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Abstract 

Big integers are very essential in many applications. Cryptography is one of these applications. In this study, the objective is to create a multiple 

byte integer type, with its arithmetic operations defined. The operations are: addition, subtraction, multiplication, division and modular 

exponentiation are overloaded, to work on this multiple byte integer type. 

 The creation of the multiple byte integer is done by using doubly linked lists, a well known technique in data structure. The reason is 

that doubly linked lists enable us to create integer of unlimited size. That is, you do not have to pre-specify the size of the arrays storing these 

integers. 

This is done by dynamically allocating the memory to store the digits constructing the integers. 

The operations on these integers are defined using the simple and straight forward techniques, learnt in school. 

The results obtained are satisfactory and reliable. The type could be extended to help define multiple byte floating point numbers. 

In this work, an improvement has been made to the work of BH Flowers.  

 

 

 

 

  

Introduction: 

 The computer consists of bits and bytes. The important 

thing in computer is its word size which can be data or some computer 

operation, represented by an integer for everything. The largest 

integers we have been able to work with have been confined to short, 

an int or a long. In C++ language, for example, these are one byte, two 

bytes and four bytes long, respectively. For all types, advanced 

arithmetical operations are made standard for only that domain of 

type, otherwise the compiler just ignore the function output, no 

overflow message.  

In principle, however, there is no reason to confine an integer to a 

specific number of bytes: the concept of a list allows us to work with 

any number of bytes, dynamically determined according to the 

transient needs of the program. 

 Integers limit in size made files vulnerable to attacks, even 

thought they were encrypted, because the size of the private key is 

limited. Also in real life, the size of amounts of large integers is 

limited to just more than 4 millions. 

 

Multiple Byte Integers 

The lists we have discussed so far have been 

singly linked: each node contains a single pointer to the 

succeeding node in the list. Multiple byte integers, however, 

are not efficiently dealt with by means of single linkages: we 

shall find it necessary to scan a list both forwards and 

backwards, and this is most easily done if each node contains 

a pointer to the previous node as well as a pointer to the 
succeeding node. Morever, it is no longer desirable to work 

with pointers to the elements of a fixed data array: since we 

do not know in advance the number of bytes required by an 

integer, it would be most inconvenient to work with fixed 

arrays; we need to work with the bytes themselves. 

 An 8-bit byte, unsigned, can accommodate the 

integers 0, 1, …, 255. If we set B = 256, we may represent 

any non-negative integer N as a polynomial in B: 

N = amBm + … +     a1B + a0,  

Or     N =(am, …, a1, a0)B,  
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Where, in the second formula, we have recognized B as the radix, and 

the integer coefficients ai, which must obey the restriction 0 < ai  < B, as 

the digits of the integer to the base B. There may in principle be any 

number digits. If B were equal to 10, we should have the usual decimal 

representation, but we shall take B to be 256. 

 If we define a digit to be a node containing a byte b and two 

pointers, a multiple byte integer (which we shall call mult) may be 

represented by a list of digits. In diagrammatic form as shown in figure 

3.1.[1]: 

 

Computer Operations with Integers: 

 Before computers were invented mathematicians did 

computations either by hand or by using mechanical devices. Either 

way, they were only able to work with integers of limited size. Many 

number theoretic computations, such as factoring and primality testing, 

require computations with integers with as many as 50 or even 100 

digits. In this section we will study some of the basic algorithms for 

doing computer arithmetic.  

It had been mentioned that computers internally represent numbers 

using bits, or binary digits. Computers have a built-in limit on the size 

of integers that can be used in machine arithmetic. This upper limit is 

called the word size, which we denote by w. The word size is usually a 

power of 2, such as 235, although sometimes the word size is a power of 

10[5]. 

To do arithmetic with integers larger than the word size, it is necessary 

to devote more than one word to each integer. To store an integer n > w, 

we express n in base w notation, and for each digit of this expansion we 

use one computer word. For instance, if the word size is 235, using ten 

computer words we can store integers as large as 2350 - 1, since integers 

less than 2350 have no more than ten digits in their base 235 expansions. 

Also note that to find the base 235 expansion of an integer, we need only 

group together blocks of 35 bits[5]. 

The first step in discussing computer arithmetic with large integers is to 

describe how the basic arithmetic operations are methodically 

performed.  

We will describe for performing addition, subtraction, and 

multiplication of two n-digit integers a = (an – 1 an – 2 … a1 a0)r and b = 

(bn – 1 bn – 2 … b1 b0)r. The algorithms described are used both for binary 

arithmetic with integers less than the word size of a computer, and for 

multiple precision arithmetic with integers larger than the word size w, 

using w as the base[5].  

 

Addition of Multiple Byte Integers:  

The addition of two numbers can be represented as the 

addition of two lists (polynomials) as shown now: 

.  

Let 

n = akb
k + ak-1b

k-1 + ... + a1b
1 + a0 

m = ckb
k + ck-1b

k-1 + ... + c1b
1 + c0 

Then 

n + m = (ak + ck)b
k + (ak-1 + ck-1)b

k-1 + ... + (a1 + c1)b
1 + (a0 + 

c0)[1] 

They don’t have to be equal in length; i.e., n has k 

while m has j, and k != j. But the radix is the same, for all 

arithmetical operations done. 

However, it is often easier to visualize the addition 

of two large numbers as the digit-by-digit addition at each 

position. When we add the digits at a particular position, the 

largest resulting value is 2b – 2[5]. 

We first discuss the algorithm for addition. When 

we add a and b, we obtain the sum 

a + b = ∑������ ajr
j +  ∑������ bjr

j =  ∑������ (aj + bj)r
j,  

The two number lists must be traversed from right to left; i.e., 

from the smallest weight, adding the two corresponding nodes 

and the carry digit, what is greater than the radix is then added 

to the next nodes sum. Every addition result is inserted into a 

node of the resultant number list. Finally if there is also a 

carry, a node is again inserted and attached at the front of the 

list representing the sum of the two number lists. 

This is precisely what happens in the definition of the 

operator+().  

mult& mult::add(mult ms1, mult ms2) 

    { 

 int a; // The value of adding the two digits.   

 int carry = 0; // The carry of if the sum of the two 

digits is greater than the radix, initially is zero. 

 mult ms3; // The product list of addition. 

 multscan thisptr(ms1, NEXT); // Traverse from        

right to left, the first is the most smallest weight    

 dgtp pr1; 

 multscan thatptr(ms2, NEXT); 

 dgtp pr2; 

      while(((pr1 = thisptr()) != 0) && ((pr2 = thatptr()) != 0))

 // While both are equal in length.  

{ 

a = int(pr1 -> dgt) + int(pr2 -> dgt) + carry; 

if(((pr1 -> dgt) + (pr2 -> dgt) + carry) >= radix) 
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        { 

 carry = a / radix; 

                 a = a % radix; 

       }      else carry = 0; 

ms3.append(a);    //  [1] 

} 

        while((pr1 = thisptr()) != 0)     // While the first list is greater 

              {                                          // in length than the second list. 

a = int(pr1 -> dgt) + carry; 

if(a >= radix) 

{ 

          carry = a / radix; 

          a = a % radix; 

 }      else carry = 0; 

ms3.append(a); 

} 

while((pr2 = thatptr()) != 0)     // While the second list is greater 

              {                                          // in length than the first list. 

a = int(pr2 -> dgt) + carry; 

if(a >= radix) 

{ 

          carry = a / radix; 

          a = a % radix; 

 }      else carry = 0; 

ms3.append(a); 

} 

if(carry >= 1)  ms3.append(carry);  // If the last digit 

 / /addition carry is not zero, an attached node. 

// Is appended to the product list. 

if((ms1.sgn == -1) && (ms2.sgn == +1)) // Checking if the    

         {          //       two lists, doesn't have the same sign. 

ms1.sgn = ms2.sgn = +1;  // Changing the signs first. 

 

ms3 = ms2 - ms1; // A SWAP is done with a  

subtraction, but the sign will be negative. 

ms1.sgn = -1; // The product will have a negative 

sign. 

} 

if((ms1.sgn == +1) && (ms2.sgn == -1)) // Checking if the           

   {        //            two lists, doesn't have the same sign. 

ms1.sgn = ms2.sgn = +1;   // Changing the signs first. 

ms3 = ms1 - ms2; // A subtraction is done here. 

ms2.sgn = -1;   // The product will have a negative 

sign. 

} 

       rs = ms3; // I need two variables, because 

sometimes in an addition, I also perform a subtraction. 

printmult(ms3); // One is local and the other is global 

to return the result. 

return rs; 

} 

The inline operator does the inline + operator between two 

multiple-Byte integers, where m1 is the first number list, m2 is 

the second number list, pa is a temporary resultant number list. 

inline mult operator + (mult m1, mult m2) {    

return (pa.add(m1, m2)); } 

The lists in number1 and number2 are traversed from right to 

left using list <Byte int> reverse iterators that are moved 

through the lists synchronously by using the increment operator. 

The carry digit and the blocks at each position of the iterator are 

added, the new carry digit and sum block are calculated, and the 

sum block inserted at the front of the list in sum using list’s 

insert() operator. 

Sign Test for Addition: 

a. If the sign of the first number list is positive and the 

sign of the second number list is positive, a normal 

addition will be done with the resultant sign, will be 

positive.  
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b. If the sign of the first number list is negative and the 

sign of the second number list is positive, a 

subtraction operation is done using the subtraction 

operator, after treating that both signs are positive 

and the first number list will be the second number 

list for the subtraction operation; i.e., reversing 

numbers. 

c. If the sign of the first number list is positive and the 

sign of the second number list is negative, a 

subtraction operation is done after treating that both 

signs are positive. 

d. The length of numbers can be tested here as 

addition is no good as subtraction for the subtraction 

has a fixed rule the state: 

(i). If first’s sign is negative and second’s sign is 

negative for subtraction, the resultant sign will 

be negative and the operation will be 

subtraction. 

(ii). If first’s sign is negative and second’s sign is 

positive for subtraction, the resultant sign will 

be negative and the operation will be addition. 

(iii). If first’s sign is positive and second’s sign is 

negative for subtraction, the resultant sign will 

be positive and the operation will be addition. 

 (iv). If first’s sign is positive and second’s sign is 

positive for subtraction, the resultant operation 

will depend on the length of each of the 

number lists size. If the second length is 

greater, the resultant sign will be negative 

otherwise it will be positive. 

Subtraction of Multiple Byte Integers:  

The subtraction of two numbers is very similar to 

addition and can be easily implemented as byte-by-byte 

subtraction. However, when subtracting two digits, we often 

encounter the situation where the first digit is smaller than the 

second. In this case, we have to borrow 1 from the digit in the 

next position. This is actually done by subtracting 1 from the 

digit in the next higher position and adding the value of the 

base to the current digit[5]. 

 

 

We consider 

a – b =  ∑���	�� ajr
j -  ∑������ bjr

j =  ∑������ (aj – bj)r
j,  

a – b = (dn – 1 dn – 2 … d1 d0)r. 

The two number lists must be traversed from right to left; 

i.e., from the smallest weight, subtracting the two corresponding 

nodes and the borrow digit if the result is negative, will be taken 

a radix in size from the exceeding first number digit; i.e., will be 

subtracted from the next subtraction of the other two 

corresponding digits. 

mult& mult::sub(mult mt1, mult mt2) 

{ 

 int borrow = 0; // The borrow if the first list 

digit was smaller than the second list digit, initially is 

zero. 

 int at; // The value of subtracting the two digits.   

mult mt3, buf; // The buf is needed when the 

second list length is greater than the first list. 

multscan thisptr(mt1, NEXT); // Traverse from 

right to left, the first is the most smallest weight    

dgtp pt1; 

multscan anotherptr(mt2, NEXT); 

dgtp pt2; 

while(((pt1 = thisptr()) != 0) && ((pt2 = anotherptr()) != 0)) 

{ 

at = int(pt1 -> dgt) - int(pt2 -> dgt) - borrow; 

if((pt1 -> dgt) < (pt2 -> dgt)) 

 { 

at = at + radix; 

 borrow = 1; 

} else borrow = 0; 

mt3.append(at); 

} 
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  if(mt1.numdgt > mt2.numdgt) 

{ 

at = int(pt1 -> dgt) - borrow; 

if(at == 0) 

{ 

at = at + radix; 

borrow = 1; 

}      else borrow = 0; 

if(at <= 0) borrow = 1; 

mt3.append(at); 

} 

           while((pt1 = thisptr()) != 0) // While the first list is 

greater in length than the second list. 

{ 

at = int(pt1 -> dgt) - borrow; 

if(at <= 0) borrow = 1; 

mt3.append(at); 

} 

mt3.sgn = +1; 

  if((mt1.sgn == -1) && (mt2.sgn ==  -1))  mt3.sgn = -1; 

       // The product will have a negative sign. 

if((mt1.sgn == -1) && (mt2.sgn == +1)) 

            { 

               mt1.sgn = mt2.sgn = +1; 

               mt3 = mt1 + mt2; 

               mt3.sgn = -1; 

               mt3 = rs; 

             }  

 

if((mt1.sgn == +1) && (mt2.sgn == -1)) // Checking if the               

       {               //  two lists, doesn't have the same sign. 

mt1.sgn = mt2.sgn = +1;   // Changing the signs 

first. 

mt3 = mt1 + mt2; // Addition is done here. 

                mt3.sgn = +1; 

// The product will have a positive sign. 

mt3 = rs; 

} 

if(mt1.numdgt < mt2.numdgt) // If the second list length is 

        {     //     greater than the first list. SWAP 

mt3 = mt2 - mt1; 

mt3.sgn = -1; 

 // The product will have a negative sign. 

mt3 = rs; 

           } 

rs = mt3; 

printmult (mt3); 

return rs; 

 } 

Sign Test for Subtraction: 

a. If the sign of the first number list is negative and 

the sign of the second number list is positive, an 

addition operation is done after treating both signs 

as positive. The resultant sign will be set to 

negative. 

b. If both signs were negative, then the sign of the 

resultant is also negative. 

c. If the sign of the first number list is positive and 

the sign of the second number list is negative, an 

addition operation is done after treating both signs 

as positive. The sign of the resultant is set to 

positive. 
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  d. If the length of the first number list is less than that 

of the first, then a message will appear and the 

numbers will be swapped; i.e., the first will be the 
second for the subtraction operation. The resultant 

will have a negative sign.  

 

Multiplication of Multiple Byte Integers:  

The simplest way to implement multiplication is by 

using repeated addition. To compute a * b, we set the result to 

0, then we repeatedly add a to the result for b number of 

times[5]. 

. But before discussing multiplication, we describe 

shifting. To multiply (an – 1 … a1 a0)r by rm, we need only shift 

the expansion left m places, appending the expansion with m 

zero digits. 

ab = a ∑������ bjr
j =  ∑������ (abj)r

j, 

We multiplying two integers with base r expansion, we 

use the familiar method of multiplying decimal integers by 

hand[5]. 

Again the two number lists were traversed from 

right to left, taking the first digit of the second number list and 

multiply it with each digit of the first number list. Each 

multiplication if greater than the radix, a carry digit will be 

added to the next proceeding nodes’ result. A node will be 

created when the last digit of the first number list is reach and 

there was a carry, at the front of the list. The next multiplication 

of the next digit of the second number list will be done in the 

same way except that a zero digit will be inserted first at the 

most right node of the result. The next other ones, every time 

an increment is done; i.e., two zero’s will be inserted in the 

most right nodes of the result, and so one, using an iterator. 

Every resultant of each multiplication of a digit of the second 

number list is added to the one before it, and the sum will be 

the final resultant of the multiplication operation. The addition 
operator will be used here, but without the sign test. Both signs 

will be treated as positive. 

The Sign Test results only in the final resultant sign, and if the 

sign of the two numbers lists were different, then the resultant 

sign will be negative, otherwise it is positive. 

 

 

mult& mult::mul(mult m1, mult m2) 

       { 

                     int carrym; 

long unsigned int x, count = 0; 

long int ssum; 

   mult mmp, mb; // mb to store each last 

addition of the multiplications done. 

  multscan anotherptr(m2, NEXT);       

// Traverse from right to left, the first is the 

most smallest weight    

  dgtp p2; 

while((p2 = anotherptr()) != 0)  // For every digit of the     

{                //    second list, it multiple all the first list. 

carrym = 0; 

   mult ma; 

// Each time, a new initiated variable list is needed. 

 for(x = 0; x < count; x++)   ma.append(0);  

// Shifting the first leading zeros. 

multscan otherptr(m1, NEXT); 

dgtp p1; 

while((p1 = otherptr()) != 0) 

       { 

ssum = int(p1 -> dgt) * int(p2 -> dgt) + carrym; 

if(ssum >= radix) 

{ 

carrym = ssum / radix; 

ssum = ssum % radix; 

} else carrym = 0; 

ma.append(ssum); 

} 

if(carrym >= 1) ma.append(carrym); // Attaching 

the last carry to the product list. 
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  if(count == 0) mmp = ma;     // Initiale addition to the multiplication. 

    else // Else adding every last multiplications to the next one. 

{         mmp = ma + mb; 

             mmp = rs; 

} 

count++; // The shifting of the leading zeros is 

incremented. 

mb = mmp;       // The value of storing additions, is 

updated. 

printmult(mmp); 

} 

mmp.sgn = +1; 

if((m1.sgn == -1) && (m2.sgn == +1))   mmp.sgn = -1; 

 // Only the sign will be negative. 

if((m1.sgn == +1) && (m2.sgn == -1))   mmp.sgn = -1; 

 if((m1.sgn == -1) && (m2.sgn == -1))     mmp.sgn = +1; 

       rs = mmp; 

 printmult(mmp); 

 return rs; 

       } 

Division of Integers:  

Again the two number lists must be traversed from right to left, 

subtracting the two corresponding digits. Here I’m not using the 

subtraction operator because I need a flag, which after each 

subtraction if there was a negative result, the flag is set to positive, 

indicating the end of the operation. The second number list is then 

subtracted from the resultant of the last subtraction until the flag is 

positive. The number of these subtractions while the flag is negative 

is the final resultant, been converted to a list itself; i.e., each time this 

iterator which count these subtraction is reach the radix size, a node 

of the final  resultant is created and the modulo of the division of this 

 

iterator is inserted into a new node, creating the final 

division number list. The iterator was declared as long as 

to be able to present as large as possible for a really big 

integers as it can be for the resultant.  

mult& mult::dvd(mult mr1, mult mr2)  

     { 

int borrow = 0, cs, d2, d1;  

long unsigned int n = 0;  

    int ar, ps = 0;  

               mult mr3, mdval, buff = mr1;  

if(mr2.numdgt > buff.numdgt) // If the second list  

      {    //   length was greater than the first list.          

 fp = 1;  

// This is a flag to show that the result will contain 

floating points.                   

cout << "\n Float division not integers \n";  

          mr3 = mdval = 0;   // The result will be zero.  

 ps = 1;  

// To terminate this operation, and not to go to next 

loop.                    

                     n = 0;  

 }  

while(ps == 0)  

      { // Traverse from right to left, the first is the 

most smallest weight      

 Borrow = cs = 0;               

multscan thisptr(mr1, NEXT);      

dgtp ptr1;  

multscan anotherptr(mr2, NEXT);  

   dgtp ptr2;  

// I didn't use the subtraction operator because I needed 

a flag.              
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  while(((ptr1 = thisptr()) != 0) && ((ptr2 = anotherptr()) != 0))        

      {  

d2 = int(ptr2 -> dgt);  

  d1 = int(ptr1 -> dgt);  

ar = d1 - d2 - borrow;  

borrow = 0; 

if((ptr1 -> next != 0) && (ar <= 0))   

{                         

ar = ar + radix;                     

 if(ptr1 -> next == 0) ar = 0;  

borrow = 1;  

}  

If((ptr1 -> next == 0) && (ar < 0)) ar = 0;  

ptr1 -> dgt = ar;  

if((ar < 0) && (mr1.numdgt == mr2.numdgt) && (ptr1 -> next == 0)) ) ps = 1;  

// The flag is on if the result is negative.                  

         }  

while((ptr1 = thisptr()) != 0) // When the first list is greater 

than the second.                 {  

cs++; 

 ar = int(ptr1 -> dgt) - borrow; 

                   borrow = 0; 

if((ptr1 -> next != 0) && (ar <= 0))   

{ 

ar = ar + radix;                    

 borrow = 1;                     

}  

                 if((ar <= 0) && (ptr1 -> next == 0)) ar= 0; 

  ptr1 -> dgt = ar;  

if((ar <= 0) && (ptr1 -> next == 0)) mr1.numdgt = mr1.numdgt - 1; 

}  

 

n = n + 1; 

if(mr1.numdgt == 0) ps = 1; 

if(mr1.numdgt < mr2.numdgt) ps = 1; 

// Counting the number of subtractions. 

if((mr1.numdgt == mr2.numdgt) && (d2 > ar))  ps = 1; 

// Counting the number of subtractions. 

if((mr1.numdgt == mr2.numdgt) && (d2 > ar))  ps = 1;

 // Floating Point.  

if((buff.numdgt == mr2.numdgt) && (d2 > d1))   

  {  

ps = 1;  

n = 0;  

}  

if(ar <= 0) mr1.numdgt = mr1.numdgt - 1;  

// If last digit is less than zero,            

if(mr1.numdgt == 0) ps = 1; // then the length of it 

decreases.          if(mr1.numdgt < mr2.numdgt) ps = 1;

 // Floating Point result...           

}  

mdval = mr1; 

mdval.sgn = +1; // The sign of the 

modulo is always positive.  

pr = mdval; 

mr1 = buff; 

while(n > 0) // Converting the 

decimal number of the counting into a 

multiple Byte List. 

{  

ar = n % radix; 

n = n / radix; 

mr3.append(ar); 

} 

mr3.sgn = +1; 
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  if((mr1.sgn == -1) && (mr2.sgn == +1)) mr3.sgn = -1;  

// Only the sign changes.  

if((mr1.sgn == +1) && (mr2.sgn == -1)) mr3.sgn = -1; 

if((mr1.sgn == -1) && (mr2.sgn == -1)) mr3.sgn = +1; 

            cout << "\n The module : \n  "; 

        //if(fp == 1) mdval = 0; 

        printmult (mdval); 

        cout << "\n The dividor : \n  "; 

        rs = mr3; 

        if(fp == 1) // A suggested loop for Floating 

Point operation. 

           { 

cout << "  This is a fraction : 0."; 

for(n = 0; n < fc; n++) cout << "0"; 

} 

printmult(mr3); 

if(fp == 1) cout << "  Sorry but this fraction can not be 

returned. This opens up a new research. \n"; 

return rs; 

    } 

A test is done first to see if the second number length of nodes is 

greater than the first. If it is so, a message will appear, telling that 

there will be a Floating-Point result, which is another research to be 

done. If both numbers’ lengths are equal, traverse from left to right, 

here is the advantage or ‘use’ of the doubly-linked list structure 

reason of being there, to check if the second number is greater than 

the first; again there is the message of a Floating-Point research.  

The Sign Test results only in the final resultant sign, and if 

the signs of the two numbers’ lists were different, then the resultant 

sign will be negative, otherwise it is positive. Just like 

multiplication.  

 

 

 

 

Exponential Operation:  

Here the first number list is multiplied by itself, using the 

multiplication operator, according to the second number 

digits times. The second number is traverse from right to 

left, each digit is multiplied by the radix raised to its weight, 

and this result number control the number of iteration of the 

iteration of the  multiplication of the first number list. This 

number if it is greater that the maximum of integers for the 

mathematic function then there will be a problem as these 

functions were built on integers, log or pow, which raise the 

radix to its coefficient. 

mult& mult::expo(mult me1, mult me2) 

{      long unsigned int x, count = 0;       

mult me3;              

me3 = me1;                 

multscan thatptr(me2, NEXT); // Traverse 

from right to left, the first is the most smallest weight                   

dgtp pe2;          

while((pe2 = thatptr()) != 0)           

 {             

for(x = 0; x < ((int(pe2 -> dgt) * 

(exp((count) * (log(radix))))) - 1); x++)              

me3 = me3 * me1;             

 count++;      

}         

if(me2.sgn == -1)            

{          

me3 = 0;             

 cout << "This is a fractional, beyond 

this research \n";            

}      

cout << "\n The exponential : \n  ";      

rs = me3;       

printmult(me3);      

return rs;  

} 
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Warning: The second number digit if it is zero and length one, 

is trivially known that any number, raised to zero is one. No need to 

do it here. 

The second number sign can not be negative as Floating-Point 

numbers are outside this scope of research.   

Comparison Operation: 

Here, the lengths of the two numbers are compared, if 

their signs are the same. The larger is the big one. 

mult& mult::cmp(mult mc1, mult mc2) 

    { 

 int pr = 0, d2, d1; 

      mult mc3; 

            multscan (mc2, LAST); // Traverse from left to 

right, the first is the most greatest weight    

            dgtp p2;  // Here shows why it was a doubly-linked list 

            multscan otherptr(mc1, LAST);    

dgtp p1; 

if((mc1.sgn == +1) && (mc2.sgn == -1))           

  { 

pr = ptrgt = 1; // A flag so as not to perform the next loop.            

 mc3 = mc1; // The greatest will be the first list. 

                   } 

if((mc1.sgn == -1) && (mc2.sgn == +1) 

                  { 

               pr = ptrlt = 1;   // A flag of the less 

than is set on.                mc3 = mc2; 

// The greatest will be the second list. 

              } 

if((mc1.numdgt < mc2.numdgt) && (mc1.sgn == mc2.sgn) 

  { 

   pr = ptrlt = 1; 

             mc3 = mc2; 

           } 

       

  if((mc1.numdgt > mc2.numdgt) && (mc1.sgn == 

mc2.sgn)) 

{ 

 pr = ptrgt = 1; 

mc3 = mc1; 

        } 

       if((mc1.numdgt == mc2.numdgt) && (mc1.sgn == 

mc2.sgn)) 

         { 

  while(((p1 = otherptr()) != 0) && ((p2 = anotherptr()) != 

0)) 

         { 

         d2 = int(p2 -> dgt); 

         d1 = int(p1 -> dgt); 

      cout << "D1 " << d1 << "  

D2 " << d2 << "\n"; 

if(d2 > d1) 

{ 

          pr = ptrlt = 1; 

mc3 = mc2; 

cout << "M2 > 

M1 \n";             } 

else if(d2 < d1) 

         { 

     pr = ptrgt = 1; 

      mc3 = mc1; 

      cout << "M1 > 

M2 \n";           } 

   }        

if(pr == 0) 

  { 

   cout << "They are Equal 'But' : "; 
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if(mc1.sgn == mc2.sgn) mc3 = 0; 

   ptreq = 1;  // A flag of the equal than is set 

on.         

  } 

 cout << "\n The Greater is : \n  "; 

if(mc3.sgn == +1) ch = '+'; 

else ch = '-'; 

rs = mc3; 

printmult(mc3); 

return rs; 

} 

If one is negative, then it is trivially that the other number is the 

bigger whatever is the length is of its nodes. 

If the lengths are equal, same sign, here the number lists are 

traversed from left to right, digits are compared, and the first one 

which is bigger than the other, then this one is the bigger. If there 

are all the same, then these numbers are equal, totally. 

    Binary conversion: 
Multiple byte integers is usually based on 28 or the 

radix is 256. So to convert this number to binary, each digit 

is 

converted to 8 digits of binary. 
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Results: 

 These are some examples done by my program: 

Addition: 

{+, 56, 78, 98, 245, 160} + {+, 45, 3, 68} = {+, 101, 81, 

166, 245, 160}  

In decimal = + 435161593248.  

{+, 34, 120, 36, 86} + {-, 100, 200} = {+, 190, 175, 35, 

86} ≡ + 3199148886.  

{-, 34, 25, 78, 90, 200} + {+, 200, 220, 98} = {-, 90, 60, 

235, 89, 200} ≡ - 387569113544.  {-, 120, 38, 98} + {-, 

36, 200} = {+, 156, 238, 98} ≡ + 10284642.  

Subtraction:  

{+, 200, 39, 87, 65, 55} – {+, 48, 98, 120} = {+, 152, 197, 

222, 64, 55} ≡ + 656154705975.  {-, 46, 24, 33, 78, 200} 

– {+, 47, 75, 98} = {-, 93, 99, 131, 78, 200} ≡ - 401101508296.  

{+, 40, 39, 28, 36, 20} – {-, 200, 180} = {+, 240, 219, 28, 

36, 20} ≡ + 1034468205588.  

{-, 230, 48, 170, 78} – {-, 49, 160, 120, 35, 84} = {-, 75, 

111, 206, 212, 83} ≡ - 323998372947. 

Multiplication:  

{+, 160, 147, 222} * {+, 250, 59} = {+, 64, 10, 98, 37, 

52} ≡ + 275052111156.  

{+, 20, 49, 120, 223} * {-, 98, 78, 57} = {-, 168, 225, 

106, 24, 47, 6, 50} 

{-, 206, 187, 135} * {+, 24, 69, 47} = {-, 

 80, 33, 102, 203, 146, 51} ≡ - 88104388760115.  

{-, 201, 167, 96, 58} * {-, 222, 189, 49} =  

{+, 78, 229, 41, 25, 204, 87, 11}  

 

 

 

 

Division & Modulus: 

{+, 222, 190, 211} / {+, 208, 199} = {+, 16, 1} 

≡ + 4097. 

{+, 222, 190, 211} % {+, 208, 199} = {+, 221, 

113, 0} ≡ + 14512384. 

Exponential: 

{+, 87, 75, 129, 89, 221} ^ {+, 4} = {+, 33, 96, 

31, 76, 246, 132, 214, 67, 181, 98, 89, 82, 

83, 

145, 234, 146, 69, 220, 24, 143} ≡ + 

190540291944837396024051783373730745

330450568591. 

 

Comparison: 

{+, 39, 67, 128, 226} < {-, 87, 75, 129, 89, 

221} = Greater {+, 39, 67, 128, 226} 

  < False. 

Related Work: 

BH Flowers’s work: 

 Double linked list were used to store the digits, 

used to define the integers. The power of C++ is used to 

define functions to construct list. A decimalizing 

constructor is made that convert any stored list in decimal 

number. This number is returned as strings as the limit of 

integers were exceeded. There are also forward and 

backward constructors, traversing of these lists.  

Future Work: 

(i). Arithmetic operators on multiple byte integer. 

(ii). Multiple byte float point numbers and they 

arithmetic operations. 

Conclusion: 

 The sign character is not showing in the final 

result of the decimal string. The Boolean type BH Flowers 

made, did not work for me. If the first digit of the string is 

zero, the decimal will be zero. The error message function 

contains errors on the standard.h header file.  

 



13 

 

Chew Keong Tan’s Work: 

The implementation of asymmetrical cryptographic schemes 

often requires the use of numbers that are many times larger than the 

integer data types that are supported natively by the compiler. In this 

article, an introduction was given to the implementation of arithmetic 

operations involving large integers. No attempt was tried to give a full 

coverage of this topic since it is both complex and lengthy. For a more 

detailed treatment, the reader is referred to the listed references of his. 

The source code that accompanies his article implements the 

BigInteger class supporting large integer arithmetic operations. 

Overloaded operators includes +, -, *, /, %, >>, <<, ==, !=, >, <, >=, <=, 

&, |, ^, ++, -- and ~. Other additional features such as modular 

exponential, modular inverse, pseudoprime generation and probabilistic 

primality testing are also supported. 

Features: 

a. Arithmetic operations involving large signed integers in 2's 

complement representation.  

b. Prime number tests using Fermat's Little Theorem, Rabin 

Miller's method and Solovay Strassen's method.  

c. Modular exponential with Barrett reduction.  

d. Modular inverse.  

e. Random Pseudoprime generation.  

f. Random Coprime generation.  

g. Greatest common divisor. 

Future Work: 

(i). Faster implementation of arithmetic operations.  

(ii). More robust primality testing methods.  

(iii). Faster pseudo prime generation  

Conclusion : In his article, he has provided a short introduction to the topic 

of large integer arithmetic. Then he has looked at how large integer 

addition,  

subtraction and multiplication can be implemented. Also he examined the 

problem of primality testing and introduced the concept of primality 

testing based on Fermat's Little Theorem. His implementation of 

BigInteger class can be downloaded from his page and provides the 

overloading of most arithmetic operators. He has pointed out the 

limitations of his implementations of primality testing and is working 

towards more robust primality testing methods and faster implementation 

of arithmetic operators. 
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