ﬁ EasyChair Preprint

Ne 1491

Temporal Logic Semantics for Teleo-Reactive
Robotic Agent Programs

Keith Clark, Brijesh Dongol and Peter Robinson

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 12, 2019

Temporal Logic Semantics for Teleo-Reactive
Robotic Agent Programs*

Keith Clark!, Brijesh Dongol?, and Peter Robinson®

! Imperial College London, UK k.clark@imperial.ac.uk
2 University of Surrey, UK b.dongol@surrey.ac.uk
3 University of Queensland, Australia pjr@itee.uq.edu.au

Abstract. Teleo-Reactive (TR) robotic agent programs comprise sequen-
ces of guarded action rules clustered into named parameterised proce-
dures. Their ancestry goes back to the first cognitive robot, Shakey. Like
Shakey, a TR programmed robotic agent has a deductive Belief Store com-
prising constantly changing predicate logic percept facts, and knowledge
facts and rules for querying the percepts. In this paper we introduce TR
programming using a simple example expressed in the teleo-reactive pro-
gramming language TeleoR, which is a syntactic extension of QuLog, a
typed logic programming language used for the agent’s Belief Store. The
example is sufficient to illustrate key properties that a TR and a TeleoR
program should have. We give formal definitions of the key properties,
and an informal operational semantics of the evaluation of a TeleoR pro-
cedure call. We then formally express the key properties in LTL. Finally
we show how their LTL formalisation can be used to prove key properties
of TeleoR procedures by using the example TeleoR program.

1 Introduction

A Teleo-Reactive (TR) programmed robotic agent has a deductive Belief Store
comprising constantly changing predicate logic percept facts generated from the
latest sensor readings. The facts are updated using fresh sensor readings at
an application dependent frequency, which may be every few milliseconds. The
percept facts are the agent’s current beliefs about the state of the robotic device
or devices it controls, and the state of the physical environment in which the
devices operate.

Augmenting these dynamic percept facts are fixed facts about the robotic
devices and their environment, and Prolog style rules for relations disjoint from
the percept relations. Together they allow higher level interpretations of subsets
of the percept facts. The rules are its knowledge.

In this paper we introduce TR programming using a simple example expressed
in the TR subset of TeleoR [I], which is a syntactic extension of QuLog[2], a typed
logic programming language.

* Dongol is supported by EPSRC Grants EP/R019045/2, EP/R032556/1 and
EP/R025134/2.

2 Keith Clark, Brijesh Dongol, and Peter Robinson

A TeleoR procedure named p comprises a parameterised sequence of guarded
action rules rules of the form:

p(Xi,. ., Xe){
G ~> A

G, ~> A,

}

The G; are the QuLog guards, the A; the actions, and the parameters X;,..,Xx
can appear in any guard or action.

Note that a rule may contain variables other than Xy, ..,X;. These are the
local variables of the rule. All local variables in A; must also appear in G;.

Each G; is a Belief Store query and each A; is either a call to a TeleoR
procedure, including a recursive call, or it comprises one or more action calls for
robotic devices.

When the p procedure is called, the parameter values must be ground (fully
instantiated) values. These values partially instantiate the sequence of guarded
rules of the procedure body, giving the modified rule sequence:

’ I
Gl ~> Al

’ !
G, ~> A

In before/after order, the partly instantiated guard queries are evaluated one
by one against the current state of the agent’s Belief Store. This is in order to
find the first rule with a guard G;- that is inferable from the Belief Store. This
typically further instantiates remaining variables in G;, and always results in a
ground A7 action of the rule.

Rule j is fired and action A;-’ is executed. If it is a TeleoR procedure call the
first fireable rule of this new call is found and, in turn, its fully instantiated
action executed. Eventually a procedure will be called in which the fired rule
for the current Belief Store has robotic device actions. They are dispatched to
the robotic devices, and typically result in changes in the position of the robotic
devices, and/or cause changes in their physical environment.

A two thread robotic agent architecture is depicted in Figure[I] The percepts
handler atomically updates the Belief Store when a new batch of percept facts
arrives from the sensor interpretation routines. These routines may be poled
or send their percept interpretations of the sensor readings at fixed short in-
tervals. We assume they are batched so that each new set of percepts gives a
comprehensive view of the state of the robotic devices and their environment.

The TeleoR evaluator thread executes some initial call to a TeleoR procedure,
this is the task procedure call. The existential closure of the partly instantiated

Temporal Logic Semantics for Teleo-Reactive Robotic Agent Programs 3

table
Belief Store
oy,
— & ? @) camera ®\
‘ bottles depot
:ﬁ Perceps | TeleoR
Handler Evaluator
Sensor data
as percept facts | | Action robot O)
\ / Control grippers
Messages

Fig. 2. Top-down view of bottle col-
Fig. 1. Two Thread Agent Architecture lecting robot

guard of the first rule of this procedure call is the task goal. This first rule usually
has the empty action (.

After each percept thread update the task call is re-evaluated to determine
if new robotic device actions need to be dispatched to the robotic devices. If the
re-evaluation results in the same robotic actions as were determined on the last
percepts update, these actions are allowed to continue.

However, the hope is that after a repetition of an initial sequence of the same
procedure calls and rule firings as last time, eventually a repeated procedure call
PCall will fire a rule earlier than the last rule that was fired for that call.
Almost certainly the changed rule firing will result in different robotic actions
being determined for the updated Belief Store.

Suppose rule j was fired last time in PCall. Suppose the robotic actions that
were executed directly or indirectly as a result of firing this rule have caused
their intended external changes resulting in new sensor readings mapped into
different percept facts. For the agent’s updated Belief Store an earlier rule i
now becomes the first partly instantiated rule of PCall with an inferable guard.

TeleoR programs are written so that this normally, eventually happens for
every procedure call. The existential closure of guard G;- is viewed as a direct
sub-goal of the existential closure of G}. More generally, the existential closure
of every partly instantiated rule guard of a call, except that of the first rule,
should be a direct sub-goal of the existential closure of the partly instantiated
guard of an earlier rule in the call’s rule sequence. In addition, the existential
closure of every partly instantiated call guard should be an indirect sub-goal of
the existential closure of the partly instantiated guard G of the first rule of the
call.

Ezample 1 (An example TeleoR program). Here are two TeleoR procedures,
with associated type definitions and type declarations. The goal of the first
procedure is to get a mobile robot close to the object, Th, making use of inde-
pendent move and turn actions, and a general see percept. We use the Prolog
convention that variables begin with an upper case letter or underscore.

def thing ::= bottle | drop |

4 Keith Clark, Brijesh Dongol, and Peter Robinson

def dir ::= left | centre | right
def dist ::= close | near | far
percept see(thing,dist,dir)
durative move(num), turn(dir,num)

tel get_close_to(thing)

get_close_to(Th){
see(Th,close,_) ~> ()
see(Th,near,_) ~> approach_until(close,Th,3.0,1.0)
see(Th,far,_) ~> approach_until(near,Th,4.5,0.5)
true ~> turn(right,0.5)

tel approach_until(dist,thing,num,num)
approach_until(Dist,Th,Fs,Ts){
see(Th,Dist,_) ~> (O % Th being approached is now Dist away
see(Th,_,centre) ~> move(Fs)
see(Th,_,Dir) ~> move(Fs),turn(Dir,Ts)
% Dir 1s left or right. move forward turning Dir to bring back into centre view.

The underscores in the see conditions of the first procedure, and the first rule of
the second procedure, indicate that the orientation of the seen Th is not relevant
for the action of the rule. Those in the last two rules of the second procedure
indicate that the distance is not relevant.

An example of a percept fact is see(bottle,near,centre), reporting that the
analysis of the image from a forward pointing camera of a mobile robot has
determined that a bottle of known size is near to the camera, more or less in
centre view.

see gives a qualitative measure of its distance from the robot’s on-board
camera, as close, near or far, and indicates whether the seen thing is within,
or to the left or right of a central area of the camera’s field of view.

An example of a primitive action is move(3.0) which causes both drive wheels
of a mobile robot to turn at the same speed so that normally the robot will move
forward more or less in a straight line at the specified speed of 3.0 centimetres
per second.

Suppose a task is started with a call get_close_to(bottle). Before the call let
us assume the robot is stationary near to and facing a bottle. Analysis of the im-
age of its forward pointing camera has resulted in percept see (bottle,near,centre)
being in the agent’s Belief Store.

The second rule of call get_close_to(bottle) will be fired with action the pro-
cedure call approach until(close,bottle,3.0,1.0). The second rule of this auxil-
iary procedure call will be fired because its guard see(bottle,_,centre) matches
the percept see(bottle,near,centre). The rule’s action will be move(3.0) . The
control action start(move(3.0)) will be sent to the mobile robot.

The durative action move(3.0) should normally, eventually result in the mo-
bile robot getting close to the bottle. Then, analysis of the robot’s camera im-
age will result in a percept see(bottle,close,centre) being received by the
agent, replacing see(bottle,near,centre) in its Belief Store. When this hap-
pens the first rule of the call get_close_to(bottle) with action () will be fired
and control action stop(move(3.0)) sent to the robot. The goal of the task call

Temporal Logic Semantics for Teleo-Reactive Robotic Agent Programs 5

will has been achieved. 3(Dir)see(Th,near,Dir) is an immediately sub-goal of
3(Dir)see(Th,close,Dir)

However, before the action of getting near to the seen bottle is achieved, the
bottle may be moved by an interfering person to be far from the robot but still in
view. Suppose that immediately after the move percept see(bottle,far,right) is
received, replacing see(bottle,near,centre). Re-evaluation of the task call will
result in its rule 4 being fired with action approach until(near,bottle,4.5,0.5).

The percept fact see(bottle,far,right) is still in the Belief Store, the last
rule of the new approach_until call will be fired and control actions

start (turn(0.5,right)) mod(move(3.0) ,move(4.5))

are sent to the robot. The result is that the robot will move forward more quickly
at a speed of 4.5, with a correctional turn to the right at speed 0.5. This is in
order to get near to the bottle again, and hopefully to bring it into centre view.

The aim of the paper is to enable reasoning about TeleoR procedures in a
modular manner. Our contributions are: (1) an adaptation of linear temporal
logic for TeleoR procedure call evaluations based on action sequences; (2) tech-
nique of decoupling environment assumptions into action, physics, and sensor
assumptions; and (3) an application of the logic to verify properties of the bot-
tle collecting robot. The paper builds on existing work on logic programming [7]
and robot behavioural programming [B8].

2 Key properties of TeleoR procedures

Sub-goal structure and regression The existential closures of the partially instan-
tiated guards, in which each local variable is existentially quantified, lie on an
implicit sub-goal tree rooted at the existential closure of the guard of the first
rule.

Definition 2. An action A; satisfies regression iff whenever it is started when
its guard is the first inferable guard, and continued whilst this is the case, it will
eventually result in progression up the sub-goal tree of guards.

That is, eventually the guard of an earlier rule G;, ¢ < j, should become the first
inferable guard. Nilsson calls G; the regression of G; through A;.

Guarantee of ground actions When a guard query is evaluated against the Belief
Store using a Prolog style evaluation its local variables will be given values if the
evaluation succeeds. In TeleoR, in which each percept is typed, and each rule
relation is both typed and moded, compile time analysis of each guarded rule
ensures that should the guard query succeed, the rule’s action will be ground
with arguments of the required type. The primary modes are !, indicating that a
relation argument must be ground when the relation is queried, and ?, indicating
an argument may not be given as an un-ground term, even as a variable, when the
relation is queried but that the given argument will be instantiated to a ground
term if the query succeeds. The QuLog compiler checks all the mode declarations

6 Keith Clark, Brijesh Dongol, and Peter Robinson

and checks that each variable of a TeleoR rule appearing in an action term is
either a procedure parameter or it appears in the rule guard in a ? argument
position of some relation query. This analysis not only ensures that a TeleoR
procedure call action is always ground with arguments of their declared type
or sub-type, it also ensures any primitive robotic actions dispatched to robot
devices will also be fully instantiated and type correct.

Covering all eventualities. The partially instantiated guards of a procedure call
should also be such that for every Belief Store state in which the call may be ac-
tive there will be at least one inferable guard. Nilsson calls this the completeness
property of a procedure. This property holds for both our example procedures.
For the first it trivially holds since the last rule will always be fired if no earlier
rule can be fired. It holds for the second procedure given the two guard contexts
from which it is called in the first procedure, both of which require a see percept
to be in the Belief Store while the call is active.

Smooth transitions between primitive actions. When each new batch of percepts
arrives, perhaps via a ROS [9] interface, this process of finding and firing the first
rule of each call with an inferable guard is restarted. This is in order to determine,
as quickly as possible, the appropriate tuple of robotic actions response to the
new percepts. Thus,

1. actions that were in the last tuple of actions are allowed to continue, perhaps
modified

2. other actions of the last tuple are stopped

3. new actions are started.

For example, if the last tuple of actions was move(4.5), turn(left,0.5) and
the new tuple is just move(3), the turn action is stopped and the move action
argument is modified to 3.

Elasticity of complete procedure programs. This reactive operational semantics
means that each TeleoR procedure is not only a universal conditional plan for its
call goals, it is also a plan that recovers from setbacks and immediately responds
to opportunities. If, after a Belief Store update a higher rule of some call PCall
can unexpectedly be fired, perhaps because of a helping exogenous event, that
rule will be fired jumping upwards in the task’s sub-goal tree. If instead a lower
rule of PCall must be fired, a detected unexpected result of some robotic action,
or a detected result of a interfering exogenous event, this means that the climb
up the sub-goal tree of PCall’s rule guards must be re-attempted from a different
sub-goal of its call goal. There has been a setback in the progress towards the
task goal but the recovery response action should normally and eventually result
in its being achieved.

There is a scenario in which the task goal will never be achieved. This will
happen if, whenever the robot is about to get close to a bottle, the bottle is
either moved out of sight or further away. The robot will doggedly chase the
bottle until its battery runs out.

Temporal Logic Semantics for Teleo-Reactive Robotic Agent Programs 7

Sensors

[Sensor environment |/\

1 TeleoR
| Physical environment | Agent
* Controller
1
1
| Action environment |\/
actions

Fig. 3. Decomposed environment and TeleoR controller

From deliberation to reaction. Although not the case for our example procedures,
typically, initially called TeleoR procedures query the percept facts through sev-
eral levels of defined relations. Via procedure call actions, they eventually call
a TeleoR procedure that directly queries the percept facts and mostly has non-
procedure call actions. So, for TeleoR and TeleoR the interface between delib-
eration about what sub-plans to invoke to achieve a task goal, to the invoking
of a sensor reactive behaviour to directly control robotic resources, is a sequence
of procedure calls.

3 Temporal Logic Semantics

The core of the semantics is that it decouples the controller (agent program) from
the environment (see Figure3)). This is achieved using two coupling relations that
describe how closely the internal state of an agent matches the real world. Any
actions that a robot performs are interpreted through the coupling relation that
in turn produces some physical change. In turn, the physical changes are sampled
by the robot to potentially update the Belief Store.

The agent controller is defined with respect to the agent’s Belief Store,
whereas the physical environment describes how object properties change in the
real world as a result of robot actions. We typically do not model the actual
physics of any component (e.g., via differential equations). Instead, the behaviour
of the physical world is formalised as abstract assertions. This section focuses
on the agent controller; we formalise its interaction with the environment in
Section (4

Our formal model for the agent controller assumes that each agent generates
traces of the form:

BoB1B2B3 ...

where each f3; is a Belief Store that describes the agent’s view of the world.
For any of these traces, it is possible to interpret standard LTL formulae, with
predicates that support beliefs and intentions. In particular, we admit formulae
of the form

pu=Plp|o1@ w2 | Xp |Gy |Fo|piUps | 01 Wy

8 Keith Clark, Brijesh Dongol, and Peter Robinson

where P is a Belief Store predicate and X, G, F, U and W denote the standard
next, globally, finally, until and unless modalities of linear temporal logic and
@ is a binary boolean operator. Examples of belief store states over which P is
evaluated are given in Section[4} the traces these induce are made more precise in
In particular, it is worth noting that they may include first-order quantifiers.

In order to give the semantics of TR procedures we need to keep track of
which actions (both TR procedure calls and primitive actions) are currently
being executed and which guards are currently true (and what instantiations
of variables make a given guard true). To simplify the semantics we assume
the Belief Store contains facts of the form do A to indicate that the action A is
currently executing. For a given goal G, we write bel GO, where 0 is a substitution
(instantiation of variables in G), that makes G6 the first inferable instance of G.

Each ground instance, C, of a TR procedure call is defined as a sequence of
guarded actions instances G, ~> Ay, Gy ~> Ag, ..., G, ~> A,. The following LTL
formula gives the semantics of the execution of C.

G[v1 <i<n,6. (doC A bel G0N (Action)
(V1 <j<i. =30 bel G;6") = do A;0)]

Informally, if we are executing C' and the i’th rule is the active rule (because its
guard is believed to be true but no earlier guard is) then we will be executing
the action A; with the instantiation of all of the variables in A; determined by
the corresponding guard. Note that we only need to consider ground instances
of TR procedures as the top-level TR procedure that we call will be ground and
the € in the above formula will ground the action (which may be another TR
procedure call).

In general, because TR programs allow hierarchical nesting, we typically
need to repeatedly apply the above formula to determine what primitive ac-
tions will be executing for a given Belief Store. For example, if we are ex-
ecuting get_close_to(bottle) and the Belief Store contains only the belief
see(bottle, far, left) then applying for get_close_to(bottle)
will tell us that approach_until(near, bottle, 4.5, 0.5) will be executing.
Applying to this procedure then tells us that the primitive actions
move (4.5) ,turn(left, 0.5) will be executing.

4 TeleoR Environment

As depicted in Figure 3| the TeleoR controller only forms part of the overall
system. More work is required to ensure that (1) actions have an effect on the
real-time environment; (2) that the action’s effects in the environment bring
about some physical changes; and (3) these physical changes are sensed by the
agent. This inter-dependency between a controller and its environment has long
been studied in the control systems and cyber-physical domains. We treat the
three requirements above as environment assumptions and express the assump-
tions as abstractly as possible. We model separate assumptions that cover actions
(outputs), physics, and sensors (inputs). In the context of autonomous systems, a

Temporal Logic Semantics for Teleo-Reactive Robotic Agent Programs 9

decoupled approach has recently been proposed by Kamali et al [6], who describe
a separation of concerns between physical and discrete assumptions.

We describe environment assumptions in Section 4.1} which we formalise in
terms of TeleoR traces in Section An example verification is provided in

Section [4.3]

4.1 Environment assumptions

Consider, for example, a call to the turn action, which spins the robot with
value 0.5. We require that this action effectively rotates the robot at a velocity
of 0.57/s. This is captured, more generally, by an action assumption of the form

Vz. doturn(right,x) - rot_spd = « (1)

linking the intended action to the actual action, where rot_spd is an environment
variable recording the actual physical rotational speed of the robot. On the
other hand, doturn(right,x) is a belief store assertion, stating that the robot
believes it is executing turn(right) with a speed of . Of course, one might have
environments in which the rotational speed is less accurate (e.g., due to slippage
of the wheels). Such phenomena can be modelled by an equation of the form
Vx. doturn(right,z) F rot_spd = ¢ £ x % 0.1 which states that the turn action
translates to an actual rotational velocity within some tolerance bounds.

Recall that the semantics of a TeleoR procedure guarantees that actions
are not executed unless explicitly fired by a program, and that it is possible to
perform more than one action in parallel. For example, in Example[I] the second
branch of approach_until only executes move (and does not execute turn). On
the other hand, the third branch executes both move and turn together. Action
assumptions must therefore also link non-execution of actions to environment
effects. One property that we will use is, where fwd_spd is a physical variable
that models the forward speed of the robot.

—(3z. domove(x)) F fwd_spd =0 (2)

Thus, by , if move is not being executed, then the robot is not moving forward.
In Example [1} assumptions and together ensure that executing the last
branch of get_close_to causes the robot to spin on its axis.

Note that there is a difference between (2) and the predicate Vz. domove(z) -
fwd_spd = x, which for x = 0 gives

domove(0) F fwd_spd =0 . (3)

The antecedent of (2)) states that there is no percept fact domove(x) recorded in
the belief store, for any value of x, whereas the antecedent of states that the
value recorded for domove(-) is domove(0). In other words, for (2), we assume
the Belief Store query domove(X) returns false, whereas in , the Belief Store
query returns a value 0 for X. In both cases, the (physical) value of fwd_spd is
required to be 0.

10 Keith Clark, Brijesh Dongol, and Peter Robinson

Given that there is a stationary bottle on the table, we require that the turn
action is such that it eventually causes the bottle to be seen. This first of all
requires a physical assumption, that turning on its axis at a rate of rot_spd = 0.5
is adequate for the robot to be pointing towards a bottle. We state a bottle being
in front of the robot abstractly using a predicate bot_in_front, which we assume
holds precisely when there is some bottle in front of the robot. An implemen-
tation may guarantee bot_in_front in more than one way, e.g., as with rot_spd
above, may be within certain tolerance bounds calculated using the angle of vi-
sion of the robot’s camera, the robot’s current position and the bottle’s current
position. Thus bot_in_front may mean that a bottle is directly in front of the
robot, or slightly to the right or left of centre. Such details can be described by
the logic, but are ignored for the purposes of this paper.

Formally, we assume that the environment ensures the following.

G(((rot_spd = 0.5 A fwd_spd = 0)W bot_in_front) = Fbot_in_front) (4)

The antecedent, i.e., (rot_spd = 0.5A fwd_spd = 0)W bot_in_front, states that the
robot continues to rotate on its axis unless there is a bottle in front of the robot.
This alone does not guarantee progress (i.e., that bot_in_front holds). However,
the consequent of ensures that a bottle will eventually be seen.

We note that (4) is an abstract property that encompasses a number of
different scenarios. For example, it guarantees that if there is only one bottle on
the table, then this bottle will eventually be seen, provided the robot continues
to rotate at a velocity of 0.57/s. This means that the bottle is not moved away by
the environment (unless another bottle is placed on the table as a replacement!)
If there are multiple bottles on the table, then the environment guarantees that
the robot will eventually rotate towards at least one of these (e.g., the bottles
will not all be removed from the table). Condition also guarantees that if
there are no bottles on the table, then the environment eventually places at least
one bottle on the table, and given that the robot continues to spin on its axis,
then some bottle will be in front of the robot.

Finally, we require that a bot_in_front predicate triggers a new Belief Store
update. In particular, if there is a bottle in front of the robot, then see(bottle, _,)
must become true in the Belief Store. This is formalised by the assertions

bot_in_front b 3z, y. bel see(bottle,x,y) (5)
=bot_in_front - =3z, y. bel see(bottle,x,y) (6)

Again, there are different levels of detail one can apply in modelling reality when
making sensor assumptions, e.g., sensor inaccuracies, timing delays etc.

Putting these together, from , we have that the turn action with value 0.5
induces a physical rotation; from , we have that a physical rotation induces
that the bottle is in front of the robot; and from the fact that the bottle is in
front of the robot can be sensed. Moreover, this guarantees regression, i.e., that
turn causes the higher priority guard see to become true.

Temporal Logic Semantics for Teleo-Reactive Robotic Agent Programs 11

4.2 TeleoR traces

We now provide a formalisation of the ideas above for a given TeleoR program
(and its environment). First, we define an environment state to be a function
mapping from (physical) variables to values. We let Init be the set of all possible
initial environment states. A sensor assertion is a predicate of the form F F P,
where E is a ground predicate on the environment state and P is a ground
predicate on the belief store. Given an environment state ¢ and belief store 3,
we say E + P holds in (¢, 3), denoted E . 5 bel P iff (¢ = E) = (8 = P).
Similarly, an action assertion is a predicate of the form doA; - E, where A;
is an ground action. We say doA; = E holds in (8, ¢€), denoted do4; g E iff
(BEdoh) = (e EE).

A TeleoR state is triple (e, 3, €'), where € is the environment being sensed, 3
is the belief store that results from sensing e, which includes the firing of a new
action, and €' is the new environment that results from firing this action.

Consistency of a TeleoR state is judged with respect to the set of sensor and
action assertions that are assumed for the program. In particular, given a set
of sensor assertions S and a set of action assertions Z, we say the TeleoR state
(e, 8,€') is consistent with respect to S and Z iff

1. for each (E F P) € S, we have E . g P,

2. for each (doA; F E) € Z, we have doA; kg E, and

3. € and € are identical except for the environment variables that are changed
as a result of the updated action in .

Definition 3. A TeleoR trace is a sequence

T = (607 ﬂo’ 66)7 (61’ Bla 6,1)3 (623 627 6/2)7 e
of TeleoR states such that eg € Init, and each (e;, B;, €}) is consistent.

We define two projection functions 7, and 7. that restrict a given TeleoR trace
to the belief stores and environment states, respectively. For 7 above:

Trp(T) = 60a/817ﬂ2a/837 e 7Te(7') = €0, 667 €1, 6/17625 6/27 e

Note that above we are considering the TeleoR trace obtained from the exe-
cution of a top-level ground TR procedure call C' and so for each ; in 7,(7) we
have a corresponding set of primitive actions which are determined by repeated
uses of .

Finally, we must introduce system assumptions, which are assumptions over
TeleoR traces. Such assumptions can be used to state that environment variables
under the control of the robot are not arbitrarily modified by the environment.
System assumptions are formalised as temporal formulae over TeleoR traces.
This requires that we define predicates over TeleoR states (of the form (e, 8, €'));
LTL operators over TeleoR traces can be readily defined. We use unprimed and
primed variables to distinguish environment variables in € and €, respectively.

12 Keith Clark, Brijesh Dongol, and Peter Robinson

4.3 Example verification

For our running example, we use system assumptions to ensure that the envi-
ronment does not impede a robot’s (physical) rotation. In particular, we require
that for each consecutive pair of TeleoR states in 7, i.e., 7;,7;11, the value of
rot_spd in the post-environment state of 7; is the same as the value of rot_spd
in the pre-environment state of 7,41. This is formalised as:

Vk, 1. G(rot_spd' = k A fwd_spd’ =1 = X(rot_spd = k A fwd_spd =1)) (7)

We now return to the the program instance get_close_to(bottle) in Ex-
ample [1I| and describe how it can be shown to satisfy the regression property
when it is executing the lowest priority action turn(right, 0.5). That is, a
bottle will be seen. Suppose

T = (607ﬂ0’€6)7 (617613611)3 (6236276/2)7 cee

is a TeleoR trace of the program.
Consider an arbitrary index i. Assume for each belief store up to and includ-
ing B; we have bel =3z, y.see(bottle,x, y). From this assumption, using equation

(Action]), we obtain
B; = doturn(right, 0.5) A =3x. domove(z).

Now, by assumptions and we have €, = (rot_spd = 0.5 A fwd_spd = 0).
We now argue as follows by case analysis.

— If for some j > 4, we have 7; |= bot_in_front, then we trivially have regression,
since condition ensures that this triggers the required belief store update
in Tj-

— So suppose that for all j > i, 7; = —bot_in_front. Then by @, for all j > 1,
we have

B = -3z, y.sees(bottle,z, y).

This also means (by the semantics of the program) that for all each 3; =
doturn(right, 0.5). Hence, by and 7 for each j > i, we have

€ = (rot_spd = 0.5 A fwd_spd = 0).

Now, since we also have €, = (rot_spd = 0.5 A fwd_spd = 0), by , we have
that for all j > 4, ¢; = (rot_spd = 0.5 A fwd_spd = 0). Thus, the antecedent
of (4) is satisfied, and hence we must have 7; |= bot_in_front for some j,
which contradicts our initial assumption.

This completes the proof and gives us the required regression result. That
is, under reasonable assumptions about the environment, if the last rule of
get_close_to(bottle) is chosen (because no bottle is seen) then the action of
turning will make a bottle visible and hence an earlier rule will be chosen.

Temporal Logic Semantics for Teleo-Reactive Robotic Agent Programs 13

5 Conclusions

This paper develops an adaptation of LTL to reason about TeleoR programs that
enables reasoning over belief stores in a decoupled manner. Actions (having an
effect on the environment) and sensors (taking readings from the environment)
are modelled as assumptions linking the belief store and the environment, which
are subsequently used in system proofs. The logic also enables modelling of
purely physical assumptions and those pertaining to the system as a whole in a
straightforward manner. We apply this logic to show a regression property of a
TeleoR program.

This separation of concerns enables less idealised sensor information (inputs)
and robotic movements (outputs) to be modelled more easily. Such information
may also be provided by domain experts, and further refined at different stages of
development. Of course, to cater for a wider range of implementations (without
requiring proofs to be replayed), one must use specifications that are as abstract
as possible. Precisely what this entails, however, is a subject of further study.

Our ultimate aim for this work is to encode the framework in a verification
tool withing a theorem proving environment. Hence, we do not consider questions
such as decidability of the logic. However, for several of the example programs we
have developed, it is possible to develop controllers that operate over discretised
approximations that result in finitely many possibilities of the belief store. For
example, for our bottle collecting robot, it is possible to record values high
and low values instead of precise speeds, and record far, near and very near
instead of precise distances.

Prior work on TeleoR has focussed on addressing real-time properties [3/4]
using an interval temporal logic. The focus there has been to cope with timing
issues, including those that lead to sampling errors. Although the formalism
enables separation of properties into those of the environment (formalised by
a rely) and those of the agent (formalised by a guarantee), both are asserted
over a monolithic state containing all system variables. In contrast, this paper
presents a separation of concerns, whereby the inputs and outputs to the TeleoR
program are linked in a separate step.

References

1. Clark, K.L., Robinson, P.J.: Robotic Agent Programming in TeleoR. In: Proceedings
of International Conference of Robotics and Automation. IEEE (2015)

2. Clark, K.L., Robinson, P.J.: Chapter 3: Introduction to QuLog. In: Program-
ming Communicating Robotic Agents: A Multi-tasking Teleo-Reactive Approach.
Springer (2020), to appear

3. Dongol, B., Hayes, I.J.: Rely/guarantee reasoning for teleo-reactive programs over
multiple time bands. In: IFM. Lecture Notes in Computer Science, vol. 7321, pp.
39-53. Springer (2012)

4. Dongol, B., Hayes, 1.J., Robinson, P.J.: Reasoning about goal-directed real-time
teleo-reactive programs. Formal Asp. Comput. 26(3), 563-589 (2014)

5. Jones, J., Roth, D.: Robot programming: a practical guide to behavior-based
robotics. McGraw-Hill (2004)

14

®

Keith Clark, Brijesh Dongol, and Peter Robinson

Kamali, M., Linker, S., Fisher, M.: Modular verification of vehicle platooning with
respect to decisions, space and time. In: FTSCS. Communications in Computer and
Information Science, vol. 1008, pp. 18-36. Springer (2018)

Levesque, H.: Thinking as Computation. MIT Press (2012)

Mataric, M.J.: The Robotics Primer. MIT Press (2007)

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger,
E., Wheeler, R., Ng, A.: ROS: an open-source Robot Operating System (2009),
at:www.robotics.stanford.edu/~ang/papers/icraoss09-ROS.pdf

	Temporal Logic Semantics for Teleo-Reactive Robotic Agent Programs

