
EasyChair Preprint
№ 3231

Composable DevOps Architecture: The Need for
Secure and Flexible Deployment

Parastou Moghaddam, Harkaran Singh, Karan Sharma,
Noha Elissawy and Jeong-Joo Park

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 22, 2020

Composable DevSecOps Architecture
 The Need for Secure and Flexible Deployment

Parastou Moghaddam, Harkaran Singh, Karan Sharma, Noha Elissawy, and Jeong-joo Park

Volgenau School of Engineering - Department of Cyber Security Engineering
George Mason University - Fairfax, VA

Email: ​pmoghadd@gmu.edu​, hsingh23@gmu.edu, ​ksharm11@gmu.edu​, ​nelissaw@gmu.edu​, jpark76@gmu.edu

Abstract⎼⎼⎼ By the end of 2020, 83% of enterprise IT
operations will resort to cloud platforms [1]. Companies
are choosing to transition to cloud environments due to
many benefits associated with cloud services, including:
affordability, security, scalability, resiliency, and agility.
 While cloud computing offers massive economies of
scale, understanding cloud computing best practices in
order to enhance security and avoid vendor lock-in has
been an ongoing challenge for some companies. In this
paper, the best approach in orchestrating a cloud-based
DevSecOps pipeline is demonstrated.

Keywords⎼⎼⎼ ​DevOps, CI/CD, GitHub, Kubernetes,
Docker, Ansible, Prometheus, SonarQube, AWS.

I. INTRODUCTION

 Companies seek the optimum approach to
engineer Continuous Integration Continuous
Development (CI/CD), and cloud-based solutions
play a major role in facilitating the process. Cloud
computing eliminates guesswork about the
company’s capacity needs as there is no need for
upfront capital costs or predicting future work loads.
Underutilized on-premise hardware resources can be
replaced by on-demand resources provided by cloud
service providers (CSPs). With only a few clicks, the
process of scaling-in or scaling-out whether
horizontally or vertically can be fully automated.
 Beside negotiation and business-wise strategies
that all companies need to follow, designing a
composable architecture that incorporates
applications that can be easily decoupled and
transferred from one platform to another is a key
factor in cloud migration. In other words, application
compatibility plays a major role to reduce the risk of
proprietary lock-in. In order to facilitate flexible

deployment, open-source tools that can be easily
decoupled from physical resources are chosen.
 In this project a comprehensive analysis of
creating an application by exclusively incorporating
open-source tools to orchestrate a DevSecOps
pipeline is illustrated. Continuous testing of the
pipeline for security and functionality purposes is
verified by performing smoke testing, security
testing, and performance testing. In addition, the
process of containerization and deployment of
applications are explored to analyze scalability and
maintain efficiency of resources. The goal is to
highlight the benefits of using open-source tools to
optimize cost, prevent vendor lock-in, and secure the
DevOps architecture in cloud environments.

II. MISSION REQUIREMENTS

A. Stakeholder
 Companies strive to migrate to cloud-based
technologies but for many the risk of vendor lock-in
is a barrier hard to overcome.This project aims to use
emerging cloud technologies to develop and
document a process for securely setting up a
DevSecOps pipeline. In addition, supplementary
research is provided on the pipeline across cloud
platforms to benefit organizations that are
considering to migrate to cloud by proposing a
composable and secure architecture.

B. Concept of Operations
 The concept of operations (CONOPS) as shown in
figure 1 demonstrates components that work together
to engineer this system. Mattermost, an online chat
service, is selected as a repository to be replicated to
function as the main input of the pipeline. Amazon
Web Services (AWS) platform and open-source

mailto:pmoghadd@gmu.edu
mailto:ksharm11@gmu.edu
mailto:nelissaw@masonlive.gmu.edu

applications are utilized as enablers to orchestrate the
pipeline. User interaction is achieved by smart
devices with Internet connection, and users need to
obtain credentials to gain access. A few constraints
are set on the implementation of the project such as
deadline, fully automated testing, autonomous
deployment, and application containerization. The
result of all elements functioning together would be a
robust DevSecOps pipeline.

Figure 1: Concept of Operations

III. DESIGN REQUIREMENTS

 Based on the specific constraints set for the
pipeline, the architecture is designed. CI/CD ​is
established by consistent and automated ways to
build, package, test, and deploy applications.
As shown in figure 2, the fabricated pipeline
integrates the most popular open-source applications
which are: GitHub, Jenkins, SonarQube, DockerHub,
Kubernetes, Ansible, and Prometheus.

Figure 2: DevOps Project Architecture

A. GitHub
 For source code management, the pipeline draws
from GitHub services, which functions as a version
control system. Any changes, new versions of code,
or updates on commits can be viewed and managed
from the GitHub dashboard, from there Github

manages the source code, which in this case is
Mattermost’s open-source Web Server. Mattermost’s
open-source repository is cloned to utilize the source
code in the pipeline. Any revisions to the source code
shows up in the new Mattermost repository, and this
allows revisions from anywhere and with ease, as
GitHub changelogs shows commits and changes in
code. GitHub is linked to a customized Jenkins CI
server, which is set up to draw the code repository
from GitHub and go through continuous integration.

B. Jenkins
 Continuous integration is essential in building a
DevSecOps pipeline, as it allows teams to integrate
multiple stages. The DevSecOps pipeline is based on
a Jenkins CI build server. The Build stage automates
the DevSecOps process, by integrating various tools
at the development, security, and operations stage.
Jenkins enables testing and building onto the
Mattermost source by utilizing different tools.
 Continuous integration is achieved with the use of
plugins, and every tool that is needed to integrate in
order to complete the project depends on a plugin.
The customized Jenkins Build has a tool for various
stages, such as: Build, Version Control, Continuous
Monitoring, Continuous Deployment, Configuration
Management, and Continuous Testing. The Jenkins
server configuration process allows a simple
installation for plugins out of the box, and all of the
tools selected for the pipeline come into touch with
the Jenkins build server.

C. SonarQube
 Performing Continuous Testing (CT) is crucial to
ensure the quality of the code deployment and the
security of the pipeline. SonarQube is a continuous
code quality management tool that can perform static
analysis in more than 25 programming languages. It
incorporates pattern matching approaches by
integrating ​OWASP, CWE, WASC, SANS and
CERT security standards​ to detect vulnerabilities,
refactoring opportunities, and code smells [2].
Different jobs in Jenkins are declared to perform tests
on these source codes, and each of these jobs are
customized based on the languages used in the source
codes. As the figure 2 shows, on the SonarQube
server different projects such as appTest, server, and

app are created to receive data from the Jenkins
server.
 Mattermost repositories in GitHub are fetched by
Jenkins and transferred to SonarQube server to be
scanned for potential code flaws. Source codes in
Mattermost are mainly written in JSON, Go, and
Ruby. As illustrated in figure 3, different unit tests
are created, and a few code smells and minor
vulnerabilities are detected. One common warning
among these codes is the detection of unused function
parameters, but all unit tests have passed the security
testing.

Figure 3: SonarQube Scan Result

D. Docker
 Containerization is the process of distributing and
deploying applications in a modular fashion. Docker
is a software containerization platform that
standardizes the application deployment in enterprise
environments (qa, dev, staging, production). Docker
accomplishes this by packaging source codes and its
dependencies into standardized, isolated, and
lightweight process environments called containers.
Mattermost application is used to test the prototype of
the pipeline through containerization using Docker.
 Docker is the core component of the pipeline in
distributing container deployments that provide
scalability and management. Images are typically
built from a Dockerfile, a text file that specifies the
variables and components that are included in the
build steps of a container. These images are stored in
a registry, most notably Docker Hub, from where
they can be downloaded and run on various instances.
For the Mattermost-server application, there are three
Docker images: web, app, and db. Each image serves

one aspect of the application. For instance, the ‘web’
image is responsible for handling HTTP(s) requests
from incoming users, while sending and retrieving
data to and from the database container.

E. Kubernetes
 Management of multiple Docker containers grow
more important as the complexity of applications
continues to grow. Kubernetes is a central component
to the DevSecOps pipeline as it’s responsible for the
management and deployment of “dockerized”
applications. The Mattermost-server application is
stored in Docker containers within a Kubernetes pod.
A pod is the smallest resource in Kubernetes, and it
represents a group of one or more application
containers and volumes.
 For this pipeline, the Mattermost application is
deployed using a Kubernetes deployment, which is
responsible for creating, updating, and deleting pods.
Kubernetes deployment is implemented because of its
self-healing mechanism. If a node hosting an instance
shuts down or is deleted, the Deployment controller
in the Kubernetes cluster replaces the instance with
an instance on another node in the cluster. This
mechanism provides continuous uptime and
management.

F. Ansible
 The DevSecOps pipeline relies on Ansible for
application deployment. Ansible is an automation
platform that makes applications and systems easier
to deploy. Ansible configuration management starts
with the concept of an inventory. An inventory is
simply a list of hosts to run configurations on. In this
case, the target host is the Kubernetes API server that
is accessed by all users and components in the
cluster. Hosts can be grouped into a list of hosts,
which is specified in an Ansible playbook.
 A playbook is a list of tasks or configurations to
run on a subset of hosts. Tasks can range from the
execution of bash commands to starting/stopping a
specific daemon or service. For the continuous
deployment of the Mattermost application, Ansible is
tasked to modify the image directive of the
Kubernetes resource files, while subsequently
applying the file changes to the Kubernetes cluster to
run the latest application version.

G. Prometheus
 As developers seek to move applications to an
enterprise-level, monitorization is of utmost
importance. It’s critical to know whether an instance
can handle web traffic or whether a specific service
or daemon is running. Prometheus is a monitoring
solution that gathers time series based numerical data.
One of the key features of Prometheus is that it uses a
time series database. Users can fine-tune the
definition of metrics and generate more accurate and
precise reports because it provides a powerful query
language. The pipeline utilizes Prometheus as means
to gather application metrics from the Kubernetes
pods that are hosting the Docker containers needed to
run the Mattermost-server application.
 Metrics such as network input/output and
filesystem usage are continuously monitored. In order
to better interpret application metrics pulled by
Prometheus, Grafana is used in the pipeline to
visualize the data pulled by the Prometheus pod.
Grafana is a leading graph and dashboard builder
visualizing time series infrastructure and application
metrics. It allows the creation of alerts, notifications,
and filters for various data sources. Grafana portrays
the current status of the Kubernetes cluster by
displaying various cluster-level metrics such as
network input/output, filesystem usage, CPU usage,
etc as shown in figures 4 and 5.

Figure 4: Grafana dashboard demonstrating Pods CPU usage

Figure 5: Grafana monitoring Kubernetes clusters

IV. IMPLEMENTATION

 There are three prominent cloud platforms in the
market: AWS, Microsoft Azure, and Google Cloud
Platform (GCP). Since AWS has the advantage of a
seven year head start and is the lead in the CSP
market share, it is selected as the cloud environment
for the DevSecOps pipeline.

A. AWS

 The architecture of the pipeline is implemented on
the AWS platform. Five Elastic Compute Cloud
(EC2) instances are launched as follows: 4 t2.medium
and 1 t3a.large. The t2.medium has 2 vCPUs and 4
GiB memory with an operating cost of $ 0.0464/hour
while the t3a.large instance has 2 vCPUs and 8 Gib
memory with an operating cost of $ 0.0752/hour.
Public IPs, referred to as Elastic IPs in AWS, are
incorporated into the architecture, and they are
attached to instances that require Internet access.
Security groups are properly configured at instance
level to act as firewalls, and all instances permit SSH
traffic since access to server instances is possible
through SSH connection.
 Public Key Infrastructure (PKI) is the technology
used to authenticate to the server instances based on
the RSA cryptosystem, and each instance has its own
unique RSA key. Open-source terminal emulators
such as PuTTy and Mobaxterm are used to connect to
the servers using SSH protocol. AWS generates ​PEM
(Privacy Enhanced Mail) keys, a base64 container
format for encoding keys. Mobaxterm accepts PEM
keys, ​but PuTTy requires ​PPK(Putty Private Key); as
a result, PEM keys must be converted to PPK, and
conversion is possible through PuTTY f​eatures.
 AWS assigns public IPV4 addresses, private
addresses for internal traffic flow, and public DNS
addresses to each EC2 instance. Server instances that
need to communicate to each other would use the
URL address to initiate a conversation in order to
exchange data. For EC2 instances that have Elastic
IPs attached to them, this address remains the same
each time the machine is stopped/restarted. However,
for the virtual machines that are configured without
Elastic IPs, every time an instance is restarted the
URL address changes.

B. Alternative Approach
 Microsoft Azure is another suitable platform to
orchestrate the DevSeOps pipeline, and it has many
services that range from computing services to
storage and data management. According to
Microsoft, more than 95 percent of Fortune 500
companies use Azure [3]. Azure services can also be
utilized to integrate with open-source applications.
Research reveals these differences between AWS to
Azure:

1. PRICING:​ ​ The price of Azure compute
services is slightly cheaper than AWS for
smaller instances. The biggest difference
between their On-Demand per-hour compute
service prices is around 20 cents for a
Windows 16GB, 4CPU, General Purpose
instance. Also, Azure follows a
pay-by-minute model while AWS follows a
pay-by-hour model.

2. COMPLIANCE:​ ​Both CSPs are offering
services to handle classified information for
the public sector.​ ​Azure Government cloud
and AWS GovCloud are infrastructures
designed by these companies to serve
government entities. AWS provides a
high-availability cloud platform sporting the
security and reliability needed by
government organizations across all
classification levels, including Unclassified,
Sensitive, Secret and Top Secret. Azure,
meanwhile, offers a flexible and hybrid
environment with security and compliance
[3].

3. FLEXIBILITY:​ ​AWS offers more support
and flexibility with third party vendors
while Azure services are not fully
compatible with certain vendors.

4. HYBRID FLEXIBILITY: Azure offers
more support and flexibility with customers
who wish to keep using their on-premise
servers.

 Both CSPs allow customers to reserve virtual
machines from 1 or 3 years allowing savings from 40
to 62 percent. However, AWS allows convertible
payment attributes allowing to change instance
families, operating system, tenancy, and payment
options [4]. Since all the instances in the proposed
DevSecOps architecture require at least a medium

size machine to run applications on, the cost estimate
for both platforms are similar.

V. BUSINESS PLAN

 This pipeline is designed to investigate the
functionality of open-source tools in cloud
environments, so the scope of the design is tailored
for experimental purposes. In addition, the project is
aimed to estimate the cost of AWS services on
demand and without any long-term or short-term
contracts. Duration of the project is approximated for
six months, utilizing 5 EC2 instances for the chosen
applications.
 In order to optimize cost, unutilized EC2
instances are stopped after accomplishing tasks. The
only cost incurring for open-source tools is the cost
of the server that application is running on it. Other
costs are associated with the use of the platform.
There is no cost for transferring data within AWS,
but cost would incur for data transferring out.
Depending on the service and duration of usage daily
cost varies, but the pipeline incurs a flat cost of
$2.95. Based on the type and on-demand usage of
services that are required for a period of six months, a
budget of $500 is approximated for this project.
 Return on Investment(RoI) depends on the
business model that aspires to engineer the
DevSecOps pipeline in the cloud platform. If
incorporating the DevSecOps pipeline increases
releases twice as fast, it is possible to expect the
annual revenue to be doubled. For enterprise
businesses, it is proven that a 20% annual increase in
annual revenue is feasible by incorporating DevOps
[5].

VI. RESULTS

 Once every component of the pipeline is placed
and configured according to the architecture, the
entire pipeline is checked to confirm ​system meets
requirements and specifications, and that it fulfills its
intended purpose

A. ​Verification
 Pipeline is gone through smoke testing also
known as “verification testing”. The main purpose of
this test is to ensure that most important instances are
functioning properly. The result pinpoints a single

point of failure caused by the Jenkins server. When
this server is overloaded with requests, it tends to
crash frequently. In order to have a stable and
fault-tolerant system, auto-scaling is configured to
vertically scale in/out the instance on demand.
 Applications and instances are frequently patched
to mitigate vulnerabilities. Every time, instances are
updated or upgraded, regression testing is performed
to ensure changes do not cause malfunctions. During
the last regression testing, SonarQube server stopped
running. After troubleshooting, it becomes evident
that SonarQube relies on Java or OpenJDK 11 to run,
and upgrading to OpenJDK 13 causes the server to
crash. After the system is set back to JDK 11, the
failure is resolved. Once it is verified that every
component of the pipeline works in a harmonious
way, the project is concluded.

B. Validation
 Validation of DevSecOps pipeline depends on
different factors such as product reliability, security,
expense reduction, increase in revenue and
efficiency. Since servers are running on demand, the
cost is significantly reduced. The reliability and
security of the pipeline in the platform is guaranteed
by AWS Shield, a managed Distributed Denial of
Service (DDoS) protection service. AWS Shield
provides always-on detection and automatic inline for
the pipeline. The functionality and reliability of the
pipeline is verified by monitoring Grafana dashboard
as it shows a smooth performance of the Mattermost
prototype within the DevSecOps pipeline.

VII. CONCLUSION

 Open-source applications optimize cost and
eliminate the issue of vendor lock-in; consequently,
they empower businesses to have the flexibility of
deployment at ease. Automation, containerization,
and testing can all be achieved by opens-source tools.

Investigation shows that both AWS and Azure are
great vendors for flexible deployment. However, the
choice between these two CSPs comes down to the
business model. If a customer is planning on
employing more open-source applications, then AWS
is the excellent choice as it offers several
integrations. On the other hand, if a customer desires
a flexible hybrid cloud system to connect the
on-premises servers to the cloud, then Microsoft
Azure is recommended. Indeed, a meticulous
architecture along with a proper cloud service
provider could facilitate deployment, prevent vendor
lock-in, and bring any DevSecOps projects into
reality.

REFERENCE

[1] Columbus, L. (2018). 83% of enterprise workloads will be in
the cloud by 2020. ​Forbes,
https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-ent
erprise-workloads-will-be-in-the-cloud-by-2020/#39f45006261a
[2] D. Marcilio, R. Bonifácio, E. Monteiro, E. Canedo, W. Luz
and G. Pinto, "Are Static Analysis Violations Really Fixed? A
Closer Look at Realistic Usage of SonarQube," ​2019 IEEE/ACM
27th International Conference on Program Comprehension
(ICPC)​, Montreal, QC, Canada, 2019, pp. 209-219.
[3] D, Ramel, AWS vs. Azure Heats Up the Market,
Washington Technology, ​September 14, 2018. Accessed on: March
20, 2020. [online]. Available:
https://washingtontechnology.com/articles/2018/09/14/aws-vs-azur
e-public-sector.aspx
[4] Azure vs. AWS. ​Microsoft Azure. ​Accessed on: March 20,
2020. [online]. Available:
https://azure.microsoft.com/en-us/overview/azure-vs-aws/
[5] A. Manday, The ROI of Enterprise DevOps, ​DevOps.com​,
March 9, 2019. Accessed on: March 20, 2020. [online]. Available:
https://devops.com/the-roi-of-enterprise-devops/​https://www.forbe
s.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-workloads-
will-be-in-the-cloud-by-2020/#39f45006261a

https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020/#39f45006261a
https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020/#39f45006261a
https://washingtontechnology.com/articles/2018/09/14/aws-vs-azure-public-sector.aspx
https://washingtontechnology.com/articles/2018/09/14/aws-vs-azure-public-sector.aspx
https://azure.microsoft.com/en-us/overview/azure-vs-aws/
https://devops.com/the-roi-of-enterprise-devops/
https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020/#39f45006261a
https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020/#39f45006261a
https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020/#39f45006261a

