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ABSTRACT 
The industry has seen a wave of new domain-specific accelerators 
purpose-built for deep learning workloads. To obtain real-world 
performance close to the highest theoretical performance from the 
accelerators, the tensor layout and workload distribution need to be 
optimized along with the accelerator instruction set, 
communication fabric, and memory architecture.  

In this paper, we introduce a general methodology for automating 
hardware architecture and software co-optimization for domain-
specific accelerators. Applying this methodology to The Intel® 
Nervana™ Neural Network Processor for Training (Intel® 
Nervana™ NNP-T), it has achieved the state-of-the-art (SOTA) 
deep-learning microbenchmark performance on convolution 
benchmarks. A generic convolution context distribution algorithm 
developed based on auto-optimizer results for ResNet50 is also 
discussed in this paper. 
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1. INTRODUCTION 
The recent wave of domain-specific accelerators for deep-learning 
workload has raised the challenge on how to generate instruction 
code with optimized deep learning performance on a domain-
specific accelerator. 

General-purpose compilers such as LLVM compile high-level 
language input programs to a computer device with traditional 
computer architectures,  memory hierarchy and a single CPU 
operating on scalar or vector values [1, 2]. Without low-level 
accelerator architecture and instruction set knowledge, a generic 
compiler is not able to generate executable code with high 
performance on domain-specific accelerators. 

In today’s deep learning accelerators or domains such as dense 
linear algebra, it is still widely accepted and practiced to have 
handwritten and optimized code surpassing the performance of 
code output by compilers. 

To extract the best deep learning workload performance from 
accelerators, there are two main aspects to consider when 
generating the programing codes: 1. Tensor layout and workload  
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distributions, and 2. Accelerator microarchitecture dependent 
optimization. The first varies with accelerator architecture, affected 
by locality, parallelism, memory and compute throughput of the 
device [3, 4].  Different solutions apply for different accelerators. 
The second aspect is tightly related to accelerator micro-
architecture design and fine-tuning the instruction sequence will 
provide a further performance improvement. 
This paper focuses on the first issue which normally provides an 
order of magnitude performance improvement with a highly 
optimized solution compared with a naïve implementation. The 
additional improvement provided by the second aspect normally is 
less than 1x as it addresses corners cases where the instruction 
bound occurs. 
Automated search guided by performance feedback is a common 
technique for dealing with complex tuning spaces in several 
applications. Such techniques have been applied to dense linear 
algebra [5], sparse linear algebra [6], image processing [7], and 
neural networks [8,9], to name a few. In this work, we apply these 
well-known open-source techniques to a novel deep learning 
training accelerator architecture - Intel Nervana NNP-T, and we 
derive actionable insights from the search itself to achieve SOTA 
deep learning microbenchmark performance. 
 

2. AUTO-OPTIMIZER 
One of the main operations on deep learning workloads is General 
Matrix Multiply (GEMM)  and convolutions as dense linear algebra 
calculations. The pseudo-code for GEMM is below: 

for m, n, k { 

C [m][n] += A [m][k] * B [k][n]; 

} 

Where A and B are the two-input matrix and C is the output matrix. 
All three matrices are two-dimension arrays. 

For convolution, here is the pseudo-code: 

for n, p, q, k, r, s, c { 

 ofm [n][p][q][k] += ifm [n][c][p:p+r][q:q+s] * filter 
[c][r][s][k] 

} 

Ofm is output feature map, and ifm is input feature map. Each 
matrix has 4 independent dimensions.   

Note that the above is one of the tensor layouts for convolution 
computation. Notice that both GEMM and convolution have 
tensors with at least 2 dimensions. 

The core of the deep learning accelerator are matrix multiply 
engines that speed up 2D tensor multiplication and accumulations.  
Accelerators with multiple MM engines, tensor layout in memory, 
locality and parallelism will have a big impact on the performance. 
We will elaborate on this using Intel® Nervana™ NNP-T as an 
example. 



2.1 Intel® Nervana™ NNP-T SOC 
Figure 1 shows the NNP-T chip diagram [10]. NNP-T consists of 4 
HBM2 2400 with 2.5D packaging technology, providing 1.22 TBps 
raw bandwidth and a 32GB total device memory. PCIe Gen4 x16 
supports communication with the host CPU. It also includes 64 
28Gbps SerDes lanes for a chip to chip scale-out communication. 
The deep learning workload acceleration functionality resides in 
the 24 tensor processing clusters (TPC), shown in Figure 2. NNP-
T can provide up to 119 TOPS compute. TPC consists of four main 
subsystems. The on-chip router is the green block on the top right, 
which directly passes data between the TPCs, as well as to and from 
HBM, PCIe and SerDes. It is a bidirectional 2-D mesh architecture 
with cut-through forwarding and multicast support. The on-chip 
router provides a total of 2.6TBps cross-sectional BW and 1.3TBps 
per-direction. The control block is for instruction decoding, 
scheduling and retiring as well as managing the dependency for 
computing and memory. The compute units are the two red blocks, 
each with 32x32 matrix multiplication arrays, and support for 
vector and deep learning specific operations. The TPC data pipeline 
allows compound operations to reduce memory access and increase 
throughput. Deep learning required operations such as activation 
functions, random number generator, reductions, and 
accumulations are supported. The local memory block in blue 
sources and sinks data to and from the compute units and HBM, as 
well as allowing sending or receiving data from other TPCs’ 
memory. The total on-chip memory is 60 MB, which is software 
managed. 

 

 
Figure 1. Intel® Nervana™ NNP-T chip diagram. 

 

 

2.2 Auto-Optimizer Flow 
Each GEMM or convolution operation requires a few operations:  

1. load data from HBM to on-chip memory 

2. send data from on-chip memory to compute unit and save 
MM data output to on-chip memory 

3. optionally store data back to HBM.  

 

To obtain high utilization from GEMM or convolution, an efficient 
way to layout and distribute the two or more dimensions tensor in 
HBM and to each TPCs is needed. The best distribution will allow 
the compute units within each TPC to be evenly fed with data. The 
industry still sees hand-generated instruction code outperforming 
the distribution generated by compilers for deep learning 
workloads. However, the disadvantage of hand-generated code is 
that it is time consuming to produce and not generic for all input 
dimensions. 

 
Figure 2. NNP-T Tensor Processing Cluster (TPC). 

 

Figure 3 shows the generic deep learning performance auto-
optimizer flow. We approach this problem as a search problem. It 
consists of two parts: the measurements and search. In the 
measurement, a GEMM or convolution test with specific set hyper-
parameters runs on a hardware or hardware simulator, which 
generates the user-defined cost function. In our case, the cost 
function is the workload runtime. The search engine outputs 
configurations with a set of parameters. In our case, they are the 
hyper-parameters of workload and hardware supported parameter 
space. Search techniques are methods for exploring the search 
space and changing the configurations to the test in the 
measurements. We employ several different search techniques to 
explore the large available search space with several different test 
configurations.  Multiple test configurations can be run 
simultaneously to provide faster measurements and feedback on the 
distribution strategy. The search and measurement communicate 
exclusively through a results database used to record all the 
configurations and cost function results during the optimization 
process. 

For this work, we implemented OPENTURNER [11] framework as 
our search engine. The measurement components are developed in 
house. The main development is the hardware simulator used in this 
work. It is a transaction-level simulator [12], which models the 
entire NNP-T architecture including computing unit, on-chip 
router, on-chip memory and controller. It has good accuracy for 
latencies and bandwidth and can be configured to different network 
topologies (e.g. 1 ring, or 2 rings) with different number of TPCs. 
The convolution slice engine is modeled with accuracy on-chip 
memory capacity and compute unit pipeline latency and 
throughput. Loading data from HBM to on-chip memory and 
storing data from on-chip memory back to HBM is also modeled 
with good accuracy. One of the most important features of the 
simulator is the capability of launching parallel processes to each 
cluster and interacting with different subsystems as in the actual 
hardware. The simulator is capable of producing the runtime of the 
workload test. 



 
 

Figure 3. Deep Learning performance auto-optimizer flow. 
 

In the GEMM or convolution tests,  test interfaces are developed 
with hyper-parameters for either network layer descriptors or 
hardware parameters. The test runtime is defined as the cost 
function. 

The search component is integrated into the simulator environment 
to allow closed-loop auto-search to find the optimized workload 
distribution with the shortest runtime. 

 

2.3 Auto-Optimizer Setup for Convolution 
The auto-optimizer setup flows for convolution layers are discussed 
in detail in this section. A few considerations are taken into account 
before setting up the auto-optimizer. The first one is data locality. 
Notice that for NNP-T, there are a total of 24 TPCs and 4 HBM to 
reduce the on-chip network conjunction and latency, as well as 
power for data movement, 24 TPCs are grouped into four clusters 
each grouped to the nearest. The data consumed or produced by one 
of the six TPC in the group is only loaded or stored from the local 
HBM. In the convolution case, the IFM, and OFM are split up into 
4 portions and stored to one of the TPC. 
The second consideration is the data layout. The NNP-T matrix 
multiply array is 32x32. So, it computes matrix dimensions which 
can be blocked into 32 for each dimension with the highest 
efficiency. Due to this consideration, the convolution input and 
filter matrix should be laid out in such a way that it can be blocked 
into sub-matrices with each dimension being 32. Using Resnet as 
an example, the IFM Height (H), Width (W) dimension is from 224 
to 7, and the input Channel (C) dimension is from 3 to 2048, filter 
output filter Channel (K) is from 64 to 2048. Two tensor layouts 
are considered for IFM and OFM: HWCxN and CHWx N with N 
as the minibatch size. When C is < than 32, CHWxN format is 
selected, so that the convolution layer context can be split to 
multiple TPCs with each having a subset of the full layer height 
(H’) and width (W’). The context allocated to each TPC is 
CH’W’xN. As for layers when C is small, the HxW value is 
normally larger than 32. Blocking on height and width to distribute 
to TPCs, the quantization impact to the performance is amortized. 
For layer C is >=64, HWCxN data format can be used. Convolution 
for each OFM pixel is computed as: 

for n, r, s, c, k { 

 ofm [n][k] += ifm [n][p:p+r][q:q+s][c] * filter [r][s][c][k] 

} 

Here, if both C, K and N are integer multiples of 32, the efficiency 
of matrix multiple array does not suffer from quantization effects. 
With these two considerations, we build the measurement for the 
convolution auto-optimizer with a convolution test, hardware 
simulator, and runtime output. The test input includes convolution 
hyper-parameters, H, W, C, R, S, K, P, Q, Sr, and N, where Sr is 
stride. 
The search space is selected with many splits over H, W, C, and K 
to TPC. To have the best compute efficiency, C or K context split 
over each TPC should be multiple of 32, so this constraint is added 
to the search space for C and K split. For H and W context split, the 
search space is set from 1 to the number of TPCs. Other 
microarchitecture or ISA constraints can also be added to the search 
space for effective solution space. 
In each iteration, the search engine configures the test input within 
the search space based on the runtime results. Multiple tests can be 
launched at the same time to reduce the overall simulation time. As 
the hardware simulator models compute units, memory access, on-
chip router and on-chip memory with good accuracy, the best 
context distribution represents the overall best scheme considering 
locality, parallelism, memory and compute throughput. 
 

3. GENERALIZED DISTRIBUTION 
For scalable deep learning software, a generalized algorithm is 
required to support all the input dimensions for convolutions. One 
contribution to this auto-optimizer is to provide a base for a 
generalized distribution algorithm. Multiple convolutional layer 
dimensions are sent to auto-optimize. Based on the best output 
results, we summarize them into a few lines of codes to be 
integrated into instruction code generation software. Below is one 
example pseudo-code of the generalized convolution distribution: 
 
For (C, K =< 64): 

Split on W, H 
(W_split * H_split) % active_TPC = 0 

elif (C, K == 128): 
Split on C, K, W 
(C_split * K_split * W_split) % active_TPC = 0 
With K context = 64  
Minimize(C_split – 2) to make C is as close to 64 as  

else: 
Split on C , K 
(C_split * K_split ) % active_TPC = 0 
K context = 64 
Rest Split from C_split  

 
Figure 4 shows the auto-optimizer and deep learning training flow. 
The auto-optimizer for context distribution with various input 
dimensions can be run offline and generate the optimized context 
distribution results. The generalized distribution algorithm can be 
developed based on the results. The distribution algorithm can be 



integrated into the training software stack and generate the 
optimized distribution at runtime based on input convolution layer 
dimension size. 
For deep learning networks with dynamic shapes for convolution, 
it is expected this flow is instrumental to obtain the best 
performance.   
 

 
 

Figure 4. Auto-optimizer and DL training flow. 
 

4. RESULTS 
Table 1 lists selected measured results based on this methodology.  

Table 1. Measured NNP-T convolution utilization* 

Description NNP-T Utilization 

c64xh56xw56_k64xr3xs3_st1_n128 86% 

c128xh28xw28_k128xr3xs3_st1_n128 71% 

c32xh120xw120_k64xr5xs5_st1_n128 87% 
 
*All products, computer systems, dates, and figures are preliminary 
based on current expectations and are subject to change without 
notice.  
 NNP-T Performance measured on pre-production NNP-T1000 
silicon, using 900MHz core clock and 2GHz HBM clock, Host is 
an Intel® Xeon® Gold 6130T CPU @ 2.10GHz with 64 GB of 
system memory. 
Comparing with the published benchmark from competitive 
devices, the above utilization represents SOTA [13]. 
 

5. SUMMARY 
In this paper, a deep learning workload auto-optimizer 
methodology and application flow are discussed. The detailed 
implementation of Intel NNP-T has demonstrated SOTA utilization 
on convolution layers. 
It should be noted that with this scalable methodology, it can be 
used to optimize other deep learning performance matrices, such as 
power or TOPS/W. 
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