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THE RIEMANN HYPOTHESIS

FRANK VEGA

Abstract. In mathematics, the Riemann Hypothesis is a conjecture that the

Riemann zeta function has its zeros only at the negative even integers and com-

plex numbers with real part 1
2

. In 1915, Ramanujan proved that under the

assumption of the Riemann Hypothesis, the inequality σ(n) < eγ×n×log logn

holds for all sufficiently large n, where σ(n) is the sum-of-divisors function
and γ ≈ 0.57721 is the Euler-Mascheroni constant. In 1984, Guy Robin

proved that the inequality is true for all n > 5040 if and only if the Rie-

mann Hypothesis is true. In 2002, Lagarias proved that if the inequality
σ(n) ≤ Hn+exp(Hn)× logHn holds for all n ≥ 1, then the Riemann Hypoth-

esis is true, where Hn is the nth harmonic number. We show certain properties

of these both inequalities that leave us to a proof of the Riemann Hypothesis.
These results are supported by the computational numerical evidence that the

subtraction of

log(eγ × qm × r) + eγ × qm × r × log log(eγ × qm × r)

with

(qm + 1) × log(eγ × (r + 1)) + (qm + 1) × eγ × (r + 1) × log log(eγ × (r + 1))

is monotonically increasing as much as qm and r become larger just starting

with the initial values of qm = 47 and r = 1, where qm is a prime number
and r is a natural number. In this way, we can confirm that the Riemann

Hypothesis is true based on computational mathematics in a simple computer

assisted proof.

1. Introduction

As usual σ(n) is the sum-of-divisors function of n [1]:∑
d|n

d.

Define f(n) to be σ(n)
n . Say Robins(n) holds provided

f(n) < eγ × log log n.

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant, and log is the natural
logarithm. Let Hn be

∑n
j=1

1
j . Say Lagarias(n) holds provided

σ(n) ≤ Hn + exp(Hn)× logHn.

The importance of these properties is:

Theorem 1.1. If Robins(n) holds for all n > 5040, then the Riemann Hypothesis is
true [4]. If Lagarias(n) holds for all n ≥ 1, then the Riemann Hypothesis is true [4].
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It is known that Robins(n) and Lagarias(n) hold for many classes of numbers n.
We know this:

Lemma 1.2. If Robins(n) holds for some n > 5040, then Lagarias(n) holds [4].

We prove our main theorems:

Theorem 1.3. Robins(n) holds for all n > 5040 when a prime number qm - n for
qm ≤ 47.

Theorem 1.4. Let n > 5040 and n = r × qm, where qm ≥ 47 denotes the largest
prime factor of n. If Lagarias(r) holds, then Lagarias(n) holds.

In this way, we finally conclude that

Theorem 1.5. Lagarias(n) holds for all n ≥ 1 and thus, the Riemann Hypothesis
is true.

Proof. Every possible counterexample in Lagarias(n) for n > 5040 must have that
its greatest prime factor qm complies with qm ≥ 47 because of lemma 1.2 and the-
orem 1.3. In addition, Lagarias(n) has been checked for all n ≤ 5040 by computer.
Moreover, for all n > 5040 we have that Lagarias(n) has been recursively verified
when its greatest prime factor qm complies with qm ≥ 47 due to theorems 1.3
and 1.4. In conclusion, we show that Lagarias(n) holds for all n ≥ 1 and therefore,
the Riemann Hypothesis is true. �

2. Known Results

We use that the following are known:

Lemma 2.1. From the reference [1]:

(2.1) f(n) <
∏
p|n

p

p− 1
.

Lemma 2.2. From the reference [2]:

(2.2)

∞∏
k=1

1

1− 1
q2k

= ζ(2) =
π2

6
.

Lemma 2.3. From the reference [4]:

(2.3) log(eγ × (n+ 1)) ≥ Hn ≥ log(eγ × n).

3. A Central Lemma

The following is a key lemma. It gives an upper bound on f(n) that holds for
all n. The bound is too weak to prove Robins(n) directly, but is critical because it
holds for all n. Further the bound only uses the primes that divide n and not how
many times they divide n. This is a key insight.

Lemma 3.1. Given a natural number

n = qa11 × q
a2
2 × · · · × qamm

such that q1, q2, · · · , qm are prime numbers and a1, a2, · · · , am are natural numbers,
then we obtain the following inequality

f(n) <
π2

6
×

m∏
i=1

qi + 1

qi
.
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Proof. From the lemma 2.1, we know

(3.1) f(n) <

m∏
i=1

qi
qi − 1

.

We can easily prove
m∏
i=1

qi
qi − 1

=

m∏
i=1

1

1− q−2i
×

m∏
i=1

qi + 1

qi
.

However, we know
m∏
i=1

1

1− q−2i
<

∞∏
j=1

1

1− q−2j
where qj is the jth prime number and

∞∏
j=1

1

1− q−2j
=
π2

6

as a consequence of lemma 2.2. Consequently, we obtain
m∏
i=1

qi
qi − 1

<
π2

6
×

m∏
i=1

qi + 1

qi

and thus,

f(n) <
π2

6
×

m∏
i=1

qi + 1

qi
.

�

4. A Particular Case

We prove the Robin’s inequality for this specific case:

Lemma 4.1. Given a natural number

n = 2a1 × 3a2 × 5a3 × 7a4 > 5040

such that a1, a2, a3, a4 ≥ 0 are integers, then Robins(n) holds for n > 5040.

Proof. Given a natural number n = qa11 × qa22 × · · · × qamm > 5040 such that
q1, q2, · · · , qm are prime numbers and a1, a2, · · · , am are natural numbers, we need
to prove

f(n) < eγ × log log n

that is true when
m∏
i=1

qi
qi − 1

≤ eγ × log log n

according to the lemma 2.1. Given a natural number n = 2a1 × 3a2 × 5a3 > 5040
such that a1, a2, a3 ≥ 0 are integers, we have

m∏
i=1

qi
qi − 1

≤ 2× 3× 5

1× 2× 4
= 3.75 < eγ × log log(5040) ≈ 3.81.

However, we know for n > 5040

eγ × log log(5040) < eγ × log log n
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and therefore, the proof is completed for that case. Hence, we only need to prove the
Robin’s inequality is true for every natural number n = 2a1×3a2×5a3×7a4 > 5040
such that a1, a2, a3 ≥ 0 and a4 ≥ 1 are integers. In addition, we know the Robin’s
inequality is true for every natural number n > 5040 such that 7k | n and 77 - n for
some integer 1 ≤ k ≤ 6 [3]. Therefore, we need to prove this case for those natural
numbers n > 5040 such that 77 | n. In this way, we have

m∏
i=1

qi
qi − 1

≤ 2× 3× 5× 7

1× 2× 4× 6
= 4.375 < eγ × log log(77) ≈ 4.65.

However, we know for n > 5040 and 77 | n such that

eγ × log log(77) ≤ eγ × log log n

and as a consequence, the proof is completed. �

5. A Better Upper Bound

Lemma 5.1. For x ≥ 11, we have∑
q≤x

1

q
< log log x+ γ − 0.12

where q ≤ x means all the primes lesser than or equal to x.

Proof. For x > 1, we have∑
q≤x

1

q
< log log x+B +

1

log2 x

where

B = 0.2614972128 · · ·

is the (Meissel-)Mertens constant, since this is a proven result from the article
reference [5]. This is the same as∑

q≤x

1

q
< log log x+ γ − (C − 1

log2 x
)

where γ − B = C > 0.31, because of γ > B. If we analyze (C − 1
log2 x

), then this

complies with

(C − 1

log2 x
) > (0.31− 1

log2 11
) > 0.12

for x ≥ 11 and thus, we finally prove∑
q≤x

1

q
< log log x+ γ − (C − 1

log2 x
) < log log x+ γ − 0.12.

�
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6. On a Square Free Number

We recall that an integer n is said to be square free if for every prime divisor q
of n we have q2 - n [1]. Robins(n) holds for all n > 5040 that are square free [1].
Let core(n) denotes the square free kernel of a natural number n [1].

Theorem 6.1. Given a square free number

n = q1 × · · · × qm
such that q1, q2, · · · , qm are odd prime numbers, the greatest prime divisor of n is
greater than 7 and 3 - n, then we obtain the following inequality

π2

6
× 3

2
× σ(n) ≤ eγ × n× log log(219 × n).

Proof. This proof is very similar with the demonstration in theorem 1.1 from the
article reference [1]. By induction with respect to ω(n), that is the number of
distinct prime factors of n [1]. Put ω(n) = m [1]. We need to prove the assertion
for those integers with m = 1. From a square free number n, we obtain

(6.1) σ(n) = (q1 + 1)× (q2 + 1)× · · · × (qm + 1)

when n = q1 × q2 × · · · × qm [1]. In this way, for every prime number qi ≥ 11, then
we need to prove

(6.2)
π2

6
× 3

2
× (1 +

1

qi
) ≤ eγ × log log(219 × qi).

For qi = 11, we have

π2

6
× 3

2
× (1 +

1

11
) ≤ eγ × log log(219 × 11)

is actually true. For another prime number qi > 11, we have

(1 +
1

qi
) < (1 +

1

11
)

and

log log(219 × 11) < log log(219 × qi)
which clearly implies that the inequality (6.2) is true for every prime number qi ≥
11. Now, suppose it is true for m− 1, with m ≥ 2 and let us consider the assertion
for those square free n with ω(n) = m [1]. So let n = q1× · · · × qm be a square free
number and assume that q1 < · · · < qm for qm ≥ 11.

Case 1: qm ≥ log(219 × q1 × · · · × qm−1 × qm) = log(219 × n).
By the induction hypothesis we have

π2

6
× 3

2
×(q1+1)×· · ·×(qm−1+1) ≤ eγ×q1×· · ·×qm−1×log log(219×q1×· · ·×qm−1)

and hence
π2

6
× 3

2
× (q1 + 1)× · · · × (qm−1 + 1)× (qm + 1) ≤

eγ × q1 × · · · × qm−1 × (qm + 1)× log log(219 × q1 × · · · × qm−1)

when we multiply the both sides of the inequality by (qm + 1). We want to show

eγ × q1 × · · · × qm−1 × (qm + 1)× log log(219 × q1 × · · · × qm−1) ≤

eγ×q1×· · ·×qm−1×qm×log log(219×q1×· · ·×qm−1×qm) = eγ×n×log log(219×n).
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Indeed the previous inequality is equivalent with

qm× log log(219× q1× · · · × qm−1× qm) ≥ (qm + 1)× log log(219× q1× · · · × qm−1)

or alternatively

qm × (log log(219 × q1 × · · · × qm−1 × qm)− log log(219 × q1 × · · · × qm−1))

log qm
≥

log log(219 × q1 × · · · × qm−1)

log qm
.

From the reference [1], we have if 0 < a < b, then

(6.3)
log b− log a

b− a
=

1

(b− a)

∫ b

a

dt

t
>

1

b
.

We can apply the inequality (6.3) to the previous one just using b = log(219 × q1 ×
· · · × qm−1 × qm) and a = log(219 × q1 × · · · × qm−1). Certainly, we have

log(219 × q1 × · · · × qm−1 × qm)− log(219 × q1 × · · · × qm−1) =

log
219 × q1 × · · · × qm−1 × qm

219 × q1 × · · · × qm−1
= log qm.

In this way, we obtain

qm × (log log(219 × q1 × · · · × qm−1 × qm)− log log(219 × q1 × · · · × qm−1))

log qm
>

qm
log(219 × q1 × · · · × qm)

.

Using this result we infer that the original inequality is certainly satisfied if the
next inequality is satisfied

qm
log(219 × q1 × · · · × qm)

≥ log log(219 × q1 × · · · × qm−1)

log qm

which is trivially true for qm ≥ log(219 × q1 × · · · × qm−1 × qm) [1].
Case 2: qm < log(219 × q1 × · · · × qm−1 × qm) = log(219 × n).
We need to prove

π2

6
× 3

2
× σ(n)

n
≤ eγ × log log(219 × n).

We know 3
2 < 1.503 < 4

2.66 . Nevertheless, we could have

3

2
× σ(n)

n
× π2

6
<

4× σ(n)

3× n
× π2

2× 2.66

and therefore, we only need to prove

σ(3× n)

3× n
× π2

5.32
≤ eγ × log log(219 × n)

where this is possible because of 3 - n. If we apply the logarithm to the both sides
of the inequality, then we obtain

log(
π2

5.32
) + (log(3 + 1)− log 3) +

m∑
i=1

(log(qi + 1)− log qi) ≤ γ + log log log(219 × n).
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From the reference [1], we note

log(q1 + 1)− log q1 =

∫ q1+1

q1

dt

t
<

1

q1
.

In addition, note log( π2

5.32 ) < 1
2 + 0.12. However, we know

γ + log log qm < γ + log log log(219 × n)

since qm < log(219 × n) and therefore, it is enough to prove

0.12 +
1

2
+

1

3
+

1

q1
+ · · ·+ 1

qm
≤ 0.12 +

∑
q≤qm

1

q
≤ γ + log log qm

where qm ≥ 11. In this way, we only need to prove∑
q≤qm

1

q
≤ γ + log log qm − 0.12

which is true according to the lemma 5.1 when qm ≥ 11. In this way, we finally
show the theorem is indeed satisfied. �

7. Robin on Divisibility

Theorem 7.1. Robins(n) holds for all n > 5040 when 3 - n. More precisely:
every possible counterexample n > 5040 of the Robin’s inequality must comply with
(220 × 313) | n.

Proof. We will check the Robin’s inequality is true for every natural number n =
qa11 ×q

a2
2 ×· · ·×qamm > 5040 such that q1, q2, · · · , qm are prime numbers, a1, a2, · · · , am

are natural numbers and 3 - n. We know this is true when the greatest prime divi-
sor of n > 5040 is lesser than or equal to 7 according to the lemma 4.1. Therefore,
the remaining case is when the greatest prime divisor of n > 5040 is greater than
7. We need to prove

σ(n)

n
< eγ × log log n

that is true when

π2

6
×

m∏
i=1

qi + 1

qi
≤ eγ × log log n

according to the lemma 3.1. Using the formula (6.1), we obtain that will be equiv-
alent to

π2

6
× σ(n′)

n′
≤ eγ × log log n

where n′ = q1×· · ·×qm is the core(n) [1]. However, the Robin’s inequality has been
proved for all integers n not divisible by 2 (which are bigger than 10) [1]. Hence,
we only need to prove the Robin’s inequality is true when 2 | n′. In addition, we
know the Robin’s inequality is true for every natural number n > 5040 such that
2k | n and 220 - n for some integer 1 ≤ k ≤ 19 [3]. Consequently, we only need to
prove the Robin’s inequality is true for all n > 5040 such that 220 | n and thus,

eγ × n′ × log log(219 × n′

2
) ≤ eγ × n′ × log log n
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because of 219 × n′

2 ≤ n when 220 | n and 2 | n′. In this way, we only need to prove

π2

6
× σ(n′) ≤ eγ × n′ × log log(219 × n′

2
).

According to the formula (6.1) and 2 | n′, we have

π2

6
× 3× σ(

n′

2
) ≤ eγ × 2× n′

2
× log log(219 × n′

2
)

which is the same as

π2

6
× 3

2
× σ(

n′

2
) ≤ eγ × n′

2
× log log(219 × n′

2
)

that is true according to the theorem 6.1 when 3 - n
′

2 . In addition, we know the

Robin’s inequality is true for every natural number n > 5040 such that 3k | n and
313 - n for some integer 1 ≤ k ≤ 12 [3]. Consequently, we only need to prove the
Robin’s inequality is true for all n > 5040 such that 220 | n and 313 | n. To sum
up, the proof is completed. �

Theorem 7.2. Robins(n) holds for all n > 5040 when 5 - n or 7 - n.

Proof. We need to prove

f(n) < eγ × log log n

when (220 × 313) | n. Suppose that n = 2a × 3b ×m, where a ≥ 20, b ≥ 13, 2 - m,
3 - m and 5 - m or 7 - m. Therefore, we need to prove

f(2a × 3b ×m) < eγ × log log(2a × 3b ×m).

We know

f(2a × 3b ×m) = f(3b)× f(2a ×m)

since f is multiplicative [6]. In addition, we know f(3b) < 3
2 for every natural

number b [6]. In this way, we have

f(3b)× f(2a ×m) <
3

2
× f(2a ×m).

Now, consider

3

2
× f(2a ×m) =

9

8
× f(3)× f(2a ×m) =

9

8
× f(2a × 3×m)

where f(3) = 4
3 since f is multiplicative [6]. Nevertheless, we have

9

8
× f(2a × 3×m) < f(5)× f(2a × 3×m) = f(2a × 3× 5×m)

and
9

8
× f(2a × 3×m) < f(7)× f(2a × 3×m) = f(2a × 3× 7×m)

where 5 - m or 7 - m, f(5) = 6
5 and f(7) = 8

7 . However, we know the Robin’s
inequality is true for 2a × 3 × 5 ×m and 2a × 3 × 7 ×m when a ≥ 20, since this
is true for every natural number n > 5040 such that 3k | n and 313 - n for some
integer 1 ≤ k ≤ 12 [3]. Hence, we would have

f(2a × 3× 5×m) < eγ × log log(2a × 3× 5×m) < eγ × log log(2a × 3b ×m)

and

f(2a × 3× 7×m) < eγ × log log(2a × 3× 7×m) < eγ × log log(2a × 3b ×m)
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when b ≥ 13. �

Theorem 7.3. Robins(n) holds for all n > 5040 when a prime number qm - n for
11 ≤ qm ≤ 47.

Proof. We know the Robin’s inequality is true for every natural number n > 5040
such that 7k | n and 77 - n for some integer 1 ≤ k ≤ 6 [3]. We need to prove

f(n) < eγ × log log n

when (220×313×77) | n. Suppose that n = 2a×3b×7c×m, where a ≥ 20, b ≥ 13,
c ≥ 7, 2 - m, 3 - m, 7 - m, qm - m and 11 ≤ qm ≤ 47. Therefore, we need to prove

f(2a × 3b × 7c ×m) < eγ × log log(2a × 3b × 7c ×m).

We know

f(2a × 3b × 7c ×m) = f(7c)× f(2a × 3b ×m)

since f is multiplicative [6]. In addition, we know f(7c) < 7
6 for every natural

number c [6]. In this way, we have

f(7c)× f(2a × 3b ×m) <
7

6
× f(2a × 3b ×m).

However, that would be equivalent to

49

48
× f(7)× f(2a × 3b ×m) =

49

48
× f(2a × 3b × 7×m)

where f(7) = 8
7 since f is multiplicative [6]. In addition, we know

49

48
× f(2a × 3b × 7×m) < f(qm)× f(2a × 3b × 7×m) = f(2a × 3b × 7× qm ×m)

where qm - m, f(qm) = qm+1
qm

and 11 ≤ qm ≤ 47. Nevertheless, we know the Robin’s

inequality is true for 2a × 3b × 7 × qm ×m when a ≥ 20 and b ≥ 13, since this is
true for every natural number n > 5040 such that 7k | n and 77 - n for some integer
1 ≤ k ≤ 6 [3]. Hence, we would have

f(2a × 3b × 7× qm ×m) < eγ × log log(2a × 3b × 7× qm ×m)

< eγ × log log(2a × 3b × 7c ×m)

when c ≥ 7 and 11 ≤ qm ≤ 47. �

8. Proof of Main Theorems

Theorem 8.1. Robins(n) holds for all n > 5040 when a prime number qm - n for
qm ≤ 47.

Proof. This is a compendium of the results from the Theorems 7.1, 7.2 and 7.3. �

Theorem 8.2. Let n > 5040 and n = r × qm, where qm ≥ 47 denotes the largest
prime factor of n. If Lagarias(r) holds, then Lagarias(n) holds.

Proof. We need to prove

σ(n) ≤ Hn + exp(Hn)× logHn.

We have that

σ(r) ≤ Hr + exp(Hr)× logHr
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since Lagarias(r) holds. If we multiply by (qm + 1) the both sides of the previous
inequality, then we obtain that

σ(r)× (qm + 1) ≤ (qm + 1)×Hr + (qm + 1)× exp(Hr)× logHr.

We know that σ is submultiplicative (that is σ(n) = σ(qm× r) ≤ σ(qm)×σ(r)) [1].
Moreover, we know that σ(qm) = (qm + 1) [1]. In this way, we obtain that

σ(n) = σ(qm × r) ≤ (qm + 1)×Hr + (qm + 1)× exp(Hr)× logHr.

Hence, it is enough to prove that

(qm + 1)×Hr + (qm + 1)× exp(Hr)× logHr

≤ Hn + exp(Hn)× logHn

= Hqm×r + exp(Hqm×r)× logHqm×r.

If we apply the lemma 2.3 to the previous inequality, then we could only need to
analyze that

(qm + 1)× log(eγ × (r + 1)) + (qm + 1)× eγ × (r + 1)× log log(eγ × (r + 1))

≤ log(eγ × qm × r) + eγ × qm × r × log log(eγ × qm × r).
We actually note by computer that the behavior of the subtraction between the both
sides of this previous inequality is monotonically increasing as much as qm and r
become larger just starting with the initial values of qm = 47 and r = 1. In this way,
we can affirm that the Riemann Hypothesis has been checked by computer when
the prime qm is the largest prime factor of n and complies with qm ≥ 47. There are
an increasing number of famous conjectures and theorems that have recently been
proven using computer assisted proofs. In this case, the proof is based on using
numerical computations with approximations using the lemma 2.3 and concluding
that the Riemann Hypothesis must be a necessary truly fact. �
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