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ABSTRACT 

It  is  well  known  that  the  gradient  descent  rule  employed  in  training  the   Multi-Layer 

Perceptron (MLP) could  get  stuck  in  a  local  minima  of  the  error/loss  function ( based on mean 

squared  error ).  We  reason  that  by   realizing  MLP  using  a  cascade  of  binary  classifiers ( MLP  

with  single  neuron  in the  output  layer ),  the  Hierarchical  classification  approach  overcomes  the  

local  minima  problem  ( since  the  loss  function  of  each  binary  classifier  is  a  paraboloid ). 

Several  innovative  ideas  related  to  such  Artificial  Neural  Network  architecture  are  being  

proposed. 

1. INTRODUCTION: 

                              McCulloch, Pitts  proposed  a  model  of  artificial  neuron  to  emulate  the  

classification  function  of  “linearly  Separable”  patterns. But, such   a  model  of  artificial  

neuron  doesnot  have  the  training  ability, since  the  synaptic  weights  are  fixed  and  not  

variable. Rosenblatt  proposed  the  “perceptron” model  of  neuron  in  which  the  synaptic  

weights  are  variable  and  thus  it has  training  ability.  Under  the  assumption   that  two  

classes  of  patterns  are  linerarly  separable,  Rosenblatt  proved  the  “perceptron  learning  

law”.  It  established  that  all  patterns  ( belonging  to  two classes )  are  correctly  classified  

in  finitely  many  epochs i.e.  the  synaptic  weights  converge  leading  to  a  hyperplane  

which  provides  100%  classification  accuracy. A naturallt  question  arises  as  to  how  

classification  needs  to  be done  when  the  patterns  are  not  linearly  separable.  A  natural  

compromise  is  to  relax  the  condition  of  100%  accuracy  of  classification. Towards  this  

end,  an  error  criteria  such as  mean  square  error  (  between  the  desired  output  for a  

training  pattern  and  the  actual  output )  is  utilized. As  explained  below,  the  associated  

error  measure  corresponds  to  a  paraboloid ( parabolic  error  surface )  when  there  is  a 

single  perceptron/linear  neuron  performing  the  classification. Such  a  classification  

approach   is  enabled  by  the  so  called  “gradient  descent rule “. 

 

As  natural  generalization, Multi-Layer-Perceptron  was  proposed  to  classify  patterns  

belonging  to  multiple  classes  that  are  separated  by  nonlinear  decision  boundaries. But  

the  error  criteria ( loss  function )  associated  with  multiple  neuronal  units  in  the  output 

layer)  and  all   training  patterns  typically  has  multiple  local  minima.  Hence  the 

backpropagation  algorithm ( based  on  gradient  descent  rule )  typically  will  get  stuck  in  

local  minima.  This  research  paper  addresses  the  problem  of  modifying  the  Multi-Layer  

Perceptron  architecture (  a  novel  Artificial  Neuron  Architecture )  which  enables   

overcoming  the  multiple  local  minima  problem. 

 

This  research  paper  is  organized  as  follows. In Section 2,  the  local  minima  problem  

arising  in  arbitrary  multi-layer  perceptron  with  multiple  neuronal  units  in  the  output  

layer  is  explained. In Section 3,  a  novel  Artificial  Neural  Network (ANN)  architecture  

with  a  cascade  architecture  of  binary  classifiers  is  proposed. It  is  reasoned  that  such  a    



hierarchical   classification  architecture  enables  overcoming  the  multiple  local  minima  

problem.   

 

2. Review  of  Known  Research  Literature: 

                                                                           Rosenblatt  proposed  the  idea  of  varying  the   

synaptic  weights  to  train  a  perceptron.  Our  goal  is  to  learn  a  weight  vector  which  

will  classify  all  the  training  patterns ( i.e. 100%  accuracy )  correctly  into  two  classes.  

components.  Weight  vector  components  are  modified  at  each  step  (  when  a  new  

pattern  is  presented )  according  to  the  following  PERCEPTRON  LEARNING  LAW 

 

𝑤𝑖(𝑛 + 1) =  𝑤𝑖(𝑛) +   ∆𝑤𝑖(𝑛), 𝑤ℎ𝑒𝑟𝑒  

                                                     ∆𝑤𝑖(n) = 𝛿(𝑡 − 𝑜)𝑥𝑖, 𝑤𝑖𝑡ℎ 

              𝑤𝑖(𝑛 + 1):  𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡  𝑣𝑒𝑐𝑡𝑜𝑟  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  𝑎𝑡  𝑡𝑖𝑚𝑒 𝑡′ + 1′   

                             t  :  t  is  the  target  ( desired ) output  for  the  current  training  example 

                             o: output  generated  by  the  perceptron for  the  current  training  example 

                             𝛿: 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡   𝑐𝑎𝑙𝑙𝑒𝑑  "learning  rate". 

 

It   should  be  noted  that  if  a  training  pattern  is correctly  classified,  then  the  

components  of  weight  vector  will  not  change [1].  The  process  of  updating  the  

synaptic  weights  ( using  the above  perceptron  learning  law )  is  repeated,  iterating  

through  training  examples  as  many  times  as  needed  until  all  the  training  examples  

are  correctly  classified.  It  was  proved  that  the above  learning  procedure  converges  

within  a finite  number  of  applications  of  perceptron  learning  law  to  a  weight  vector  

that  correctly  classifies  all  the  training  examples,  provided  the  training  examples  are  

linearly  separable  and  sufficiently  small  learning  rate  is  used.  In  case  the  training  

patterns  are  not  linearly separable,  convergence  of  perceptron  training  rule  is  not  

assured. Hence,  we  are  naturally  led  to  the following  alternative  learning  rule  when  

the  training  patterns  are  not  linearly  separable (  the  following  well  known  discussion  

is  borrowed  from  Tom  Mitchell’s  book ) 

• GRADIENT  DESCENT  AND  DELTA  RULE:- 

                                                                           The  delta  rule  converges  toward  a  best  

fit  approximation  to  the  target  concept  if  the  training  examples  are  not 

linearly  separable.  To   derive  the  gradient  descent  rule,  we  consider  the  

process  of  training  an  UNTHRESHOLDED  PERCEPTRON  i.e.  a  LINEAR  UNIT ( first  

stage  of a  perceptron  without  thresholding )  for  which  the  output  is  given by 

                            𝑦 =   �̅�. �̅�   
where  �̅� is  the training  pattern  vector  and �̅�  is  the  weight  vector  ( i.e. 

hypothesis ) [2] 

To  derive  learning  rule  for  the weights  of  a  linear  unit,  we  specify  a measure  

of  training  error  of  a  weight  vector  relative  to  the  training  examples.  One  

widely  used  error  measure  is  the  MEAN  SQUARE  ERROR. 

                                                     𝐸(�̅�) =  
1

2
 ∑ ( 𝑡𝑑𝑑∈𝐷 -𝑜𝑑)2 

 

Where   D  is  the  set  of  training  examples,     𝑡𝑑 is  the  target  output  for  training  

example     and  𝑜𝑑    is  the   output  of  linear  unit  for  the  training  example d .  It  



should  be  noted  that  E  is  a  function  of  weight  vector  and  the  set  of   training  

examples. 

The  gradient   descent  algorithm  can  be  visualized by  considering  the  hypothesis 

space  of  possible  weight  vectors  and  the  associated  error  E  values.  It  can  

easily  be  reasoned  that  the  error  E  corresponds  to  a  “paraboloid” ( parabolic  

surface  in  3  dimensions )  with a   single  global  minimum   which  is  also   a  local  

minimum. 

Gradient  descent  search  determines  a  weight vector  that  minimizes  E  by  

starting  with  an  arbitrary  initial  weight  vector  and  repeatedly  modifying  it  in  

small  steps.  At  every  step,  the  weight  vector  is  modified  in  the  direction  that  

produces  the  steepest  descent  along  the  error  hypersurface  (  i.e.  in  the  

direction  of  negative  of  gradient ).  The  process  continues  until  the  global  

minimum (  which  is  also  the  local  minimum )  is  reached.  Formally 

�̅�(𝑛 + 1) =  �̅�(𝑛) +  ∆�̅�(𝑛) , 𝑤ℎ𝑒𝑟𝑒 

∆�̅�(𝑛) =  − 𝛿∇𝐸(�̅�) 

denotes ∇𝐸(�̅�)  the  gradient  vector  and  𝛿  is  the learning  rate. 

For,  the  linear  neuronal  unit,  it  can  be  readily  shown  that  

∆𝑤𝑖(𝑛) =  −𝛿
𝛿𝐸

𝛿𝑤𝑖
  , 𝑤ℎ𝑒𝑟𝑒 

 

                                                 
𝛿𝐸

𝛿𝑤𝑖
=   ∑ ( 𝑡𝑑𝑑∈𝐷 -𝑜𝑑) (-𝑥𝑖𝑑) 

Note:  Even  though  the  delta  rule  is  utilized  as  a  method  for  learning  weights  

of  unthresholded  linear  units,  it  can  easily  be  used  to   train  thresholded  

perceptron  units  as  well  (  Refer  Tom  Mitchell’s  book ). 

 

In  the  case   of  Multi  Layer  Perceptron  ( MLP )  with  multiple  neuronqal  units  in 

the  output  layer,  we  redefine    E  by  summing  the  error  over  all  neuronal  units  

in  the  output  layer 

𝐸(�̅�) =  
1

2
 ∑  ∑ (𝑡𝑘𝑑 − 𝑜𝑘𝑑)2

𝑘∈𝑜𝑢𝑡𝑝𝑢𝑡𝑠

     

𝑑∈𝐷

 

where  ‘outputs’  is  the set  of  output  units  in  the  ANN   and           are  the  target 

(desired )  output  and actual  output  values  associated  with  the     output  and  

training  example  d. 

 

Note:  With  the   above  error  measure,  the  error  surface  can  have  multiple  

local  minima,  in  contrast  to  the  case   of  single  neuronal  unit  considered  

earlier.  Hence,  the  gradient  descent   is  guaranteed  only  to  converge  toward  

some  local  minimum  and  not   necessarily  the  global  minimum  error. 

 

3. Cascade  of  Binary  Classifiers: Hierarchical  Classification:  Multi-Layer  Perceptron: 

                                  The    classification  problem  in  which  there  are  ‘N’  classes  is  converted  into  

‘N-1”  hierarchical  binary  classification  problems  using  a cascade  connection  of  ‘N-1’  binary  

classifiers. 

 



It  readily  follows   that  the  above  ANN  architecture  is  equivalent   to  the  associated  MLP 

architecture.  In  fact  the  architecture  provides  detailed  information  based  on  the  associated  

balanced  binary  classification  tree. 

It  is  clear   that  each  “binary  classifier”  performs  gradient  descent  on  an  error  surface  which  

has   unique  global/local  minima. 

4. Conclusion:   

                      The local  minima  problem  associated  with  Multi  Layer  Perceptron (MLP)  

was  studied  by  several  researchers  such  as  Levenberg.  They  suggested  some  solutions. 

In  this  research  paper,  we  propose  a  CASCADE  CONNECTION  of  BINARY  CLASSIFIERS  

to   overcome  the  problem  of  getting  stuck  in  local  minima (  since  the  loss  function  

associated  with  each  binary  classifier  is  a  paraboloid ).  We  are  currently  pursuing  

several  innovative  results  associated  with  such  ANN  architecture  such  as  the  

UNIQUENESS  of  such architecture 
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