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ABSTRACT 

With the fourth industrial revolution, the preventive and predictive maintenance, replaced the 

corrective maintenance, have been popular in recent years. Preventive maintenance is a scheduled 

maintenance strategy applied in order to reduce failures. On the other hand, predictive maintenance 

strategy requires to monitor equipment continuously and to analyze the data. The main objective of 

the predictive maintenance is to predict problems on the equipment that may lead to stops and to 

maximize utilization of the machine/equipment. It is reasonable to eliminate some failures with 

preventive maintenance while predictive maintenance can be applicable to eliminate others. For this 

purpose, we present a few criteria to determine maintenance strategy that will be applied to eliminate 

failures. Smartly integrating predictive and preventive maintenance will help to improve 

sustainability of the system. In this study, the preventive maintenance period is determined 

considering classical approaches such as Weibull analysis. We analyzed the failures of a specific 

machine for a time period. We also collected data about the system, environment and the machine 

condition during failures. We utilized machine learning algorithms in order to predict the type of 

possible failure and associations. The proposed decision support system helps to update the 

maintenance program with respect to results of machine learning methods. We perform a real-life 

case study and present our results. 
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1 INTRODUCTION 

With the development of new technologies, a new industrial revolution, called industry 4.0, has 

been appeared. In recent years, improvements in technology and social media have significantly 

influenced customers in terms of product innovation, quality, variety and delivery on time. Satisfying 

these needs requires establishing the facility with capability of self-awareness, self-prediction, self-

comparison, self-reconfiguration and self-maintenance [1]. Industry 4.0 brings enormous importance 

for the business in terms of maximizing productivity and ensuring just-in-time manufacturing and 

self-maintenance. Unexpected failures decrease productivity, deteriorate schedules and lead to 

financial loses. However, earlier detection of failures can prevent these problems.  

Maintenance strategy is divided into two categories as unplanned and planned. Unplanned 

maintenance is often called as reactive maintenance or corrective maintenance. In this maintenance 

strategy, the repair is performed only when a failure occurs. Unplanned maintenance leads to long 
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breakdown time and high maintenance cost. Planned maintenance strategy refers to proactive 

strategy. The aim of this maintenance is to minimize breakdown, reduce maintenance cost and 

maximize equipment performance. This maintenance contains all necessary activities that should be 

carried out on the equipment or machine. There are two most popular types of planned maintenance 

strategies as preventive and predictive maintenance. Preventive maintenance is a planned activity that 

is performed regularly on the equipment to reduce probability of failure and breakdown time. 

Moreover, a planned maintenance of equipment helps to extend equipment lifetime and reduces spare 

parts inventory. Predictive maintenance refers to condition-based or condition monitoring approach, 

i.e., the maintenance based on the analysis of current condition of the machine or the system. 

Predictive maintenance approach uses tools such as vibration monitoring, process parameter 

monitoring, thermography, tribology, visual inspection, sensor data etc. [2]. 

Maintenance approaches for diagnostic and prognostic purposes can be grouped into three 

main categories: statistical approaches, artificial intelligence approaches and model-based 

approaches. Compared to other approaches, artificial intelligence approaches have been applied 

progressively [3]. 

Machine Learning (ML), with artificial intelligence, is an effective tool for developing 

intelligent predictive algorithms in many applications. ML approaches deal with big dimensional data 

and extract hidden relationships within data. Hence, ML provides a powerful predictive tool for 

maintenance applications [4].  

In this study, we analyze the historical data collected from a machine, and present a decision 

support system using the results of Weibull analysis and machine learning methods. As the main 

contribution, we proposed an integrated strategy as different from the literature. First, we categorized 

all failures into three groups as electrical failures, mechanical failures and pollution. We collected 

data about the temperature, failure time, raw-material processed and number of products until failure. 

Then, we explored the associations between the levels of these factors and each failure. We also 

introduced these attributes into the machine learning algorithms such as SVM, decision tree etc. For 

final decision of modifying maintenance program, we evaluated the results of Weibull analysis and 

machine learning methods. This leads to make dynamic maintenance actions to eliminate failures.  

 

2 LITERATURE REVIEW 

In the literature, there are many studies about preventive maintenance such as reliability-based 

model, maintenance cost optimization model etc. Some of them are based on the Weibull distribution 

to calculate failure rate and system reliability. Koçer [5] developed the preventive maintenance 

strategy based on the reliability and minimizing maintenance cost. Weibull distribution parameters 

were used to calculate system failure rate coefficient and reduction rate of equipment age after each 

maintenance. Doostparast et al. [6] carried out preventive maintenance based on the deteriorating 

components in the system. Minimizing cost-based model and reliability-based model were integrated. 

Weibull parameters were used to calculate reliability of component. 

The studies about predictive maintenance are relatively new. Li and He [7] stated that there are 

two application techniques of predictive maintenance. The first one is the classification approach, 

which predicts the condition of the machine. Second one is the regression approach, also called 

Remaining Useful Life (RUL), predicts the time left until the next failure.  

Machine Learning (ML) algorithms such as support-vector machine (SVM), random forest 

(RF), artificial neural networks (ANN) and k-nearest neighbours (K-NN) are successfully applied to 

design predictive maintenance applications. Carvalho et al. [8] review the studies applying ML 

methods in predictive maintenance. 



 

 

Praveenkumar et al. [9] employed SVM algorithm to identify failures in automotive 

transmission boxes. To classify gear as good and faulty, vibration data was used in SVM. Li et al. 

[10] predicted alarm faults in a bearing of a rail network by using SVM algorithm.  

Durbhaka and Selvaraj [11] used k-means algorithm to classify types of faults in the wind 

turbines. They compared results of K-NN and SVM algorithms with k-means algorithm. Eke et al. 

[12] applied k-means algorithm to extract clusters in a dissolved gases data in the oil of a transformer. 

Uhlmann et al. [13] identified clusters with k-means algorithm using data collected from a laser 

melting machine. On the other hand, Amruthnath and Gupta [14] compared a few clustering 

algorithms such as hierarchical clustering, k-means, fuzzy c-means clustering and model-based 

clustering to detect failures in an exhaust fan.  

 Biswal and Sabareesh [15] carried out predictive maintenance in order to classify the 

condition of a wind turbine as healthy and faulty. Certain characteristic features of healthy and faulty 

states were extracted by using ANN algorithm. Kolokas et al. [16] predicted condition of an engine 

by using ANN algorithm. They collected data about some features such as temperature, engine 

pressure, fuel and coolant bleed. 

 Paolanti et al. [17] aimed to apply predictive maintenance approach on a cutting machine. 

They employed Random Forest approach to predict different states of machine. Çakır et al. [18] used 

a few ML algorithms such as SVM, linear discrimination analysis (LDA), RF, decision tree (DT), 

and K-NN. The data has some features such as vibration, sound, rotational speed and temperature. 

Ayvaz and Alpay [19] carried out predictive maintenance for production lines in manufacturing. They 

compared ML algorithms such as RF, XGBoost, Gradient Boosting, MLP Regressor, support vector 

regression (SVR) and AdaBoost to find the most suitable prediction model. 

 Association rules have also been applied to predictive maintenance. Antomarioni et al. [20] 

aimed both predicting components breakages through association rule mining and determining the 

optimal set of components to repair to improve the overall plant’s reliability, under time and budget 

constraints using integer linear programming. Foguem et al. [21] used association rule mining to 

extract information on fault causes in a drilling process. Djatna and Alitu [22] applied association 

rule mining in a total productive maintenance strategy.  

 

3 PROBLEM DEFINITION 

In this study, we first analyzed the failures of a specific machine for a time period. Figure 1(a) 

illustrates the Pareto chart of failures occurred in last two years. As can be seen from the chart, 80% 

of failures are due to five causes. That is if these causes are eliminated, then 9364 minutes downtime 

will not appear as shown in Figure 1(b). 

 

 
(a)                                                                  (b) 



 

 

Figure 1. Pareto chart of failures and Pie chart of downtimes 

We categorized these failures into three categories as electrical, mechanical and pollution. We 

integrated preventive and predictive maintenance for failures and determined the criteria given below 

in order to categorize maintenance requirements. It is better to apply preventive maintenance in order 

to eliminate failures if  

 the diagnosis requires to stop the machine and screw off,  

 collecting data is expensive, 

 the maintenance period is deterministic and given in a manual. 

For example, these criteria are satisfied for electrical and mechanical failures of the considered 

machine while the pollution can be eliminated with periodic cleaning. 

First, we analyze the failure data collected from the pillow filling machine with respect to shifts 

as shown in Figure 2. When the machine works in a single shift, the frequency of failures is the highest 

between 11 and 12 o’clock. When double shifts are applied, the number of failures in the night shift 

(00:00-08:00) is lower than the day shift (08:00-20:00). 

 

 

 
(a) single shift 

 

 

 
(b) double shift 

 

Figure 2. Dot-plot of failures with respect to shifts 

We also analyzed the effect of weather condition, i.e., outside temperature, on the machine 

failures. According to dot-plot in Figure 3, as the outside temperature increases, the number of failures 

shows an increasing trend. 

 

Figure 3. Dot-plot of failures with respect to temperature 

 

4 METHOD 

The preventive maintenance should not be disregarded when the predictive maintenance 

strategy is in progress. The proposed decision support system is summarized in Figure 4. First, 

historical data was collected from the considered machine. Secondly, the data was categorized into 

three failure groups: “Mechanical Failures”, “Electrical Failures” and “Pollution”. Predictive 

maintenance strategy is suitable according to above criteria in order to eliminate electrical and 

mechanical failures, while preventive maintenance strategy is applied to all failures in general. When 

the mean time between failures is analyzed for pollution, results showed that pollution failures have 

Weibull distribution. Because of this, preventive maintenance period has been calculated by using 



 

 

Weibull distribution. The data has features such as failure time, number of products produced until 

failure, outside temperature, and raw materials of the last three lot at just in failure time. Then, several 

ML methods were applied to predict failure type. Finally, the result of the ML method is feed into 

Stage 4 to redetermine the maintenance period. Thus, we expect a steadier system in future. 
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Figure 4. Processing flow chart of applying ML method 

Association rule is one of the popular machine learning methods. Association rule is based on 

machine learning method for exploring and interpreting relations between transactions in large 

datasets. This learning method aims to identify strong relations that discovered in datasets. In order 

to select interesting rules from the set of all possible rules, constraints on various measures of 

significance and interest are used. The best-known constraints are minimum thresholds on support 

and confidence. In case of maintenance, an item can be assumed as a level of attribute and a 

transaction can be assumed as the set of levels that have failure in a given time interval. Assume that 

set T includes N number of transactions. 

Let 𝐴 be the set of failures {mechanical, pollution, electrical} and 𝐹 is an element from 𝐴, i.e. 

𝐹 ⊆ 𝐴. We assumed that failures are independent from each other. Thus a transaction includes exactly 

one failure. Let 𝐼 be the set of attribute levels and 𝐿 be the subset of 𝐼, i.e. 𝐿 ⊆ 𝐼, such that 𝐹 ∩ 𝐿 = ∅. 

Support is an indication of how frequently the itemset appears in the dataset. Formulation of 

support is shown in Eq. (1). 

 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐹 ⇒ 𝐿) =
𝑐𝑜𝑢𝑛𝑡({𝐹∪𝐿})

𝑁
                           (1) 

 

Accordingly, where 𝑐𝑜𝑢𝑛𝑡({𝐹 ∪ 𝐿}) counts the number of transactions including this 

union set. Confidence is an indication of how often the rule has been found to be true. It is the 

conditional probability of transactions covering set 𝐿 given the occurrence of failure 𝐹. 

Accordingly, equation of confidence is given in Eq. (2).  

 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝐹 ⇒ 𝐿) =
𝑐𝑜𝑢𝑛𝑡({𝐹∪𝐿})

𝑐𝑜𝑢𝑛𝑡({𝐹})
                   (2) 

 

4.1 COMPUTATIONAL RESULTS 

In this section, we explained results of Weibull analysis and the machine learning methods. Our 

failure data includes 186 samples belonging to last 2 years and 7 attributes given in Table 1. 

According to this table, failure type is the class attribute. The temperature ranges between -6 and 36 

and we discretized it by selecting 10 C as the threshold. In Figure 3, we can easily observe this 

threshold point until where failures are relatively fewer while failures increase after that point. Dot-

plots for other attributes are also analyzed and the thresholds are determined in the same way.   

 



 

 

Table 1. Attributes used in machine learning 

Attribute Range Discretization threshold and levels 

C: Temperature (C) [-6, 36] 1: (≤ 10), 2: (>10) 

FTime: Failure time [00:00, 20:00] 1: (08:00-20:30), 2: (00:00-08:00)  

#P: number of products produced 

until failure 

[0, 2800] 1: [0-1200], 2: [1201-2800] 

RType: Raw material type of the lot 

at failure time  

[1, 16] 1: cause high number of failures, 2: cause avg. 

number of failures, 3: cause less number of failure 

FType: Failure type  1: Electrical, 2: Mechanical, 3: Pollution 

 

Table 2 presents the distribution of attribute levels with respect to failure types over 186 

samples. According to this table level 2 of attribute C, level 1 of attribute #P and level 1 of attribute 

Ftime are frequently observed in failures.  

Table 2. Frequency of attribute levels with respect to failure types 

 
 Failure Type 

Attribute levels  Mechanical Pollution Electrical 

Level 1 of C 8 6 20 

Level 2 of C 36 79 37 

Level 1 of FTime 41 74 55 

Level 2 of FTime 3 11 2 

Level 1 of #P 37 70 48 

Level 2 of #P 7 15 9 

Level 1 of Rtype 16 39 24 

Level 2 of Rtype 6 23 14 

Level 3 of Rtype 22 23 19 

 

 

Table 3. Associations with respect to different support and confidence levels 

 

Support Confidence  Ftype 
Levels 

C #P Rtype FTime 

0.4 0.6 Pollution 2    

0.3 0.5 Pollution  1   

0.3 0.5 Pollution 2    

0.3 0.5 Pollution 2 1   

0.3 0.5 Pollution    1 

0.3 0.5 Pollution  1  1 

0.3 0.5 Pollution 2   1 

0.25 0.4 Pollution 2 1  1 

0.25 0.4 Electrical  1   
0.25 0.4 Electrical    1 

0.2 0.35 Electrical  1  1 

0.2 0.35 Mechanical    1 

 

Table 3 shows the associations of attribute levels with failure types according to different 

support and confidence levels. As can be seen from table, level 2 of attribute C, level 1 of attribute 

#P and level 1 of Ftime are highly associated with failure types. Interestingly, attribute Rtype is not 

associated with failure types. Most of the associations are due to pollution which mostly appears when 

temperature > 10C, number of products produced until failure ≤ 1200 and failure time 08:00-



 

 

20:30. Actually, this is reasonable since hot weather conditions affect the machine, the machine 

highly operates at 08:00-20:30 hours.  According to these results, if a cleaning operation is performed 

within a predefined period, 39% (=
74

186
∗ 100) of downtimes can be eliminated. As the weather is 

hotter, the cleaning period could be shorter.  

 

 

Figure 5. Probability and distribution plots of downtime due to pollution  

To determine the maintenance period in Stage 4 of Figure 4, each downtime data has been 

assumed to be iid and analyzed in terms of Weibull, lognormal, exponential and normal distributions. 

Minitab result in Figure 5 shows the probability plots of pollution-based failures. As can be seen, the 

correlation coefficient is highest in Weibull distribution. To eliminate downtimes due to pollution, it 

is suggested to perform general cleaning of the machine for approximately every 15 days with 95% 

confidence. The same analysis was performed for electrical and mechanical failures as well. 

Accordingly, the lognormal distribution with mean 20 days for mechanical failures has the highest 

correlation coefficient while the Weibull distribution with mean 18 days for electrical failures has the 

highest correlation coefficient. Therefore, we can perform periodic maintenance for electrical and 

mechanical equipment together every three weeks. 

Table 4: Accuracy of ML methods 

ML Algorithms Best Average Std. Dev. 

SVM 0.64 0.52 0.054 

NB 0.60 0.47 0.077 

RF 0.54 0.43 0.049 

DT 0.52 0.41 0.055 

 

In this study, we applied ML methods such as SVM, RF, DT, Naïve Bayes (NB). The samples 

are divided into two sets as training (70% of samples) and test (30% of samples). Each ML algorithm 

was run 30 times and the results are given in Table 4. According to this table, SVM algorithm gives 
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the best result. After that point we can use the predictions of ML algorithms to double check the 

maintenance period for failures. For example, if the ML algorithm predicts the next failure due to 

pollution, we suggest setup a minor cleaning at the end of the current shift. However, if the ML 

algorithm predicts electrical or mechanical failures even the next scheduled maintenance for that is 

not close, we suggest updating the maintenance schedule and performing it earlier. 

Both the results of association rules and ML methods provided useful information to make 

better maintenance decisions. Although the Weibull analysis is an efficient tool of determining a 

maintenance period, the reality requires dynamic actions. The considered methods give the decision 

maker a flexibility and simultaneous action opportunity. Therefore, we presented a systematic, which 

is more applicable in real life.   

 

5 CONCLUSION 

In the literature, the preventive and predictive maintenance methods are distinctively applied to 

problems in general. In this study, we construct a decision support system using the outputs of 

Weibull analysis and ML methods. This integration may help to make dynamic decisions.  

We observed that the Weibull distribution fits very well to our data. Therefore, we find reliable 

the maintenance period estimated by the Weibull analysis. Although these estimations are strong, the 

real life has dynamism that requires making quick actions. Thus, we modify the maintenance program 

built with these estimations according to the results of ML methods. We predict the next failure with 

SVM, NB, RF and DT classification algorithms and analyze associations in order to better understand 

the relationships between failure types and attribute levels. By using this systematic, the decision 

maker is free to modify the maintenance program. However, it is clear that as the maintenance 

frequency increases, the total maintenance cost also increases. In order to decide on modifying the 

maintenance program, a mathematical model can be used considering associations and results of ML 

algorithms subject to budget.   
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