
EasyChair Preprint
№ 5157

The Development of Arithmetic Operations on
Multiple Byte Integers

Ishraga Mustafa Awad Allam

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 16, 2021

1

The Development of Arithmetic Operations on Multiple Byte Integers

Ishraga Mustafa Awad Allam

University of Khartoum, Sudan

ImAllam@uofk.edu OR IshragaAllam@gmail.com

Abstract

Big integers are very essential in many applications. Cryptography is one of these applications. In this study, the objective is to create a multiple

byte integer type, with its arithmetic operations defined. The operations are: addition, subtraction, multiplication, division and modular

exponentiation are overloaded, to work on this multiple byte integer type.

 The creation of the multiple byte integer is done by using doubly linked lists, a well known technique in data structure. The reason is

that doubly linked lists enable us to create integer of unlimited size. That is, you do not have to pre-specify the size of the arrays storing these

integers.

This is done by dynamically allocating the memory to store the digits constructing the integers.

The operations on these integers are defined using the simple and straight forward techniques, learnt in school.

The results obtained are satisfactory and reliable. The type could be extended to help define multiple byte floating point numbers.

In this work, an improvement has been made to the work of BH Flowers.

Introduction:

 The computer consists of bits and bytes. The important

thing in computer is its word size which can be data or some computer

operation, represented by an integer for everything. The largest

integers we have been able to work with have been confined to short,

an int or a long. In C++ language, for example, these are one byte, two

bytes and four bytes long, respectively. For all types, advanced

arithmetical operations are made standard for only that domain of

type, otherwise the compiler just ignore the function output, no

overflow message.

In principle, however, there is no reason to confine an integer to a

specific number of bytes: the concept of a list allows us to work with

any number of bytes, dynamically determined according to the

transient needs of the program.

 Integers limit in size made files vulnerable to attacks, even

thought they were encrypted, because the size of the private key is

limited. Also in real life, the size of amounts of large integers is

limited to just more than 4 millions.

Multiple Byte Integers

The lists we have discussed so far have been

singly linked: each node contains a single pointer to the

succeeding node in the list. Multiple byte integers, however,

are not efficiently dealt with by means of single linkages: we

shall find it necessary to scan a list both forwards and

backwards, and this is most easily done if each node contains

a pointer to the previous node as well as a pointer to the
succeeding node. Morever, it is no longer desirable to work

with pointers to the elements of a fixed data array: since we

do not know in advance the number of bytes required by an

integer, it would be most inconvenient to work with fixed

arrays; we need to work with the bytes themselves.

 An 8-bit byte, unsigned, can accommodate the

integers 0, 1, …, 255. If we set B = 256, we may represent

any non-negative integer N as a polynomial in B:

N = amBm + … + a1B + a0,

Or N =(am, …, a1, a0)B,

2

Where, in the second formula, we have recognized B as the radix, and

the integer coefficients ai, which must obey the restriction 0 < ai < B, as

the digits of the integer to the base B. There may in principle be any

number digits. If B were equal to 10, we should have the usual decimal

representation, but we shall take B to be 256.

 If we define a digit to be a node containing a byte b and two

pointers, a multiple byte integer (which we shall call mult) may be

represented by a list of digits. In diagrammatic form as shown in figure

3.1.[1]:

Computer Operations with Integers:

 Before computers were invented mathematicians did

computations either by hand or by using mechanical devices. Either

way, they were only able to work with integers of limited size. Many

number theoretic computations, such as factoring and primality testing,

require computations with integers with as many as 50 or even 100

digits. In this section we will study some of the basic algorithms for

doing computer arithmetic.

It had been mentioned that computers internally represent numbers

using bits, or binary digits. Computers have a built-in limit on the size

of integers that can be used in machine arithmetic. This upper limit is

called the word size, which we denote by w. The word size is usually a

power of 2, such as 235, although sometimes the word size is a power of

10[5].

To do arithmetic with integers larger than the word size, it is necessary

to devote more than one word to each integer. To store an integer n > w,

we express n in base w notation, and for each digit of this expansion we

use one computer word. For instance, if the word size is 235, using ten

computer words we can store integers as large as 2350 - 1, since integers

less than 2350 have no more than ten digits in their base 235 expansions.

Also note that to find the base 235 expansion of an integer, we need only

group together blocks of 35 bits[5].

The first step in discussing computer arithmetic with large integers is to

describe how the basic arithmetic operations are methodically

performed.

We will describe for performing addition, subtraction, and

multiplication of two n-digit integers a = (an – 1 an – 2 … a1 a0)r and b =

(bn – 1 bn – 2 … b1 b0)r. The algorithms described are used both for binary

arithmetic with integers less than the word size of a computer, and for

multiple precision arithmetic with integers larger than the word size w,

using w as the base[5].

Addition of Multiple Byte Integers:

The addition of two numbers can be represented as the

addition of two lists (polynomials) as shown now:

.

Let

n = akb
k + ak-1b

k-1 + ... + a1b
1 + a0

m = ckb
k + ck-1b

k-1 + ... + c1b
1 + c0

Then

n + m = (ak + ck)b
k + (ak-1 + ck-1)b

k-1 + ... + (a1 + c1)b
1 + (a0 +

c0)[1]

They don’t have to be equal in length; i.e., n has k

while m has j, and k != j. But the radix is the same, for all

arithmetical operations done.

However, it is often easier to visualize the addition

of two large numbers as the digit-by-digit addition at each

position. When we add the digits at a particular position, the

largest resulting value is 2b – 2[5].

We first discuss the algorithm for addition. When

we add a and b, we obtain the sum

a + b = ∑������ ajr
j + ∑������ bjr

j = ∑������ (aj + bj)r
j,

The two number lists must be traversed from right to left; i.e.,

from the smallest weight, adding the two corresponding nodes

and the carry digit, what is greater than the radix is then added

to the next nodes sum. Every addition result is inserted into a

node of the resultant number list. Finally if there is also a

carry, a node is again inserted and attached at the front of the

list representing the sum of the two number lists.

This is precisely what happens in the definition of the

operator+().

mult& mult::add(mult ms1, mult ms2)

 {

 int a; // The value of adding the two digits.

 int carry = 0; // The carry of if the sum of the two

digits is greater than the radix, initially is zero.

 mult ms3; // The product list of addition.

 multscan thisptr(ms1, NEXT); // Traverse from

right to left, the first is the most smallest weight

 dgtp pr1;

 multscan thatptr(ms2, NEXT);

 dgtp pr2;

 while(((pr1 = thisptr()) != 0) && ((pr2 = thatptr()) != 0))

 // While both are equal in length.

{

a = int(pr1 -> dgt) + int(pr2 -> dgt) + carry;

if(((pr1 -> dgt) + (pr2 -> dgt) + carry) >= radix)

3

 {

 carry = a / radix;

 a = a % radix;

 } else carry = 0;

ms3.append(a); // [1]

}

 while((pr1 = thisptr()) != 0) // While the first list is greater

 { // in length than the second list.

a = int(pr1 -> dgt) + carry;

if(a >= radix)

{

 carry = a / radix;

 a = a % radix;

 } else carry = 0;

ms3.append(a);

}

while((pr2 = thatptr()) != 0) // While the second list is greater

 { // in length than the first list.

a = int(pr2 -> dgt) + carry;

if(a >= radix)

{

 carry = a / radix;

 a = a % radix;

 } else carry = 0;

ms3.append(a);

}

if(carry >= 1) ms3.append(carry); // If the last digit

 / /addition carry is not zero, an attached node.

// Is appended to the product list.

if((ms1.sgn == -1) && (ms2.sgn == +1)) // Checking if the

 { // two lists, doesn't have the same sign.

ms1.sgn = ms2.sgn = +1; // Changing the signs first.

ms3 = ms2 - ms1; // A SWAP is done with a

subtraction, but the sign will be negative.

ms1.sgn = -1; // The product will have a negative

sign.

}

if((ms1.sgn == +1) && (ms2.sgn == -1)) // Checking if the

 { // two lists, doesn't have the same sign.

ms1.sgn = ms2.sgn = +1; // Changing the signs first.

ms3 = ms1 - ms2; // A subtraction is done here.

ms2.sgn = -1; // The product will have a negative

sign.

}

 rs = ms3; // I need two variables, because

sometimes in an addition, I also perform a subtraction.

printmult(ms3); // One is local and the other is global

to return the result.

return rs;

}

The inline operator does the inline + operator between two

multiple-Byte integers, where m1 is the first number list, m2 is

the second number list, pa is a temporary resultant number list.

inline mult operator + (mult m1, mult m2) {

return (pa.add(m1, m2)); }

The lists in number1 and number2 are traversed from right to

left using list <Byte int> reverse iterators that are moved

through the lists synchronously by using the increment operator.

The carry digit and the blocks at each position of the iterator are

added, the new carry digit and sum block are calculated, and the

sum block inserted at the front of the list in sum using list’s

insert() operator.

Sign Test for Addition:

a. If the sign of the first number list is positive and the

sign of the second number list is positive, a normal

addition will be done with the resultant sign, will be

positive.

4

b. If the sign of the first number list is negative and the

sign of the second number list is positive, a

subtraction operation is done using the subtraction

operator, after treating that both signs are positive

and the first number list will be the second number

list for the subtraction operation; i.e., reversing

numbers.

c. If the sign of the first number list is positive and the

sign of the second number list is negative, a

subtraction operation is done after treating that both

signs are positive.

d. The length of numbers can be tested here as

addition is no good as subtraction for the subtraction

has a fixed rule the state:

(i). If first’s sign is negative and second’s sign is

negative for subtraction, the resultant sign will

be negative and the operation will be

subtraction.

(ii). If first’s sign is negative and second’s sign is

positive for subtraction, the resultant sign will

be negative and the operation will be addition.

(iii). If first’s sign is positive and second’s sign is

negative for subtraction, the resultant sign will

be positive and the operation will be addition.

 (iv). If first’s sign is positive and second’s sign is

positive for subtraction, the resultant operation

will depend on the length of each of the

number lists size. If the second length is

greater, the resultant sign will be negative

otherwise it will be positive.

Subtraction of Multiple Byte Integers:

The subtraction of two numbers is very similar to

addition and can be easily implemented as byte-by-byte

subtraction. However, when subtracting two digits, we often

encounter the situation where the first digit is smaller than the

second. In this case, we have to borrow 1 from the digit in the

next position. This is actually done by subtracting 1 from the

digit in the next higher position and adding the value of the

base to the current digit[5].

We consider

a – b = ∑���	�� ajr
j - ∑������ bjr

j = ∑������ (aj – bj)r
j,

a – b = (dn – 1 dn – 2 … d1 d0)r.

The two number lists must be traversed from right to left;

i.e., from the smallest weight, subtracting the two corresponding

nodes and the borrow digit if the result is negative, will be taken

a radix in size from the exceeding first number digit; i.e., will be

subtracted from the next subtraction of the other two

corresponding digits.

mult& mult::sub(mult mt1, mult mt2)

{

 int borrow = 0; // The borrow if the first list

digit was smaller than the second list digit, initially is

zero.

 int at; // The value of subtracting the two digits.

mult mt3, buf; // The buf is needed when the

second list length is greater than the first list.

multscan thisptr(mt1, NEXT); // Traverse from

right to left, the first is the most smallest weight

dgtp pt1;

multscan anotherptr(mt2, NEXT);

dgtp pt2;

while(((pt1 = thisptr()) != 0) && ((pt2 = anotherptr()) != 0))

{

at = int(pt1 -> dgt) - int(pt2 -> dgt) - borrow;

if((pt1 -> dgt) < (pt2 -> dgt))

 {

at = at + radix;

 borrow = 1;

} else borrow = 0;

mt3.append(at);

}

5

 if(mt1.numdgt > mt2.numdgt)

{

at = int(pt1 -> dgt) - borrow;

if(at == 0)

{

at = at + radix;

borrow = 1;

} else borrow = 0;

if(at <= 0) borrow = 1;

mt3.append(at);

}

 while((pt1 = thisptr()) != 0) // While the first list is

greater in length than the second list.

{

at = int(pt1 -> dgt) - borrow;

if(at <= 0) borrow = 1;

mt3.append(at);

}

mt3.sgn = +1;

 if((mt1.sgn == -1) && (mt2.sgn == -1)) mt3.sgn = -1;

 // The product will have a negative sign.

if((mt1.sgn == -1) && (mt2.sgn == +1))

 {

 mt1.sgn = mt2.sgn = +1;

 mt3 = mt1 + mt2;

 mt3.sgn = -1;

 mt3 = rs;

 }

if((mt1.sgn == +1) && (mt2.sgn == -1)) // Checking if the

 { // two lists, doesn't have the same sign.

mt1.sgn = mt2.sgn = +1; // Changing the signs

first.

mt3 = mt1 + mt2; // Addition is done here.

 mt3.sgn = +1;

// The product will have a positive sign.

mt3 = rs;

}

if(mt1.numdgt < mt2.numdgt) // If the second list length is

 { // greater than the first list. SWAP

mt3 = mt2 - mt1;

mt3.sgn = -1;

 // The product will have a negative sign.

mt3 = rs;

 }

rs = mt3;

printmult (mt3);

return rs;

 }

Sign Test for Subtraction:

a. If the sign of the first number list is negative and

the sign of the second number list is positive, an

addition operation is done after treating both signs

as positive. The resultant sign will be set to

negative.

b. If both signs were negative, then the sign of the

resultant is also negative.

c. If the sign of the first number list is positive and

the sign of the second number list is negative, an

addition operation is done after treating both signs

as positive. The sign of the resultant is set to

positive.

6

 d. If the length of the first number list is less than that

of the first, then a message will appear and the

numbers will be swapped; i.e., the first will be the
second for the subtraction operation. The resultant

will have a negative sign.

Multiplication of Multiple Byte Integers:

The simplest way to implement multiplication is by

using repeated addition. To compute a * b, we set the result to

0, then we repeatedly add a to the result for b number of

times[5].

. But before discussing multiplication, we describe

shifting. To multiply (an – 1 … a1 a0)r by rm, we need only shift

the expansion left m places, appending the expansion with m

zero digits.

ab = a ∑������ bjr
j = ∑������ (abj)r

j,

We multiplying two integers with base r expansion, we

use the familiar method of multiplying decimal integers by

hand[5].

Again the two number lists were traversed from

right to left, taking the first digit of the second number list and

multiply it with each digit of the first number list. Each

multiplication if greater than the radix, a carry digit will be

added to the next proceeding nodes’ result. A node will be

created when the last digit of the first number list is reach and

there was a carry, at the front of the list. The next multiplication

of the next digit of the second number list will be done in the

same way except that a zero digit will be inserted first at the

most right node of the result. The next other ones, every time

an increment is done; i.e., two zero’s will be inserted in the

most right nodes of the result, and so one, using an iterator.

Every resultant of each multiplication of a digit of the second

number list is added to the one before it, and the sum will be

the final resultant of the multiplication operation. The addition
operator will be used here, but without the sign test. Both signs

will be treated as positive.

The Sign Test results only in the final resultant sign, and if the

sign of the two numbers lists were different, then the resultant

sign will be negative, otherwise it is positive.

mult& mult::mul(mult m1, mult m2)

 {

 int carrym;

long unsigned int x, count = 0;

long int ssum;

 mult mmp, mb; // mb to store each last

addition of the multiplications done.

 multscan anotherptr(m2, NEXT);

// Traverse from right to left, the first is the

most smallest weight

 dgtp p2;

while((p2 = anotherptr()) != 0) // For every digit of the

{ // second list, it multiple all the first list.

carrym = 0;

 mult ma;

// Each time, a new initiated variable list is needed.

 for(x = 0; x < count; x++) ma.append(0);

// Shifting the first leading zeros.

multscan otherptr(m1, NEXT);

dgtp p1;

while((p1 = otherptr()) != 0)

 {

ssum = int(p1 -> dgt) * int(p2 -> dgt) + carrym;

if(ssum >= radix)

{

carrym = ssum / radix;

ssum = ssum % radix;

} else carrym = 0;

ma.append(ssum);

}

if(carrym >= 1) ma.append(carrym); // Attaching

the last carry to the product list.

7

 if(count == 0) mmp = ma; // Initiale addition to the multiplication.

 else // Else adding every last multiplications to the next one.

{ mmp = ma + mb;

 mmp = rs;

}

count++; // The shifting of the leading zeros is

incremented.

mb = mmp; // The value of storing additions, is

updated.

printmult(mmp);

}

mmp.sgn = +1;

if((m1.sgn == -1) && (m2.sgn == +1)) mmp.sgn = -1;

 // Only the sign will be negative.

if((m1.sgn == +1) && (m2.sgn == -1)) mmp.sgn = -1;

 if((m1.sgn == -1) && (m2.sgn == -1)) mmp.sgn = +1;

 rs = mmp;

 printmult(mmp);

 return rs;

 }

Division of Integers:

Again the two number lists must be traversed from right to left,

subtracting the two corresponding digits. Here I’m not using the

subtraction operator because I need a flag, which after each

subtraction if there was a negative result, the flag is set to positive,

indicating the end of the operation. The second number list is then

subtracted from the resultant of the last subtraction until the flag is

positive. The number of these subtractions while the flag is negative

is the final resultant, been converted to a list itself; i.e., each time this

iterator which count these subtraction is reach the radix size, a node

of the final resultant is created and the modulo of the division of this

iterator is inserted into a new node, creating the final

division number list. The iterator was declared as long as

to be able to present as large as possible for a really big

integers as it can be for the resultant.

mult& mult::dvd(mult mr1, mult mr2)

 {

int borrow = 0, cs, d2, d1;

long unsigned int n = 0;

 int ar, ps = 0;

 mult mr3, mdval, buff = mr1;

if(mr2.numdgt > buff.numdgt) // If the second list

 { // length was greater than the first list.

 fp = 1;

// This is a flag to show that the result will contain

floating points.

cout << "\n Float division not integers \n";

 mr3 = mdval = 0; // The result will be zero.

 ps = 1;

// To terminate this operation, and not to go to next

loop.

 n = 0;

 }

while(ps == 0)

 { // Traverse from right to left, the first is the

most smallest weight

 Borrow = cs = 0;

multscan thisptr(mr1, NEXT);

dgtp ptr1;

multscan anotherptr(mr2, NEXT);

 dgtp ptr2;

// I didn't use the subtraction operator because I needed

a flag.

8

 while(((ptr1 = thisptr()) != 0) && ((ptr2 = anotherptr()) != 0))

 {

d2 = int(ptr2 -> dgt);

 d1 = int(ptr1 -> dgt);

ar = d1 - d2 - borrow;

borrow = 0;

if((ptr1 -> next != 0) && (ar <= 0))

{

ar = ar + radix;

 if(ptr1 -> next == 0) ar = 0;

borrow = 1;

}

If((ptr1 -> next == 0) && (ar < 0)) ar = 0;

ptr1 -> dgt = ar;

if((ar < 0) && (mr1.numdgt == mr2.numdgt) && (ptr1 -> next == 0))) ps = 1;

// The flag is on if the result is negative.

 }

while((ptr1 = thisptr()) != 0) // When the first list is greater

than the second. {

cs++;

 ar = int(ptr1 -> dgt) - borrow;

 borrow = 0;

if((ptr1 -> next != 0) && (ar <= 0))

{

ar = ar + radix;

 borrow = 1;

}

 if((ar <= 0) && (ptr1 -> next == 0)) ar= 0;

 ptr1 -> dgt = ar;

if((ar <= 0) && (ptr1 -> next == 0)) mr1.numdgt = mr1.numdgt - 1;

}

n = n + 1;

if(mr1.numdgt == 0) ps = 1;

if(mr1.numdgt < mr2.numdgt) ps = 1;

// Counting the number of subtractions.

if((mr1.numdgt == mr2.numdgt) && (d2 > ar)) ps = 1;

// Counting the number of subtractions.

if((mr1.numdgt == mr2.numdgt) && (d2 > ar)) ps = 1;

 // Floating Point.

if((buff.numdgt == mr2.numdgt) && (d2 > d1))

 {

ps = 1;

n = 0;

}

if(ar <= 0) mr1.numdgt = mr1.numdgt - 1;

// If last digit is less than zero,

if(mr1.numdgt == 0) ps = 1; // then the length of it

decreases. if(mr1.numdgt < mr2.numdgt) ps = 1;

 // Floating Point result...

}

mdval = mr1;

mdval.sgn = +1; // The sign of the

modulo is always positive.

pr = mdval;

mr1 = buff;

while(n > 0) // Converting the

decimal number of the counting into a

multiple Byte List.

{

ar = n % radix;

n = n / radix;

mr3.append(ar);

}

mr3.sgn = +1;

9

 if((mr1.sgn == -1) && (mr2.sgn == +1)) mr3.sgn = -1;

// Only the sign changes.

if((mr1.sgn == +1) && (mr2.sgn == -1)) mr3.sgn = -1;

if((mr1.sgn == -1) && (mr2.sgn == -1)) mr3.sgn = +1;

 cout << "\n The module : \n ";

 //if(fp == 1) mdval = 0;

 printmult (mdval);

 cout << "\n The dividor : \n ";

 rs = mr3;

 if(fp == 1) // A suggested loop for Floating

Point operation.

 {

cout << " This is a fraction : 0.";

for(n = 0; n < fc; n++) cout << "0";

}

printmult(mr3);

if(fp == 1) cout << " Sorry but this fraction can not be

returned. This opens up a new research. \n";

return rs;

 }

A test is done first to see if the second number length of nodes is

greater than the first. If it is so, a message will appear, telling that

there will be a Floating-Point result, which is another research to be

done. If both numbers’ lengths are equal, traverse from left to right,

here is the advantage or ‘use’ of the doubly-linked list structure

reason of being there, to check if the second number is greater than

the first; again there is the message of a Floating-Point research.

The Sign Test results only in the final resultant sign, and if

the signs of the two numbers’ lists were different, then the resultant

sign will be negative, otherwise it is positive. Just like

multiplication.

Exponential Operation:

Here the first number list is multiplied by itself, using the

multiplication operator, according to the second number

digits times. The second number is traverse from right to

left, each digit is multiplied by the radix raised to its weight,

and this result number control the number of iteration of the

iteration of the multiplication of the first number list. This

number if it is greater that the maximum of integers for the

mathematic function then there will be a problem as these

functions were built on integers, log or pow, which raise the

radix to its coefficient.

mult& mult::expo(mult me1, mult me2)

{ long unsigned int x, count = 0;

mult me3;

me3 = me1;

multscan thatptr(me2, NEXT); // Traverse

from right to left, the first is the most smallest weight

dgtp pe2;

while((pe2 = thatptr()) != 0)

 {

for(x = 0; x < ((int(pe2 -> dgt) *

(exp((count) * (log(radix))))) - 1); x++)

me3 = me3 * me1;

 count++;

}

if(me2.sgn == -1)

{

me3 = 0;

 cout << "This is a fractional, beyond

this research \n";

}

cout << "\n The exponential : \n ";

rs = me3;

printmult(me3);

return rs;

}

10

Warning: The second number digit if it is zero and length one,

is trivially known that any number, raised to zero is one. No need to

do it here.

The second number sign can not be negative as Floating-Point

numbers are outside this scope of research.

Comparison Operation:

Here, the lengths of the two numbers are compared, if

their signs are the same. The larger is the big one.

mult& mult::cmp(mult mc1, mult mc2)

 {

 int pr = 0, d2, d1;

 mult mc3;

 multscan (mc2, LAST); // Traverse from left to

right, the first is the most greatest weight

 dgtp p2; // Here shows why it was a doubly-linked list

 multscan otherptr(mc1, LAST);

dgtp p1;

if((mc1.sgn == +1) && (mc2.sgn == -1))

 {

pr = ptrgt = 1; // A flag so as not to perform the next loop.

 mc3 = mc1; // The greatest will be the first list.

 }

if((mc1.sgn == -1) && (mc2.sgn == +1)

 {

 pr = ptrlt = 1; // A flag of the less

than is set on. mc3 = mc2;

// The greatest will be the second list.

 }

if((mc1.numdgt < mc2.numdgt) && (mc1.sgn == mc2.sgn)

 {

 pr = ptrlt = 1;

 mc3 = mc2;

 }

 if((mc1.numdgt > mc2.numdgt) && (mc1.sgn ==

mc2.sgn))

{

 pr = ptrgt = 1;

mc3 = mc1;

 }

 if((mc1.numdgt == mc2.numdgt) && (mc1.sgn ==

mc2.sgn))

 {

 while(((p1 = otherptr()) != 0) && ((p2 = anotherptr()) !=

0))

 {

 d2 = int(p2 -> dgt);

 d1 = int(p1 -> dgt);

 cout << "D1 " << d1 << "

D2 " << d2 << "\n";

if(d2 > d1)

{

 pr = ptrlt = 1;

mc3 = mc2;

cout << "M2 >

M1 \n"; }

else if(d2 < d1)

 {

 pr = ptrgt = 1;

 mc3 = mc1;

 cout << "M1 >

M2 \n"; }

 }

if(pr == 0)

 {

 cout << "They are Equal 'But' : ";

11

if(mc1.sgn == mc2.sgn) mc3 = 0;

 ptreq = 1; // A flag of the equal than is set

on.

 }

 cout << "\n The Greater is : \n ";

if(mc3.sgn == +1) ch = '+';

else ch = '-';

rs = mc3;

printmult(mc3);

return rs;

}

If one is negative, then it is trivially that the other number is the

bigger whatever is the length is of its nodes.

If the lengths are equal, same sign, here the number lists are

traversed from left to right, digits are compared, and the first one

which is bigger than the other, then this one is the bigger. If there

are all the same, then these numbers are equal, totally.

 Binary conversion:
Multiple byte integers is usually based on 28 or the

radix is 256. So to convert this number to binary, each digit

is

converted to 8 digits of binary.

12

Results:

 These are some examples done by my program:

Addition:

{+, 56, 78, 98, 245, 160} + {+, 45, 3, 68} = {+, 101, 81,

166, 245, 160}

In decimal = + 435161593248.

{+, 34, 120, 36, 86} + {-, 100, 200} = {+, 190, 175, 35,

86} ≡ + 3199148886.

{-, 34, 25, 78, 90, 200} + {+, 200, 220, 98} = {-, 90, 60,

235, 89, 200} ≡ - 387569113544. {-, 120, 38, 98} + {-,

36, 200} = {+, 156, 238, 98} ≡ + 10284642.

Subtraction:

{+, 200, 39, 87, 65, 55} – {+, 48, 98, 120} = {+, 152, 197,

222, 64, 55} ≡ + 656154705975. {-, 46, 24, 33, 78, 200}

– {+, 47, 75, 98} = {-, 93, 99, 131, 78, 200} ≡ - 401101508296.

{+, 40, 39, 28, 36, 20} – {-, 200, 180} = {+, 240, 219, 28,

36, 20} ≡ + 1034468205588.

{-, 230, 48, 170, 78} – {-, 49, 160, 120, 35, 84} = {-, 75,

111, 206, 212, 83} ≡ - 323998372947.

Multiplication:

{+, 160, 147, 222} * {+, 250, 59} = {+, 64, 10, 98, 37,

52} ≡ + 275052111156.

{+, 20, 49, 120, 223} * {-, 98, 78, 57} = {-, 168, 225,

106, 24, 47, 6, 50}

{-, 206, 187, 135} * {+, 24, 69, 47} = {-,

 80, 33, 102, 203, 146, 51} ≡ - 88104388760115.

{-, 201, 167, 96, 58} * {-, 222, 189, 49} =

{+, 78, 229, 41, 25, 204, 87, 11}

Division & Modulus:

{+, 222, 190, 211} / {+, 208, 199} = {+, 16, 1}

≡ + 4097.

{+, 222, 190, 211} % {+, 208, 199} = {+, 221,

113, 0} ≡ + 14512384.

Exponential:

{+, 87, 75, 129, 89, 221} ^ {+, 4} = {+, 33, 96,

31, 76, 246, 132, 214, 67, 181, 98, 89, 82,

83,

145, 234, 146, 69, 220, 24, 143} ≡ +

190540291944837396024051783373730745

330450568591.

Comparison:

{+, 39, 67, 128, 226} < {-, 87, 75, 129, 89,

221} = Greater {+, 39, 67, 128, 226}

 < False.

Related Work:

BH Flowers’s work:

 Double linked list were used to store the digits,

used to define the integers. The power of C++ is used to

define functions to construct list. A decimalizing

constructor is made that convert any stored list in decimal

number. This number is returned as strings as the limit of

integers were exceeded. There are also forward and

backward constructors, traversing of these lists.

Future Work:

(i). Arithmetic operators on multiple byte integer.

(ii). Multiple byte float point numbers and they

arithmetic operations.

Conclusion:

 The sign character is not showing in the final

result of the decimal string. The Boolean type BH Flowers

made, did not work for me. If the first digit of the string is

zero, the decimal will be zero. The error message function

contains errors on the standard.h header file.

13

Chew Keong Tan’s Work:

The implementation of asymmetrical cryptographic schemes

often requires the use of numbers that are many times larger than the

integer data types that are supported natively by the compiler. In this

article, an introduction was given to the implementation of arithmetic

operations involving large integers. No attempt was tried to give a full

coverage of this topic since it is both complex and lengthy. For a more

detailed treatment, the reader is referred to the listed references of his.

The source code that accompanies his article implements the

BigInteger class supporting large integer arithmetic operations.

Overloaded operators includes +, -, *, /, %, >>, <<, ==, !=, >, <, >=, <=,

&, |, ^, ++, -- and ~. Other additional features such as modular

exponential, modular inverse, pseudoprime generation and probabilistic

primality testing are also supported.

Features:

a. Arithmetic operations involving large signed integers in 2's

complement representation.

b. Prime number tests using Fermat's Little Theorem, Rabin

Miller's method and Solovay Strassen's method.

c. Modular exponential with Barrett reduction.

d. Modular inverse.

e. Random Pseudoprime generation.

f. Random Coprime generation.

g. Greatest common divisor.

Future Work:

(i). Faster implementation of arithmetic operations.

(ii). More robust primality testing methods.

(iii). Faster pseudo prime generation

Conclusion : In his article, he has provided a short introduction to the topic

of large integer arithmetic. Then he has looked at how large integer

addition,

subtraction and multiplication can be implemented. Also he examined the

problem of primality testing and introduced the concept of primality

testing based on Fermat's Little Theorem. His implementation of

BigInteger class can be downloaded from his page and provides the

overloading of most arithmetic operators. He has pointed out the

limitations of his implementations of primality testing and is working

towards more robust primality testing methods and faster implementation

of arithmetic operators.

 References

[1]. B.H. Flowers, An Introduction to Numerical

Methods in C++,

 Oxford University Press, 1995.

[2]. Bits and Bytes, Sun Microsystems, at

http://www.java.sun.com, accessed on 27 March

2007.

[3]. Brian Brown, Data Structures and Number

Systems, 1984-2000, at

http://goforit.unk.edu, accessed on 3

December 2007.

[4]. Chew Keong Tan, The Code Project – C#

BigInteger Class – C# Programming, 2002, at

http://www.codeproject.com, accessed on

6 August 2005.

 [5]. Kenneth H. Rosen, Elementary Number Theory

and its Applications, AT&T Bell laboratories and

Kenneth H. Rosen, 1993.

[6]. Ellis Horowitz and Sartaj Sahri, Fundamentals of

Data Structures, Computer Science Press, Inc., 1983.

[7]. Greg Goebel, Computer Numbering Formats, at

http://www.vertorsite.net, accessed on 12

June 2005.

[8]. Neil Dale, C++ Plus Data Structures, By Jones

and Bartlett Publishers, inc., 1999.

 [9]. Paul N. Hilfinger, Numbers, University of

California, Department of Electrical Engineering and

computer sciences, computer sciences division, C561B,

Fall 1999.

[10]. Wikipedia, the free encyclopedia, Computer

numbering formats – at

http://en.wikipedia.org, accessed on 3 May

2007.

