiK·Xe−iK
′·XdnX = δKK′ (20)

has been taken into account. This expression is identical to the Hamiltonian of a harmonic

oscillator if we set the value of the mass = 4 and we identify the following terms: position→

αµ,K , momemtum→ 2Xµ
K , and frequency→ ωK (see, for example, [12]). So, we first define

two new dimensionless operators X̃µ
K and α̃µ,K , as follows:

X̃µ
K =

√
2

/kBωK

Xµ
K ; α̃µ,K =

√
2ωK

/kB
αµ,K (21)

In terms of these new variables, the expression for σT (t) reads

σT (t) =
n∑
µ=1

∑
K

/kBωK

(
| X̃µ

K |
2 + | α̃µ,K |2

)
(22)

As for the case of the harmonic oscillator, we have to assume the validity of the following

Canonical Commutation Rules (CCRs):

[α̃µ,K, X̃
ν
K′ ] = iδµνδKK′ so [αµ,K, X

ν
K′ ] = i

/kB
2
δµνδKK′ (23)

The two operators of creation ”a
(µ)+
K ” and destruction ”a

(µ)
K ” can be introduced and defined

as usual (see, for example, [13]):

a
(µ)
K =

1√
2

(
α̃µ,K + iX̃µ

K

)
; a

(µ)+
K =

1√
2

(
α̃µ,K − iX̃µ

K

)
; [a

(µ)
K , a

(µ′)+
K′ ] = δµµ′δKK′ (24)

We finally get the discretization of the total entropy production strength in Onsager’s region

σσσT (t) =
n∑
µ=1

∑
K

/kBωK

(
n
(µ)
K +

1

2

)
(25)

where the number operator n
(µ)
K ≡ a

(µ)+
K a

(µ)
K has been introduced. To sum up, in the space

of the thermodynamic forces the total entropy production strength behaves as the sum of

”K” (discretized) independent one-dimensional harmonic oscillators, each oscillating with

frequency ωK.
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III. THE CORRESPONDENCE PRINCIPLE WITH THE EINSTEIN-

PRIGOGINE THEORY OF FLUCTUATIONS

In principle, the constant contribution

σ0 =
1

2

n∑
µ=1

∑
K

/kBωK (26)

diverges. This expression is the total entropy production for a macroscopic system generated

by very small fluctuations around the thermodynamic equilibrium. To analyze this term

we consider the Einstein-Prigogine theory of equilibrium fluctuations. In this theory, the

probability P of finding a state in which the values of αµ lie between αµ and dαµ is

Pdα1 · · · dαn = P0 exp(−∆IS/kB)dα1 · · · dαn (27)

where P0 ensures normalization to unity. Expression (27) is only valid for small spontaneous

fluctuations around the thermodynamic equilibrium and not for systematic deviations from

equilibrium. Prigogine showed the validity of the following important result: whatever

the thermodynamic system (hydrodynamic, chemical, etc.), due to spontaneous equilibrium

fluctuations, the average entropic production is [1]

∆IS =

∫
· · ·
∫

∆ISPdα1 · · · dαn =
n

2
kB (28)

with n denoting the number of the independent thermodynamic forces. Now we have to

calculate the eigenvalues of the ∆∆∆IS operator by using the canonical commutation rules.

Detailed calculations for getting the expression for the ∆∆∆IS operator can be found in [10].

We have:

∆∆∆IS =
1

4V

∫
(q̂µνX

µXν + qµναµαν)
√
L dnX (29)

where q̂µν is a definite positive matrix. Hence, there exists a linear coordinates transforma-

tion such that

α′λ = Aκλακ, with Aµν such that Aαλq
λκAβκ = Iαβ (30)

With a suitable definition of a new set of dimensionless variables, we have

∆∆∆IS =
n∑
µ=1

∑
K

/kB

(
| X̃µ

K |
2 + | α̃µ,K |2

)
(31)
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and introducing the operators of creation and destruction a
(µ)+
K and a

(µ)
K , and the number

operator n
(µ)
K , we get

∆∆∆IS =
n∑
µ=1

∑
K

/kBn
(µ)
K +

n

2

∑
K

/kB (32)

where the canonical commutation rules have been taken into account. Eq. (32) coincides

with the ground state calculated by the Einstein-Prigogine fluctuations theory by setting

(the Corresponding Principle) [10]:

n

2

∑
K

/kB ≡
n

2
kB (33)

This yields the following expression for the entropy production operator

∆∆∆IS =
n∑
µ=1

∑
K

/kBn
(µ)
K +

n

2
kB (34)

having discrete eigenvalues

∆IS =
n∑
µ=1

∑
K

/kBn
(µ)
K +

n

2
kB ≥ 0 (35)

IV. A HEURISTIC MODEL FOR DETERMINING β FOR A QUASI-IDEAL GAS

We aim to investigate the physical origin of constant β entering the CCRs. We start with

the simplest assumption: by a statistical model for nano-gases we can derive the expression

for β. To this end, we adopt a (very) simple heuristic model for nano-gas with the following

assumptions

1) The limit case is reached when the distance between the molecules of the nano-gas is

(approximately) twice the Bohr radius (rB).

2) The spherical-molecule model is adopted. Beyond the Heisenberg principle, classical

statistical physics applies.

Note that these simplifications are frequently employed in classical scattering theory. Indeed,

as a first approximation, choosing σcs = 4πr2B is reasonable for representing the effective

interaction area of a molecule [14] (for a more detailed explanation see [15]). Fig. 1 shows

the classical spherical model to represent molecules in nano-gases. In our heuristic model,

the impact parameter b is twice Bohr’s radius and all the molecules of the nano-gas are

equal (so, r′M = rM with rM denoting the molecular radius). The volume occupied by a
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FIG. 1: Collision between two molecules of a quasi-ideal nano-gas. The impact parameter

b is the distance between the two centers of the molecules. In our heuristic model, the molecules are

spherical and identical. The model assumes that if b ≤ 2rB the two molecules collide, they ”feel”

the Heisenberg principle. The limit case is reached when the distance between the two molecules is

b = 2rB and the perfect packing is reached (i.e., n = V −1M ).

molecule is VM = 4/3πr3M . At thermal equilibrium, the (classical) uncertainty related to the

measurement of the entropy production strength σ reads [15]:

∆σ ∼ ∆E

Tτ
(36)

with τ denoting the collision time, T the temperature of the system, and ∆E the en-

ergy uncertainty of the classical system, respectively. In classical statistical mechanics, the

equipartition theorem relates the temperature of a system to its average energies:

1

2
mM v̄2 =

3

2
kBT (37)

with v̄2 and mM denoting the mean square speed and the molecule mass, respectively. The

statistical theory of gases provides us with the expression of the collision time [16]:

τ =
1

nσcsV̄rel
(38)

where σcs = πb2 = 4πr2B is the cross section. n and V̄rel are the number of molecules for unit

volume and the mean relative velocity, respectively. V̄rel is linked to the root mean square

speed by the relation V 2
rel = 2v̄2 [16]. If we do not make a distinction between the mean of

the square and the square of the mean, we have V̄rel '
√

2v̄2 [16]. By combining all these

expressions we get

∆t∆σ = (∆t∆E)
3nσcs√

2mM

√
v̄2
kB ≥

~
2

3nσcs√
2mM

√
v̄2|Max.

kB (39)

In Eq. (39) we have taken into account the Heisenberg uncertainty principle:

∆t∆E ≥ ~
2

(40)
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with ~ denoting the reduced Planck constant (~ = h/(2π)). Here, ∆t and ∆E are the un-

certainties related to time and energy measurements of the system, respectively. According

to our (raw) model, molecules collide with each other with a minimal impact factor when

nσcs = 3η
r2B
r3M

(41)

with η denoting the packing fraction and rM the radius of the average molecule of the

nanomaterial, respectively. A perfect packing corresponds to η = 1. The product ∆t∆σ

decreases as the average distance between molecules becomes smaller. In the ideal case

of perfect packing (η = 1), minimizing the average distance between molecules reduces

the uncertainty in entropy production strength (∆σ), resulting in more predictable and

consistent entropy production behavior due to the dense packing of molecules. Finally, we

get a rough estimation of β. Indeed,

∆t∆σ ≥ 9

2
√

2

~
mecrB

(
rB
rM

)3(
me

mM

)
kB =

9

2
√

2
α

(
rB
rM

)3(
me

mM

)
kB = βkB (42)

with me denoting the electron mass, c the speed of light, and α the fine-structure constant,

respectively. Note that although the mass of the electron appears in Eq. (42) it plays no role

since the product αme is independent of the mass of the electron. However, it is important

from the physical point of view to put this quantity in evidence. From Eq. (42) we get,

β =
9

2
√

2
α

(
VB
VM

)(
me

mM

)
=

9

2
√

2
αχ (43)

where VB/VM represents the relative size of the Bohr volume (volume of an atom based on the

Bohr radius) to the volume occupied by a single molecule and the ratio me/mM compares

the mass of an electron to the mass of a molecule composing the material, respectively.

Parameter χ ≡ (VBme)/(VMmM) denotes the Bohr-Molecular Ratio (BMR). By plugging

the values α = 1/137, and typical values for VB/VM ∼ 10−3, and me/mM = 1/3000 into

Eq. (43) we get βTheor. ∼ 10−8 which aligns with the experimental value found in [11]:

βExp. ∼ 1.2× 10−8.
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