




the driven gear. It opposes the force weight component
mg sin(y). The torque TL leads to the angular displace-
ment concerning the vertical axis.

Figure 1. Free-body diagram of the aeropendulum. The
basic set of components is the motor, the gearbox, the
propeller, and the rotating bearing. Source: adapted
from Lucena et al. (2021)

2.2 Electrical and aerodynamic parts

The aeropendulum comprises four parts, as depicted in
Figure 2. A PWM signal controls the motor shield’s H-
bridge and delivers voltage to the motor armature.

Figure 2. Aeropendulum system diagram: electrical, me-
chanical, and aerodynamic components.

Figure 3 shows photographs of the actual prototype.
Supported by a base made of polystyrene, under the
bearing, there is a rotary magnetic encoder AS5040 that is
used to measure the angular position. The microcontroller
is used to collect, process, and generate the necessary
signals, whilst the motor driver is used to directly control
the DC motor. The motor-propeller set is seen on the left
side of the figure. A USB connection interface transfers
commands and data to the microcomputer.

2.3 Mathematical description

From the free-body diagram and the equivalent circuit
depicted in Figure 3 and 2, respectively, one can derive
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Figure 3. Front and backside photographs of the real
aeropendulum plant. Source: Lucena et al. (2021)

where Ra represents the armature resistance, La the ar-
mature inductance, Kω the electromotive constant, and
va the voltage source. We can also describe
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where Ki represents the torque constant, !1 the rotational
speed of the motor shaft, T1 is the mechanical torque due
to the gear-propeller set, Jm the moment of inertia of
the rotor, and F the viscous friction constant. Since the
propeller thrust is given by

f = Kq!
2
2 ; (3)

where !2 is the speed of the propeller, and Kq is the thrust
coefficient (Corke, 2017). Since the relationship of !1 and
!2 is expressed by

!2 =
N2

N1
!1; (4)

where N2 : N1 is the gearbox ratio.

Considering that the armature current can be measured
and that the motor dynamics are fast enough to be ne-
glected regarding the aeropendulum dynamics, the angular
speed !1 can be rewritten in terms of the input voltage
and armature current !1 = 1

K!
va − Ra

K!
ia. Taking into

consideration that the propeller’s transient response is
assumed to be faster than the speed of the pendulum rod
and neglecting the moment of inertia of the propellers, (3)
can be rewritten as
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One can describe the pendulum’s rotational dynamics from
the free-body diagram as
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dy

dt
= Ω; (7)

where y is the angular position, Ω is the angular speed of
the aeropendulum.

3. EXPERIMENTAL RESULTS

The previous study Lucena et al. (2021) focused on ac-
quiring position information only and used both the 10-
bit Synchronous Serial Interface and a simulation model



to communicate with the Arduino microcontroller. It hin-
dered the possibility of increasing the sampling rate and
constrained the low-level signal configuration.

Developing an acquisition scheme running solely on the
Arduino board would yield two significant benefits. First,
it would grant greater control over the sampling rate,
enabling the utilization of different acquisition modes, such
as the PWM built-in interface in the position sensor.
Second, it would ease low-level hardware configuration,
empowering the triggering of events based on Arduino
Timers, thereby ensuring regular sampling intervals. More-
over, interrupt-based events would allow for sampling di-
verse signals due to hardware phase correction.

With these considerations in mind, this section proposes
using a timing diagram to collect the effective armature
voltage, armature current, and angular position using
solely the Arduino board.

3.1 Timing diagram

By configuring the Wave Generation Mode bits of the
Timer 1 Counter Control Register, the Arduino board can
be set to operate in the phase-corrected PWM mode. This
configuration enables an oscillator-based counter to func-
tion in a dual-slope manner. Leveraging this capability,
the Timer1 Overflow interruption takes place whenever the
PWM signal is operating at high level. The timing diagram
illustrating the proposed acquisition scheme is presented in
Figure 4.

Figure 4. Data acquisition timing diagram: the signals
of interest are measured in their high level, whose
sampling depends on the triggering of the overflow flag
from Timer 1. The sampling rate is directly related to
the PWM frequency of the Arduino Board (originally
490 R1.1Hz).

Whenever the counter of Arduino’s timer one reaches zero,
an overflow interruption called TOV1OVF is triggered.
During this interruption, the armature current, voltage
data, and filtered position information are gathered. The
sampling rate is directly influenced by the PWM frequency
of the Arduino board, resulting in a sampling time of
Ts = 1

490 = 2; 04 ms. A set of voltage values is applied
to carry out the data acquisition process.

3.2 Position data acquisition

The AS5040 sensor has a PWM interface that generates a
PWM signal. The duty cycle of this signal is proportional
to the angular position detected, while its frequency is
975,6 Hz. To process the position data, a second-order low-
pass filter is employed. This filter effectively smooths the
signal, and the Arduino’s resulting analog output voltage,
which is proportional to the angle, is read by the ADC
(Analog-to-Digital Converter). Figure 5 illustrates the
PWM signal generation, filtering, and conversion process.
To achieve the desired results, R1 ≥ 4K7Ω, C1 ≥ 1�F .

Figure 5. The PWM output provided by the AS5040
and the filtered to yield the angular displacement.
R1 = R2, C1 = C2. Source: adapted from the AS5050
sensor’s datasheet.

3.3 The relationship between the duty cycle and the
armature voltage

Accurate measurement of the armature voltage is crucial
as there are voltage drops across the H-bridge utilized for
DC motor control, and these drops vary non-linearly with
the armature current. However, during the experiments,
it was observed that the differential measurement feature
supported by the Mega microcontroller yielded imprecise
results. Consequently, a curve-fitting relationship between
the duty cycle to the H-bridge and the corresponding
armature voltage value was established. This relationship
is illustrated in Figure 6.

Figure 6. The armature voltage Va as a function of the
duty cycle � ; acquired and estimated data through
(8).

The duty cycle � was incrementally increased at a rate of
5% and capped at 70%. This limit ensures the aeropendu-





5. DATA-DRIVEN SYSTEM IDENTIFICATION

One of the most promising methods for extracting dynam-
ical equations from data with a minimal amount of a priori
information is the so-called SINDy (Brunton et al., 2016).
In this paper, we used the weak formulation of SINDy,
denoted as WSINDy (Messenger and Bortz, 2021). The
basic concepts of WSINDy are briefly described in the
section.

5.1 Weak SINDy

The WSINDy is based on the so-called weak formulation in
which the underlying differential equation is transformed
into an integral equation. The weak formulation leads to
robustness and less susceptibility to noise and errors since
one needs to compute time derivatives. Consider a system
described by

dx

dt
= F(x); x(0) = x0 ∈ RD: (10)

One assumes that the state variables measurements are
contaminated with an identically distributed additive noise
source. Thus, the noisy measurement is given by

ymd(t) = x(t) + �md(t); (11)

where ymd(t), x(t) ∈ RM×D, t = [t1; :::; tM ]T , and
�md(t) ∈ RM×D.

For any smooth test function � : R → R supported on the
interval (a; b) ⊂ [0; T ], (10) admits the weak formulation,
when 0 ≤ a ≤ b ≤ T , given by

�(b)x(b) − �(a)x(a) −
Z b

a

�′(u)x(u)du =

Z b

a

F(x(u))du;

(12)
which consists of the data-driven version of the Galerkin
method for solving F.

The function mapping Fd : RD → RD extracted from the
noisy measurements is given by

F̂(ymd(t)) =

JX
j=1

�J�J(ymd(t)); (13)

where the library function {�l(·); l = 1; · · · ; J} is a set of

candidate basis functions used to represent F̂, an estimate
for F, and it is expressed by

Θ(ymd(t)) = [�1(ymd(t)) �2(ymd(t)) : : : �J(ymd(t)] ; (14)

where each of the library function terms represents a
trigonometric, polynomial function, or a product between
each of the terms.

One can include the excitation input when composing the
library of candidate functions Θ. In (12), if � is non-
constant and supported in the interval (a; b), the residual
R(ΞΞΞ; �) is defined with respect to a specific test function
by substituting (13) in (12):

R(ΞΞΞ; �) =

Z b

a

�′(u)ymd(u)du+Z b

a

�(u)

JX
j=1

�j�J(ymd(u))du

(15)

The discrete-time version of (15) can be stated as:

R(ΞΞΞ; �k) := (GΞΞΞ − b)k ∈ R1xD (16)

The Gram matrix G and the approximate dynamics b are
determined through the use of the integration matrices V
and V’. They can be determined by

Vkm = ∆t�k(tm); (17)

V′km = ∆t�′k(tm) (18)

Hence, Eq. 16 can be rewritten as:

R(ΞΞΞ; �k) := VΘ(ymd)ΞΞΞ − V′ymd (19)

Defining the covariance matrix as Σ = V ′(V ′)T and using
it as a weighting factor, the solution to the generalized
least-squares problem can be given by:

Ξ̂ΞΞ = arg min
ΞΞΞ

�
(GΞΞΞ − b))TΣ−1 (GΞΞΞ − b) + 2||ΞΞΞ||22

�
(20)

5.2 Input Signal Design

One crucial aspect of a parameter estimation procedure
is the design of the experiment (DoE). In the context of
nonlinear systems identification, creating an informative
excitation signal that captures the desired dynamics is
essential, as described in Deflorian and Zaglauer (2011).
While this topic is frequently discussed in system identifi-
cation theory, it has received limited attention in relation
to the SINDy algorithm. Previous studies (Fasel et al.
(2021)) suggest the need for further investigation.

Two approaches can be used to gather valuable informa-
tion through DoE: model-based or model-free. In this case,
a suitable model-free DoE method involves utilizing the
Latin Hypercube distribution to generate the excitation
signal. The input space is limited by � ∈ [�max; �min],
Ts ∈ [Tsmin

; Tsmax
], and divided into 10 intervals, which

correspond to the prior information related to the actua-
tion limits and operating characteristics. Figure 10 depicts
the design points of the input space on the left side and
the associated excitation signal on the right side.

Figure 10. The excitation signal, where dn represent the
amplitude of each voltage step, and Th represents the
dwell time. Each point represents a step signal with
amplitude � and duration time Ts.

We demonstrate the application of the proposed algorithm
using the aeropendulum simulation model. We retrieve
data in silico, and the idea is to verify the performance
of the WSINDy algorithm in obtaining the ODEs that
characterize the system.





Figure 12. Dynamics predicted on the test set.

methodology should also be applied to the real scenario
and able to describe the propeller’s thrust.

7. CONCLUSION

In this study, we have taken a comprehensive approach
to address the aeropendulum problem. Previous research
efforts have encountered discrepancies between the sim-
ulated and experimental systems. This disparity arose
from overlooking the actuator’s electrical modeling and
dynamics. We have introduced a non-linear relationship
between the PWM input and the armature voltage while
incorporating the electric model to address this issue.
By incorporating these new component models, we have
improved the system’s overall modeling and conducted
simulations under different operating conditions.

Furthermore, we have devised an acquisition scheme that
captures the angular position and relevant variables associ-
ated with the armature equivalent circuit. This acquisition
scheme plays a crucial role in the proposed estimation
algorithm, as it enables the incorporation of state vari-
ables and enhances parameter estimation. To leverage our
understanding of the plant’s actuation limits, we have
introduced a design of the input space using the LHC
technique. Notably, the design of the input space using
LHC has received limited attention within the WSINDy
framework, making our contribution significant in this
regard.

By adopting the WSINDy algorithm, results have demon-
strated the effectiveness of utilizing it for describing the
aerodynamic behavior of the propeller. The predicted dy-
namics using the WSINDy exhibited an MSE on the order
of 10e-6 compared to the test set. Additionally, the algo-
rithm has shown its capability to adapt to any parametric
changes in the electrical or mechanical components, allow-
ing it to find the correct representation of the system data.

For future research, it would be interesting to collect real-
world data on the propeller’s speed in the actual aeropen-
dulum platform and assess the WSINDy algorithm’s abil-
ity to accurately describe the thrust force behavior. Given

the enhanced model description achieved in this study
compared to previous works, evaluating different control
approaches in a closed-loop setup would also be valuable.
With respect to this matter, ongoing efforts are focused on
refining the plant controller.
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