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Abstract—The present manuscript proposes a novel CNN
architecture to detect inflammatory lesion abnormality in
Wireless Capsule Endoscopy (WCE) images. Such images
encompasses a wide range of lesions and hence early diagnosis
can be of vital importance. The proposed model learns the
collective features of various inflammatory lesion subgroups
and aggregates that information to solve a binary classification
problem by distinguishing between normal and abnormal
frames. The proposed model has one primary and three
secondary branches. The primary branch resembles a generic
CNN model with convolution and max-pooling layers whereas
the secondary branches consist of dilated convolution layers
and max-pooling layers. The proposed model fuses the multi-
scale input context at varying dilation rates with different
levels of the primary branch. This enhances feature quality
by merging dominant global features with the local input
context at multiple scales without any loss of resolution.
The performance of the proposed model has been assessed
using various objective evaluation metrics. The preliminary
experiments indicates that the proposed model outperforms
state-of-the-art models and exhibits an accuracy of 97.9%,
sensitivity of 96%, specificity of 99%, ROC-AUC of 1 and
Precision recall AUC of 99.7%.

Keywords-Convolution neural network; wireless capsule en-
doscopy; lesion detection;

Wireless Capsule Endoscopy (WCE) is a non-invasive
alternative to traditional endoscopic procedures [1]. It is
used for detecting abnormalities in the small bowel. The
procedure begins with the ingestion of WCE capsule. The
capsule is then propelled through the gastrointestinal tract by
peristalsis [2]. The device can record up to 8 — 12 hours of
video sequences during the procedure. One WCE procedure
can produce more than 60,000 frames and its analysis
requires around 120 — 180 minutes of intense attention and
focus by a clinician [1], [2].

Lesion is one of the most frequently found occurring
abnormality in the small bowel and often diagnosed as
the source of bleeding [3]. Therefore, early diagnosis can
prove to be a very crucial first step towards faster and
safer recovery. Recently, a lot of computer aided methods
have been developed to reduce WCE screening time and
lessen the burden on clinicians by developing algorithms
for automating the anomaly detection process [4], [S], [6],
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[7]. Deep learning architectures like Convolutional Neural
Networks have shown promising results in detecting abnor-
malities in various kinds of endoscopy images [8], [9].

Single Shot Multibox Detector (SSD), which is a deep
neural network architecture, has been used for detection of
ulcers and ecrosions in WCE images [3]. Similarly, SSD
algorithm was also applied for detection and classification
of protruding lesions including polyps, SMTs, epithelial
tumours, nodules, and venous structures [10].

Lack of availability of labelled medical data poses a
huge problem for designing efficient, robust and well-
generalizable deep learning models for abnormality detec-
tion. To overcome this limitation, the possibility of fine
tuning of pre-trained models like GoogLeNet, AlexNet etc.
has also been explored [11]. Annotations pose a limitation
but often image level labels are feasible and available
whereas graphic annotations are extremely time consuming
and hard to obtain. The use of image level annotations with
weakly supervised CNNs has been explored for automating
the diagnosis for inflammatory lesion detection [12].

Similarly, a combination of CNN and Long Short Term
Memory (LSTM) has been explored for leveraging temporal
relationships between the video sequenced frames for detec-
tion of arteriovenous malformations (AVM) [13]. Literature
has pointed out that non-RGB colour spaces extract more
colour and texture features as compared to RGB colour space
[14]. This led to the use of CIELab and RGB input colour
spaces in conjunction with transfer learning approach which
had GoogleNet as the underlying architecture for lesion
detection in WCE images [15].

Thorough literature review revealed that CNN based
methods have been extensively explored for tackling ab-
normality detection in WCE images [5], [15]. Designing
CNN based models right from the scratch comes with an
advantage of architectural flexibility by making a trade-off
between model depth and its performance. Empirical data
shows that performance improves with increasing depth of
the model. Though the performance improves with depth;
deep models tend to over-fit very quickly if the dataset
is not large enough. Moreover, for a robust model it is
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Figure 1. (a) Original image (b) Cropped image

important that the data supplied during training encompasses
enough variations across samples so that the model learns
all possible patterns/variations that may occur.

The present paper, thus, proposes a novel CNN based
architecture which is deep enough to learn the right features
and compact enough for making real-time deployment fea-
sible. The proposed model performs binary classification in
order to distinguish between normal and abnormal frames.
The abnormal class contains lesions belonging to various
subcategories, viz., inflammatory lesions, including ulcers,
mucosal aphthae, mucosal erythema, mucosal cobblestone
and luminal stenosis.

In the proposed work, input images are first converted to
LUV colour space and the L channel is histogram equalized.
Then the image is simultaneously fed into four branches
(connected to a common input). Out of the four branches,
one is primary and others are secondary. The problem of
limited data has been solved by using various augmentation
techniques. The proposed model also combats the problem
of resolution loss by preserving the input context using
dilated convolution which makes the model capable of iden-
tifying both large and small anomaly regions with the same
effectiveness. In order to further enhance the feature quality,
we extract multi-scale features via dilated convolution from
the input context.

The dataset was divided into train, test and validation sets.
The model is objectively evaluated using test set for vari-
ous quantitative metrics. The obtained accuracy, sensitivity,
specificity and ROC-AUC scores are 97.9%, 96% 99% and
1, respectively.

The rest of this paper is organized as follows. Section
II discusses the preparation of dataset while Section III
presents the proposed CNN based framework, model training
and parameter setting. Section IV discusses the experimental
analysis and the paper has been concluded in Section V.

1. DATASET PREPARATION

The present section discusses the preparation of dataset
which primarily includes obtaining the dataset, the pre-
processing operation and augmentation applied on the
dataset.

A. Dataset

All the experiments in the proposed manuscript were
conducted on real clinical data generated by 252 WCE
procedures performed at Royal Infirmary of Edinburgh
(University Hospital and referral centre for WCE for the
Southeast of Scotland, UK) [16]. A total of 1372 images
were obtained from the video sequences and classified by a
research group as follows: a) vascular lesions, that includes
angiectasia and/or intraluminal bleeding; b) inflammatory
lesions, including ulcers, mucosal aphthae, mucosal ery-
thema, mucosal cobblestone and luminal stenosis; c¢) lym-
phangiectasia, including nodular lymphangiectasis, chylous
cysts, punctuate lymphangiectasis, and d) polypoid lesions
[16]. For the proposed experiments, only a subset of this
dataset belonging to the target class (lesions) was used. Data
pertaining to target class has 204 inflammatory lesion frames
and 57 normal frames, that were used for abnormal and
normal classes, respectively.

B. Pre-processing

The circular aperture of a WCE camera lets the important
information resides in the central region of a WCE image
while the black borders around this central region indicates
the date and time stamp or the capsule specifications. Anal-
ysis indicated that this border area increases the size of the
image without adding any meaningful information. Thus,
the proposed work carefully implements cropping as a part
of pre-processing step to reduce redundancy without losing
on the important medical information. Cropping reduces the
original size of image to 240 x 240. The original image along
with its cropped image has been indicated in Figure 1.

C. Data Augmentation

The resulting subset containing abnormal and normal
frames of lesion amounted to only 261 images in total.
However, this 261 image dataset is insufficient for training
of a Deep Learning Model, which requires a large dataset
with a lot of variance within it. Thus, the chosen dataset
is augmented using different methods to make the dataset
suitable for training of the proposed deep learning model.
The data augmentation step is done primarily for better
training of the proposed model, that consequently leads to
a generalized model that prevents overfitting.

For data augmentation, the following transformations have
been applied: rotation shift, brightness shift, horizontal and
vertical flip. After augmentation, equal number of frames
were generated for both the classes i.e. 4000 frames for each
class. This makes the complete dataset of 8000 images. An
original image and its respective augmented images have
been indicated in Figure 2.

II. PROPOSED FRAMEWORK

The present section discusses the motivation behind the
proposed CNN based architecture, discusses the model
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Figure 3. Block diagram of

parameters and the parameter settings for the proposed
architecture. The block diagram of the complete framework
is indicated in Figure 3.

A. Overview of the Proposed Model

While designing CNN architecture for predictions on
medical data, the size of the model and the information
retention capacity are the critical parameters and are pro-
portional to each other. Decreasing the former evidently
decreases the latter. For an efficient deep learning network,
it is essential to have a large network that is trained on
a huge database. A large sized network increases the in-
formation retention capacity of the network. This can be
considered as an advantage in some cases, but it comes
at a cost of increased computational time, which cannot
be compromised during real time scenarios. To have an
edge over the computational time, a trade-off is required

proposed CNN based architeture

that reduces the size of the network without losing on the
information retention capacity.

Literature has revealed that conventional CNNs perform
down-sampling operations and dimensionality reduction us-
ing pooling layers (or subsampling layers) in order to capture
larger context areas [17]. Pooling layers help expand the
receptive field at the cost of resolution [18]. Pooling layers
reduce the number of parameters by retaining only a small
amount of information which is guided by the pooling
algorithm being used. This leads to loss of resolution which
is not favourable in the context of medical images because
it may completely change the interpretation of the diseased
region.

On the contrary, dilated convolution preserves spatial
information better than pooling layers, thereby improving
the quality of generated feature maps [19]. Also, dilated
convolution does not compromise upon the image resolution



while reducing the network parameters. Thus, the proposed
model has explored the combination of dominant feature
extraction ability of max-pool operation and resolution
preserving characteristic of dilated convolution to improve
the anomaly detection and classification capability of the
network.

B. Model training and Parameter setting

The model pipeline has two parts: on-the-fly pre-
processing and the proposed CNN based model. On-the-fly
pre-processing is performed by a pre-processing function.
Firstly, images are loaded into the memory in small batches
given the memory constraints. Every image is processed by
the pre-processing function before it is fed into the model.
The function first brings the image pixel values within [0,1]
range and converts the input RGB colour space into LUV
followed by histogram equalization on the L channel.

In the colour space transformation step, LUV was chosen
as the input colour space as it separates chromaticity from
luminance thercby making it invariant to lighting condi-
tions. Moreover, compared to RGB, LUV is more close to
human perception of lightness and chromaticity. All these
factors make LUV a suitable choice for lesion detection.
The luminance channel of the LUV image was histogram
equalized in order to enhance global image contrast by
making the intensity distribution uniform over the image.
After histogram equalization, the obtained image undergoes
standardization i.e. mean centering and normalization by
standard deviation.

The proposed model was implemented using Keras with
Tensorflow backend. The learning rate was set to 0.0001
with a batch size of 10. ReLu activation was used for all
the convolution layers and sigmoid activation was used in
the last three fully connected layers. The model’s hyper-
parameter tuning was performed using the trial and error
approach. Model was trained for 100 epochs over a duration
of 7 hours. The experiments were performed on a system
with these specifications: Intel Core i5-8300H processor with
24GB system RAM, NVIDIA GeForce GTX 1050Ti with
4GB RAM graphics card.

C. Proposed Model Architecture

The proposed model is a single input multi-branch CNN
having one primary branch and three secondary branches.
The primary branch has three regular convolution layers with
a fixed kernel size of 3 x 3. Each Conv layer is followed by a
2 x 2 max-pool layer, with the exception of two intermediate
zero-padding layers of (1,1) for ensuring a symmetric out-
put. Max-pool layers are followed by concatenation layers
which concatenate the output of the secondary branches at
different levels of the main branch. All secondary branches
are connected to the main input and each of them comprises
one or multiple dilated convolution layers with kernel size
ranging from 2 X 2 to 4 X 4 and a fixed dilation rate of 2.

ReLu activation has been used as the activation function for
every convolution layer.

It is to be noted that each of the secondary branch’s output
is being concatenated with the primary branch at different
levels, consequently successive secondary branches needed
multiple down-sampling layers. The first secondary branch
has one dilated Conv layer. The second secondary branch
consists of one dilated Conv and one 2 x 2 max-pool layer.
The third secondary branch has two dilated convolution
layers and one 2 x 2 max-pooling layer. For this branch,
multiple dilated convolution operations were chosen over
multiple max-pool operations by taking into consideration
the loss of information that is accompanied by the latter.
Two stacked dilated convolution layers ensured preservation
of resolution to a great extent even after significant down-
sampling.

The secondary branches helps to preserve the original
input context and extract features at multiple scales by
using different sized kernels. The extracted features from the
secondary branch are repeatedly concatenated with input’s
dilated convolution feature maps of the primary branch at
deeper levels. This ensures that both the coarse and fine
details are taken into account.

The last concatenation layer is followed by a global max-
pooling layer which acts as the flattening layer in this case.
It only retains the maximum feature per feature map thereby
producing a 1D vector. Three dense layers are stacked one
after the other in the end with the last layer having a
single node with sigmoid activation function to give a class
probability as output.

III. EXPERIMENTAL ANALYSIS

This section discusses the detailed experimental analysis
on the prepared dataset of 4000 abnormal and 4000 normal
frames. This data was divided into training, validation and
test set. The training set comprised of 6000 frames in total
(3000 normal and 3000 abnormal), while the validation and
test set had 1000 frames each (500 frames per class).

A. Experiment Methodology

The proposed model was trained on the training dataset
of 6000 images and the experimental analysis has been
performed on the test set. The results indicated in the tables
refers to the results obtained on the test dataset. The pre-
processing function takes cropped images as input (pre-
processing), normalizes and performs colour space conver-
sion from RGB to LUV followed by histogram equalization
of the Luminance or ‘L’ channel (on-the-fly-pre-processing),
this input is then fed into the model and a prediction in terms
of class probability is obtained.

The sigmoid activation function used in the last layer of
the model predicts the probability of a frame being normal.
Therefore, if the output probability is ‘p’ then the probability



Table T
EVALUATION RESULTS

Class Precision | Recall FI Score | Sensitivity| Specificity ROC Precision-
AUC Recall
AUC
Abnormal | 0.99 0.96 0.98 0.96 0.99 1 99.8
Normal 0.97 0.99 0.98 0.99 0.96 1 99.6
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Figure 5. ROC and Precision Recall Curves for the proposed CNN based architeture

of normalcy is ‘p’ and probability of the given frame being
abnormal is ‘1-p’.

The output probability is converted into a binary label
by using a threshold value of 0.5. This threshold value is
chosen based on empirical observations. Hence, if the output
probability is greater than 0.5 then the frame is classified as
normal else it is classified as abnormal.

B. Evaluation Results

The performance scores on the test dataset have been
indicated in Table I. Classification accuracy of 97.9% has
been obtained on the test set. Precision of 0.99 and 0.97 has
been obtained for abnormal and normal frames. Similarly,
recall of 0.96 and 0.99 has been obtained for abnormal

and normal frames. An F1 score of 0.98 is obtained for
both abnormal and normal frames. The achieved accuracy,
sensitivity, specificity, ROC-AUC and precision recall-AUC
is also indicated in the Table I, which indicates the efficacy
of the proposed framework.

The model was trained for 100 epochs, and the obtained
accuracy and loss for training/validation have been indicated
in Figure 4. In both the plots, training and validation curves
are closely following each other, indicating that the model is
neither overfitting nor under-fitting. There are some spikes
in the validation loss curve, which may be due to the mini-
batch gradient descent.

Area under curve (AUC) for ROC and Precision-Recall
curves have been shown in Figure 5 which indicates the



Table 1T

COMPARATIVE ANALYSIS

- Saito et al. | Aoki er al Alaskar et al.[11] Spiros et al. | Proposed
[10] [3] [12]
Underlying Single Shot | Single Shot | GoogleLeNet | Alexnet Weakly Dilated Con-
algo- Multibox de- | Multibox de- supervised volution Ap-
rithm/Model tector tector CNN proach
Dataset Sendai The Dr. Khoroo’s Medical Clinic/Trust | KID Dataset | Royal
source Kousei University Infirmary of
Hospital, of Tokyo Edinburgh
The Hospital, (University
University of | Japan Hospital
Tokyo, and and referral
Hiroshima centre  for
University WCE for
Hospital the southeast
of Scotland,
UK) [16]
Dataset Training- Training- Training- Training- Training- Training-
details 30,584 5360 frames, | 336 frames, | 336 frames, 400 frames, | 6000 frames,
frames, Testing- Testing- 105 | Testing- 105 Testing- 54 | Validation-
Testing- 10440 frames) frames frames 1000 frames,
17,507 frames Testing-
frames 1000 frames
Lesion sub- | polyps, Erosions and | Ulcers Ulcers - inflammatory
categories epithelial Ulcers lesions,
tumors, including
submucosal mucosal
tumors aphthae,
(SMT), mucosal
nodules, erythema,
and venous mucosal
structures erythema,
ulcers,
mucosal
cobblestone,
and luminal
stenosis
Augmentation | Performed Not Not Not Not Performed
performed performed performed performed
Accuracy(%) | - 90.8 100 100 90.2 97.9
Sensitivity 90.7 88.2 100 100 92.6 96
(%)
Specificity 79.8 90.9 100 100 88.9 99
(%)
AUC-ROC 0.911 0.958 1 1 - 1
Testing 0.00303 0.022 - - - 0.0175
(sec/frame)
Trainable pa- | - - - - - 131,889
rameters

degree of differentiability between the classes present in the
data. The plotted ROC curve indicates that for True positive
Rate of 1, there exists a point on the curve where False
positive rate is 0, indicating an ideal performance. Similarly,
for Precision-Recall curve, ideal performance is indicated
where both precision and recall values are 1. Greater the
AUC, better is the model performance. A perfect model has
an AUC of 1.

From the obtained graphs, it can be clearly seen that
for both ROC and Precision-Recall curves, the model is
achieving near perfect AUC score. For ROC, both normal
(label 1) and abnormal (label 0) class achieve an AUC of
1 whereas in Precision —Recall curve abnormal class shows

better performance with an AUC of 0.998 as compared to
the normal class with AUC of 0.996.

The comparative analysis of the proposed model has
been done with state-of-the-art works. For the comparative
analysis, existing work on specific anomaly class i.e. lesions
have been considered. Only the best case performance
scores obtained on the test/validation data (as stated in the
respective literature), are reported in the Table II.

The architecture proposed by Aoki et al. [3] and Saito et
al. [10] uses Single Shot Multibox detector (SSD) as its un-
derlying algorithm and required region level annotations for
binary classification. The proposed model however requires
image level annotations. Though, a weakly supervised CNN



has been proposed using image level annotations [12]; the
parametric values are less than the values obtained for the
proposed method (Table II).

Two widely used pretrained models namely GoogLeNet
and AlexNet were fine-tuned on a dataset of 256 abnormal
and 80 normal ulcer frames [11]. The reported accuracy,
sensitivity and specificity scores were 100%, 100% and
100% with an AUC of 1. However, it is to be noted that
the validation was performed on a very small subset of the
data consisting of only 80 abnormal and 25 normal images
unlike the proposed model which was validated on 1000
augmented images which captured a very wide range of
variations. In order to obtain representative scores, the test
set should encompass significant proportion of the possible
variations that might occur in real time data. Moreover,
the architectures GoogLeNet and AlexNet have parameters
roughly of the order 4 x 10% and 60 x 106 [20], which is
ten times more than the total parameters of the proposed
model. Using a pre-trained architecture also eliminates the
possibility of altering the architecture in the future to suit a
specific use case.

A thorough comparative analysis presented in Table II
depicts that the proposed method outperforms existing state-
of-the-art methods in terms of sensitivity, specificity, AUC
and per [rame tesling times.

IV. CONCLUSION

Recent years have seen the exponentially growing use
of deep learning methods for automating the detection of
abnormalities in a various medical images. The proposed
framework is a lightweight CNN model for inflammatory
lesion detection that uses dilated convolution for input
context preservation with significantly fewer parameters.
Multiscale features are extracted from the input image at
different dilation rates and they are fused with the main
network at different depths.

The proposed CNN based model requires only image level
annotations for training, thus, eliminating the need for time
consuming graphical annotations for binary classification of
lesion detection The promising performance of the proposed
method paves way for further study of its performance on a
larger dataset with multiple disease classes.
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