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Abstract. Energy management in the microgrid system is generally for-
mulated as an optimization problem. This paper focuses on the design
of a distributed energy management system for the optimal operation of
the microgrid using linear and nonlinear optimization methods. Energy
management is defined as an optimal scheduling power flow problem.
Furthermore, a technical-economic and environmental study is adopted
to illustrate the impact of energy exchange between the microgrid and
the main grid by applying two management scenarios. Nevertheless, the
fluctuating effect of renewable resources especially wind, makes optimal
scheduling difficult. To increase the results reliability of the energy man-
agement system, a wind forecasting model based on the artificial intelli-
gence of neural networks is proposed. The simulation results showed the
reliability of the forecasting model as well as the comparison between
the accuracy of optimization methods to choose the most appropriate
algorithm that ensures optimal scheduling of the microgrid generators
in the two proposed energy management scenarios allowing to prove the
interest of the bi-directionality between the microgrid and the main grid.

Keywords: Microgrid- Energy Management System - Optimization Al-
gorithms - Set-points - Wind Forcasting - Artificial Neural Network

1 Introduction

Renewable energy sources (RES) are currently being deployed on a large scale to
meet the requirements of increased energy demand, mitigate the environmental
pollutants, and achieve socio-economic benefits for sustainable development [1].
In counterpart, renewable energy sources suffer from several obstacles, mainly
their intermittent nature, which makes difficult to precisely predict their produc-
tion [2]. However, to address this problem, an aggregation of (RES) at a local
level as a hybrid energy system (HES) gives rise to the microgrid (MG) concept.
Achieving a reliable power balance between supply and demand can be difficult
when using a large renewable energy system, this is why an energy management
strategy is necessary in the case of a microgrid [3].
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Hossein et al [29], have classified energy management systems in microgrids
into four categories according to the type of backup system used, including
non-renewable energy sources, energy storage system (ESS), demand-side man-
agement (DSM) and hybrid systems.

Microgrids are low-voltage (LV) distribution networks that contain a set of
distributed generators (DGs), storage devices and controllable loads operating in
islanded mode or interconnected to the main distribution network as a controlled
entity [8], usually based on a central controller that enables the optimization of
their functioning during an interconnected operation by optimizing the produc-
tion of local DGs and electricity exchanges with the main distribution network.

The microgrid control operation contains three main levels, the first level
characterizes the micro sources controller (MSC) which uses the local informa-
tion to control the voltage and frequency in transit condition. The two others
levels concern the microgrid system controllers (MGSC) and the distribution
management system (DMS) that are responsible for the maximization of the
microgrid value and the optimization of its operation by using the market prices
of electricity in order to quantify the power that the MG should draw from the
distribution system [10].

The deployment of these systems offers many advantages for both the user
and the electricity provider. For the user’s application, the microgrid can improve
the quality of the network and reduce the operation cost. From the electric util-
ity provider implementation of distributed generation systems with the ability of
reducing the power flow on transmission and distribution lines, reducing losses
and costs for additional power [9], as well as contributing on the reduction of
greenhouse gas emissions. Microgrids are capable to increase the dependability,
economy, offering clean generation of electrical energy and its supply to sustain
the consumer’s satisfaction. The incorporation of RES in the MG system has
developed to generate, distribute and supervise the electrical power, in order to
obtain the optimal combination [28]. Hence, several research works have been
developed in the area of microgrid energy management. The authors of [11] de-
veloped optimal energy management of microgrid system considering it as being
as optimal scheduling of power flow, in [12] authors treat the energy management
issues by the mean of an economic objective function using a matrix real-coded
genetic algorithm (MRC-GA). The linear programming (LP) algorithm was used
in [13] to manage the microgrid for the purpose of minimizing the daily operating
cost. In [14] Kerboua et al proposed a particle swarm optimization (PSO) algo-
rithm for the energy management strategies of smart cities using load scheduling.
In [15] a genetic algorithm (GA) was used for an advanced EMS model able to de-
termine the optimal operating strategies regarding to energy costs minimization
and pollutant emissions reduction. Other authors have considered the energy
management in microgrid as a multi-objective optimization problem consider-
ing both economic and environmental aspects, in [4] a multi bacterial foraging
optimization (MBFO) was proposed for the optimal energy dispatch of a micro-
grid system. In [16] a multi-objective particle swarm optimization was proposed
(MOPSO) for management and optimal distribution of energy resources, for the
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same purpose a nondominated sorting genetic algorithm (NSGA) was adopted
on [17].

Further to its remarkable development in the field of renewable energies,
according to the Portuguese Renewable Energy Association (PREA), in 2019,
the wind power production in Portugal was estimated at 5429 MW . Infact, this
represents an encouraging statistic to increase wind production capacity in the
country. As a matter of fact, wind generation in microgrid systems represents
an important resource, but its widely fluctuating effect makes it scheduling with
other distributed energy resources more difficult. However, a wind forecasting
model allowing the prediction of the available capacity of wind generation in
the microgrid is important to improve the reliability of the system, to do this,
several models have been proposed in the literature. Liang et al proposed in
[18] a wind-velocity prediction model based on the previous values of the veloc-
ity using two-layer artificial neural networks with a back propagation algorithm
for short-term wind speed forecasting. In [19] the authors established the de-
velopment of an artificial neural network-based wind power forecaster and the
integration of wind forecast results into unit commitment (UC) scheduling con-
sidering forecasting uncertainty by the probabilistic concept of the confidence
interval. In [20], a prediction model was proposed using a hybrid Kalman filter
with an artificial neural network (KF-ANN) based on the linear autoregressive
integrated moving average (ARIMA). In [21] the authors proposed several pre-
diction models based on ANN uses multiple local meteorological measurements
together such as wind speed, temperature and pressure values, the results al-
lowed to analyze and compare the effect of using several local variables instead
of wind speed only.

This article proposes optimization methods for energy management in a
microgrid system considering wind uncertainty. In order to predict the hourly
wind energy production during the day, a multilayer neural network algorithm
is proposed, the performances of the model are evaluated according to the mean
squared error (MSE) value. On the other hand, energy management is formulated
as a uni-objective optimization problem. To allocate the power set-points for the
optimal scheduling of microgrid generators, five optimization methods are pro-
posed and compared: linear programming (LP) based on simplex method, two
particle swarm optimization (PSO) algorithms, genetic algorithm (GA) and a
hybrid approach (LP-PSO). Finally, two management scenarios are proposed to
illustrate the economic and environmental impact of energy exchange between
the microgrid and the main grid.

The remaining parts of the paper are organized as follows: Section 2 describes
the wind forecasting model. In section 3 the architecture, as well as the operation
of the microgrid, are presented. The storage system has been modeled in section
4. The operation of the energy management system, the optimization problem
and these constraints are explained in Section 5. In Section 6, we present and dis-
cuss results obtained under the computational simulations. Section 7 concludes
the study and proposes guidelines for future works.
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2 Wind Forecasting Model

Wind energy is one of the most energy-efficient ways to produce electrical power
in a microgrid. The wind farms require a continuous and sufficient wind speed for
proper electricity production [22]. However, to improve the reliability and quality
of the microgrid, a wind speed forecasting model based on ANN neural network
is proposed in this article. The wind speed is predicted accurately by ANN using
multiple local meteorological measurements. The proposed ANN model uses the
previously recorded wind speed and temperature together to predict the future
value of wind speed as illustrated in Figure 1.

Hidden layer

Input layer

Output layer

Temperature (t)

Wind velocity (t+1)

Wind velocity (t)

Fig. 1. Structure of the ANN model

The real data are collected by using a data monitoring system which can
record 5 minutes’ time interval sensor measurement. The data are measured
by the meteorological station of the laboratory at the Polytechnic Institute of
Braganga (latitude: 41° 47’ 52.5876°” N - longitude: 6°° 45’ 55.692” W) from
January 1, 2019, to December 31, 2019. Figures 2 and 3 shown the data of wind
and temperature.

Wind speed data of five-minute intervals between January 1, 2019, and De-
cember 31, 2019, are obtained as an input representing 103104 samples of which
90% are used for training, 5% for testing, and 5% for validation. The ANN struc-
ture has two layers. Feedforward back propagation is handled as a network type.
The transfer function is take in a sigmoid. Because the Levenberg —Marquard
algorithm has fast convergence, this latter is handled by the learning process for
all ANN structure. The performances of the model are measured using the mean
square error (MSE) value as:

I _
MSE = EZ(%‘ - 7)? (1)
=1
where n is the number of periods of time, x; is the desired neural network output
value associated to the wind velocity, and &; is the estimated value obtain by
neural network associated to the wind velocity.



Optimal Energy Management of Microgrid System 5

Wind velocity every minutes
T T T T

[S
S

Wind velocity (mfs)
5

Time (min) «10*

Hourly wind velocity

Wind velocity (m/s)

gl “

fLn L) Ll A MY 1
1000 2000 3000 4000 5000 6000 7000 8000
Time (h)

Fig. 2. Pattern of wind speed data in five minutes’ interval in Polytechnic Institute of
Braganca
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Fig. 3. Pattern of temperature data in five minutes’ interval in Polytechnic Institute
of Braganca

3 Microgrid Architecture

The chosen microgrid consists of two renewable sources photovoltaic (PV) and
wind-turbine (WT), a conventional source micro-turbine (MT) and an energy
storage system (ESS) in addition to the load. The latter are interconnected via
two buses (DC and AC) through the bidirectional inverter. The MG system
is connected to the main grid. The exchange of energy between the microgrid
and the main grid is mutual in a way that the main grid supplies (sells) energy
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when its unit price is cheap, and absorbs (buys) surplus energy from renewable
generators.

The real-time energy management of different elements of the microgrid is
mainly based on the unit cost of energy per kW h by satisfying the load balance
constraint while minimizing the cost. Figure 4 shows the microgrid architecture
adopted in this study.

Photovoltaic System main grid

n_M

e
Micro-turbine

Energy Storage System Bidectionel Converter

cace U

Load

Wind-turbine

Fig. 4. Microgrid Architecture

The power limits of the microgrid generators are presented in Table 1.

Table 1. Maximum and minimum limits for microgrid production units

IMG system‘l\/[in power (kW)‘MaX power (kW)‘

B, 0 90
Py 0 20
Ppy 0 25
Pyr 6 30
Ppss -25 30

The daily photovoltaic and wind production power profiles are shown in
Figure 5 [4].

The average daily consumption for the community of the microgrid is illus-
trated in Figure 6.
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Fig. 6. Daily profile of the microgrid demand

4 Energy Storage System Modelling

The development of microgrids with an energy storage system (ESS) has been a
subject of considerable research in recent years [23]. To ensure reliable, resilient,
and cost-effective operation of the microgrid, the ESS must have a proper model
with a correct type choice. Several types of energy storage systems can be used
in a microgrid system, each storage type has different characteristics, includ-
ing response times, storage capacities and peak current capacities, which are
addressed at different applications and different time scales [24].

In the literature, electrochemical batteries have shown the best performance
in microgrid systems as well as their ability to store electrical energy for a long
period of time [25]. Within this context, an ESS composed of electrochemical

24
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batteries is introduced in this study, a complete mathematical model is used to
simulate the states of charge and discharge of the ESS.

Several factors are necessary to describe the battery behavior, such as capac-
ity and charge/discharge rate [26]. To increase the lifespan of the battery energy
system (BES), deep discharges must be avoided, considering that F(t) represents
the battery stored energy at time ¢, the energy flows entering (Charging mode)
or exiting (discharging mode) from the battery at each time step ¢ are computed
as follows:

E(t+1)=E(t) — AP.(t)ne, charging mode, 5
Et+1)=E({)— %, discharging mode, (2)

where P,.(t) and Py(t) are the charging and discharging powers of the battery
at time ¢; A; is the interval of time considered, and finally, 1. and ny are the
charging and discharging efficiency.

For the reliable operation, battery must remain within the limits of its ca-
pacity and its charging/ discharging is limited by a maximum rate that must
not be exceeded

E™M(t) < E(t) < E™(t) 3)

P.(t)n. < P**  charging mode, P.(t) <0
(1)

Nd

=

(4)

< P discharging mode, Py(t) >0

where E™"(t) and E™*(t) are the minimum and maximum energy levels of the
battery, respectively, and P*** and PJ*** are the maximum rates of charge/disch-
arge of the battery that must be respected in each operation.

5 Energy Management System Operation

In this section, the optimization model of the energy management system adopted
for the proposed microgrid will be presented. The state variables to be optimized
in this case are the output powers of the different generators, the storage system
and the main grid. The goal is to determine the power set-points of all microgrid
generators by formulating the management problem as an objective function
to be optimized. Indeed, five optimization methods are proposed in this study
including linear programming (LP) based on the simplex method, two particle
swarm optimization (PSO) algorithms, a genetic algorithm (GA), and a hybrid
(LP-PSO) algorithm. Besides, greenhouse gas emissions (GHG) released during
an operational day will be evaluated through an environmental function.

The optimization model used in the energy management system is illustrated
in Figure 7.

The purpose of the microgrid operator is to manage the system in order to
find the optimal daily profiles for each source of the microgrid that will allow us
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Fig. 7. Microgrid optimization model

to obtain the lowest possible daily energy price, the management will be based

mainly on three essential factors:

1. The nominal hourly power P,(t) available in each source x (renewable or

conventional) in each hour ¢.

2. The hourly energy unit price B,(t) for each generator of the microgrid sys-

tem

3. The state of charge SOC(t) of the energy storage system.

The energy management system (EMS) problem intent to find the optimal
set-points of the distributed generators, the storage system and the amount of
energy exchanged with the power grid taking into account the economic and

environmental constraints.

5.1 Problem formulation

Energy management in the microgrid system is formulated as an optimization
problem based on economic and environmental objective functions as described

as follows.
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Energy Price Evaluation The choice of the cost function is the most relevant
issue for the optimization problem. It depends on several parameters mainly the
type of architecture of the microgrid. Several functions have already been used,
in [4] the cost of exploitation from the distributed resources and the storage
system was considered constant during the day and the buying / selling price
of the main network was different. In [5], [6] and [7], the cost of the distributed
resources and the storage system were considered dynamic throughout the day,
also the cost of selling / buying energy supplied by the grid or injected varies
during the day. In this case, the main objective of the cost function is to satisfy
the demand of load during the day in a most economical way. So, in each hour
t the cost function (C(t)) can be calculated as:

Ng Ns
C(t) =Y Ppai(t)Bpai(t) + Y Psp;(t)Bsp;(t) + Py(t) By(t) (5)
i=1 =1

where IV, and N, are the total number of generators and storage devices, re-
spectively. The Bpgi(t) and Bgp;(t) represents the bids of i'" DG unit and j*
storage device at hour t. P,(¢) is the active power which is bought (sold) from
(to) the utility at hour ¢ and By(t) is the bid of utility at hour ¢.

0.6

e
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T

I
=
T

o
w
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T

Energy unit price (Euro/k\Wh)

o

Fig. 8. The unit energy prices of the MG generators and the main grid

Emissions Evaluation In addition to the operating cost, the aspect of green-
house gas emissions is also taken into consideration. The emission objective
function consists of the atmospheric pollutants such as nitrogen oxides NOx,
sulfur dioxide SO, and carbon dioxide CO,. The mathematical formulation of
total pollutant emission in kg can be expressed as:
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Ng
EM(t) = Z Ppai(t)EFpai(t) + Py(t) EF,(t) (6)

where EFpg;(t) and EFy(t) are GHG emission factors which described the
amount of pollutants emission in kg/MWh for each generator and main grid
at hour ¢, respectively. Table 2 presents the emission factors for non renewable
sources as defined in [4].

Table 2. Emission factors

EF |Micro-turbine (Kg/MWh)|Grid (Kg/MWh)
CO2 724 922
NOx 0.2 2.295

SO, 0.00136 3.583

The energy management optimization problem can be defined as follows:

Ny

N
Ppai(t)Bpai Pspi(t)Bspi(t P,(t)B,(t
(PDglr,IIIDISHDJ,P J 2 Z DG DG )+Z SDJ( ) SDJ( )+ 9( ) 9( ) (7)

j=1

N
s.t. ZPDGZ + 3 Psp;(t) + Py(t) = Pr(t) ®)

j=1
PRI (t) < Ppai(t) < PR&s(t) for i = 1,.., Ny, 9)
P"””(t) < PSDj(t) < Pg”gf( ) for j =1,..., Ng, (10)
PIM(t) < Py(t) < PIe(1) (11)

T

where the total price is calculated by CT = Z min C(¢) and the total quantity of
t=1

emissions in kg can be determined by EM = Z EM (t). Equation (8) represents
t=1

the total power generation needs to satisfy the total demand. The Equations (9)

- (11) are the simple bounds associated to the decision variables.

5.2 Management Operation

Several management systems have been presented in the literature, [27] have
proposed a multi-objective operational strategy of a microgrid for a residential
application. In this context, the economic and environmental aspects have been
formulated as a multi-objective problem with non-linear constraints. For this
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purpose, the terms of operating cost, maintenance cost, start-up cost, and the
cost of CO3y, SOy, NOx emissions are taken into account. In this study, the
management is developed as a uni-objective optimization problem whose main
goal is to optimize the economic aspect. However, the environmental aspect will
be evaluated but will not be taken into account in the optimization process.
Therefore, the aim is to select the cheapest power in a given hour and to allo-
cate it to the load, ensuring the energy balance required by the consumer while
obtaining the cheapest possible daily energy bill. During this process, the storage
system is managed in detail as follows:

e In case of (E(t) = E™*): The storage system will be considered as the
main source with the four other sources (Photovoltaic, wind, micro-turbine,
and grid), its energy supply will be operated according to the quantity of
energy requested and its unit energy price per hour. It should be noted that
the discharge rate is limited by a maximum quantity that must not be ex-
ceeded according to the constraints presented before.

e In case of (E(t) = E™"): The storage system will require a certain amount
of energy for the charging process from the cheapest sources in the microgrid
at a given time. In this situation, the storage system will be considered as
a load by the microgrid. If all unit energy prices of the different generators
are considerably high, and the load is satisfied, the charging process of the
storage system will not happen at this time and will wait until the energy
prices are sufficiently low.

e In case of (E™" < E(t) < E™%): Depending on the energy unit price of
the storage system, two cases can occur:

1. In the event that the price of the energy delivered by the storage system
is the most expensive and the energy demanded by microgrid consumers
can be largely satisfied by other sources, the storage system will continue
to be charged and its energy will not participate in supplying the load.
But, if the energy supplied by the various generators is insufficient, the
energy from the storage system will be used as a compensating energy
source to satisfy the energy balance constraint.

2. Otherwise, if the price of the energy delivered by the storage system is
cheaper compared to other sources, the storage system will participate
in supplying the load and provide maximum energy equal to the limit of
its discharging power rate.

The objective of the management system presented in this paper is to reduce
the energy bill over a 24-hour day. The target point in this study case is the de-
termination of the power set-points calculated by the five optimization methods.
The remaining renewable energy not used to power the microgrid consumers and
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to charge the battery storage system will be sent to the main grid. In fact, we
present the two scenarios proposed for this purpose:

— Scenario 01: The energy surplus from the different RES of the microgrid
is used to cover the energy needs of the storage system while preserving
the economic aspect by choosing the times when the price is the cheapest.
However, if the batteries become fully charged, the energy surplus will be
considered as energy loses. During this management, we will take into ac-
count the optimal price retained from the optimization as well as the rate
of GHG emissions resulting from the energy operations performed by the
microgrid.

— Scenario 02: The energy from the different renewable energy resources is
used to cover the energy needs of the storage system in order to charge it
while preserving the economic aspect by choosing the times when the energy
prices are relatively low. However, if the batteries prove to be fully charged,
the energy surplus from renewable sources in this case will be distributed
and sold to the grid with the same purchase energy prices. During this man-
agement, we will evaluate the optimal price retained from the optimization
procedures as well as the rate of GHG emissions resulting from the energy
operations achieved by the microgrid. In addition, the power of the renewable
energy generators (photovoltaic and wind) in this case are fully exploited, in
order to highlight the impact of the energy injection to the main grid and
its economic-environmental consequences.

6 Results and Discussions

6.1 Wind Forecasting Results

The proposed multi-layer neural network algorithm is trained by using “nntool”
predefined function in M AT LAB. The feed-forward network with a back-propaga-
tion algorithm assures the adjusting of weights which is determined at the offline
training. The Table 3 illustrates the characteristics of the network.

Table 3. ANN characteristics

Type of network feed-froward
Hidden layer activation function sigmoid
Back-propagation algorithm Levenberg-Marquardt
Performances Mean squared error
Number of hidden neurons 10

Number of samples 103104
Training samples 90 %

Testing samples 5%
Validation samples 5%
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Figure 9 represents the mean squared error, the best MSE obtained is 0.48
in the ninth epoch.

Best Validation Performance is 0.48235 at epoch 9

102

Train
Validation
Test

M Best

E

_ 10’

o

E

w

o

2

o]

3

@B 0

:_; 10

@ Fas

= Ny

107" w
0 5 10 15
15 Epochs

Fig. 9. The mean squared error of the network

To evaluate the reliability of the prediction model proposed in this paper,
Figure 10 illustrates a comparison of the results obtained by the wind forecasting
model based on the artificial neural network and the real wind speed results.
According to this latter, the prediction speed follows the real speed, on the other
hand, some deviation occurs between values due to the stochastic character of
the problem under study which has already been deduced from the M SFE value.

25

T
——Predicted —§— Real

o

Wind speed (m/s)

0.5

Fig. 10. Comparison of hourly forecasted wind speed with real data
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6.2 Optimization methods comparison

The objective of the energy management system is to reduce the energy mi-
crogrid consumer bill over a 24-hour day. The target point in this section is
the determination of the power set-points calculated by the energy management
system based on optimization algorithms.

The optimization problem is represented by a linear objective function and
constraints, for its treatment, five optimization methods was applied, namely,
the linear programming LP based on the simplex method, two variants of par-
ticle swarm optimization PSO algorithm with different starting conditions, the
first noted PSO1, whose particle starting point represents a random value that
translates between the problem bounds while in the second one noted PSO2 a
new approach of particle initialization has been proposed by fixing the particle
starting point using an upper bounds vector of the problem. The fourth method
used for the treatment of the problem is a hybrid LP-PSO, it is an innovative
optimization strategy whose goal is to improve the performance of the PSO for
optimal treatment of the management problem characterized by a linear op-
timization function. The approach adopted in this method lies on the use of
linear programming as a technique for generating the initial starting points of
the swarm particles, the PSO continues with those particles the search for the
optimum to deliver the optimal set-points to ensure the minimization of the en-
ergy price evaluation function. And finally, a genetic algorithm GA was used in
the management system to be compared to the four methods explained above.
The performances of each method are presented in Table 4.

Table 4. Algorithmic performances

[Results | LP | PSO1 [ PSO2 | GA [LP-PSO]
Total Price (Euro) 143.0492 | 144.9574 | 143.0492 | 143.0492 | 143.0492
Total Emissions (kg) |1353.7329(1351.4000|1353.7329|1353.7329(1353.7329
Simulation time (sec)| 3.120 0.040 0.031 5.620 0.038

Taking into account the available power illustrated in Figure 5 as well as the
microgrid energy unit prices illustrated in Figure 8, the EMS allows to have the
optimal set-points of the distributed generators and the storage system through
one of the optimization algorithms LP, PSO1, PSO2, GA and LP-PSO as shown
in Table 4.

According to the results presented in Table 4, the operating cost for LP,
PSO2, GA and the hybrid LP-PSO is 143.0492 Furo, on the other side for PSO1
was 144.9574 Euro.

A comparison is made between the performances of the optimization methods
used to solve the energy management problem. According to the Tables 5 and 6,
it is noted that in the five programs the cheapest source at a given hour has the
most important set point without exceeding the power limits shown in Table 1.
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Table 5. Optimal power set-points using LP and PSO2 and GA and LP-PSO method

Time (h)[PV (kWh)[WT (kWh)[MT (kWh)[Battery (kWh)|GRID (kWh)|Load (kWh)
01:00 0 16.0133 6 -33.3333 63.32 52
02:00 0 16.08 6 -33.3333 61.2533 50
03:00 0 16.16 6 ~33.3333 61.1733 50
04:00 0 16.1733 6 -33.3333 62.16 50
05:00 0 0 6 -8.8839 58.8889 51
06:00 0 0 6 0 57 63
07:00 0 0 6 0 64 70
08:00 0 0 6 0 69 75
09:00 0.59 14.7333 30 225 8.1767 76
10:00 | 1.9800 13.16 30 225 12.36 80
11:00 | 7.7500 | 11.6667 30 225 6.0333 78
12:00 98 10.1468 30 225 1.5532 74
13:00 | 10.65 | 11.6667 30 19.6833 0 72
14:00 9.7 10.146 30 22.1540 0 72
15:00 812 14.6467 30 12.1627 11.0706 76
16:00 | 4.9500 | 16.2133 30 0 28.8367 80
17:00 1.1 0 27.2333 -33.3333 90 85
18:00 0.1 1.2333 30 -33.3333 90 88
19:00 0 3.3333 30 -33.3333 90 90
20:00 0 18.6493 | 11.6840 -33.3333 90 87
21:00 0 19.04 30 225 6.46 78
22:00 0 19.03 6 -33.3333 79.3033 71
23:00 0 19.3330 6 -33.3333 73.0003 65
24:00 0 19.6900 6 -5.5556 35.8656 56

The optimal power set-points of the LP, PSO2, LP-PSO, and GA showed in
Table 5 converged to the global optimum, opposite to PSO1 where the setpoints
showed in Table 6 do not represent the global optimum (convergence to local
optimality) due to the nature of the optimization problem, this convergence with
a certain error influenced the total daily energy price.

The linear nature of the optimization problem judges the reliability of linear
programming LP based on the simplex method. The adoption of the LP-PSO
method also delivered optimal results but in terms of convergence rapidity it
was not the best method, in fact, the PSO2 has demonstrated the best perfor-
mances compared to the four other optimzation methods in terms of accuracy
and rapidity convergence of optimal power set-points.

The performances of the genetic algorithm GA has given good results in
terms of precision, knowing that the stopping condition is taken similar to that
of the PSO which is the reaching of the global optimum and with the same start-
ing condition; the path to the optimum by the genetic algorithm is much slower
than that of the PSO, this is judged by the very large search space generated
by the GA mechanism following their genetic operators like crossover and muta-
tion, in PSO particles update themselves with the internal velocity. Besides, the
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information-sharing mechanism in PSO is significantly different than the genetic

algorithm.
Table 6. Optimal power set-point using PSO1 method
Time (h)|PV (kWh)|WT (kWh)|MT (kWh)|Battery (kWh)|GRID (kWh)|Load (kWh)
01:00 0 16.0133 6 -33.3333 63.32 52
02:00 0 16.08 6 -33.3333 61.25333 50
03:00 0 16.16 6 -33.3333 61.1733 50
04:00 0 16.1733 6 -33.3333 62.16 50
05:00 0 0 6 -8.8889 58.8889 51
06:00 0 0 6 0 57 63
07:00 0 0 6 0 64 70
08:00 0 0 6 0 69 75
09:00 0.3576 14.6848 29.9823 22.4610 8.5142 76
10:00 1.9148 12.5053 29.9690 22.4348 13.1761 80
11:00 7.7358 11.64 29.9995 22.4732 6.1515 78
12:00 9.7986 10.0716 29.9870 22.4306 1.7122 74
13:00 10.6289 11.6662 29.9588 22.4320 3.3142 72
14:00 8.0985 9.8576 29.9923 22.4730 7.5786 72
15:00 7.9557 14.5146 29.9509 9.1309 14.4480 76
16:00 4.9077 16.2132 29.9986 0.1489 34.7316 80
17:00 1.0035 3.3301 29.9999 -33.3333 89.9999 85
18:00 0.0358 2.5170 28.7815 -33.3333 89.9990 88
19:00 0 3.3652 29.9682 -33.3333 90 90
20:00 0 18.6418 11.6917 -33.3333 89.9999 87
21:00 0 18.9552 29.9523 22.4275 6.6650 78
22:00 0 19.03 6 -33.3333 79.3033 71
23:00 0 19.3330 6 -33.3333 73.0003 65
24:00 0 19.6900 6 -5.4466 35.7566 56

6.3 Comparison of the two scenarios

Following the algorithmic performances illustrated by the PSO2, this latter will
be used as an optimization tool in the energy management system (EMS) for
the two scenarios described above. The rest of the paper presents the economic
and environmental results of the two proposed scenarios.

Table 7. Results of both scenarios

|

Scenarios

[Scenario 01 [ Scenario 02

Total Price (Euro)

143.0492

137.6627

Total Emissions (kg)

1353.7329

1246.1000
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Scenario 1 The results obtained in Figure 11 are the optimal power set-points
for the different energy sources of the microgrid, the sum of these values in a
given hour t is equal to the power value of the load for the same hour ¢. The
cheapest source in a given hour has the highest set-point without exceeding these
power limits. The second cheapest source is added to it and so on until the power
balance constraint is verified. In this way, the operating cost is minimized and
the emissions are evaluated.
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Fig. 11. Optimal power setpoints obtained in the first scenario

The charging of the storage system is ensured during the part of the day
when consumption is low and characterized by low energy unit costs. Other-
wise, the battery provides energy to compensate the deficit during the day. In
this study case, the energy from the grid is supplied unidirectionally, i.e. the
energy is only sold from the grid and delivered to the microgrid, reverse oper-
ation is not allowed. For maintenance and safety reasons, the micro-turbine is
present all day long either by its minimum power of 6 kW or by its delivered
power to compensate the energy deficit that should be supplied to the microgrid
consumers.

Figure 12 presents the hourly unit prices of the optimal energy flows from
the various sources and the optimal price obtained by the energy management
system in function of the operating hours during the day.

It is remarkable that the photovoltaic source is fully exploited during the day
because of its low price compared to the other four sources and the wind source
is widely exploited during the night because of its low price as well. However,
during peak hours, the grid price is very high, in this case, the use of the storage
system allows to compensate the energy deficit and reduce the dependence on
the main grid. This demonstrate the importance of the battery during the day
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Fig. 12. The unit prices of the powers resulting from the optimal management and the
optimal billing prices for the first scenario

when the grid price is high. The storage system itself follows its charging process
during the night when the consumption of the microgrid is smaller and the energy
unit price is low. Figure 13 illustrates the daily energy exchange of the batteries
with the microgrid. It is well observed that when batteries demand energy, the
SOC increases, and when they supply energy, the SOC decreases.

Fig. 13. The energy exchange of the batteries with the microgrid during the day
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The emissions quantity is directly related to the two sources: the main grid
and the micro-turbine, which are responsible for greenhouse gas emissions. Ac-
cording to Figure 14, it is clear that emissions are higher during the night due
to the reduced unit prices of the grid and thus the primary operation of the
microgrid is to supply consumer and take advantage to charge the ESS system.
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Fig. 14. The total daily emissions due to the use of fossil sources in the microgrid
without injection

Scenario 2 According to the results obtained in Table 7 and Figure 15, it can
be seen that the renewable sources are fully exploited, no loss of power is caused.
The excess energy, after satisfying the local needs of the microgrid, allowed the
successful charging of the storage system in such a way that at the end of the
day the battery was fully charged. In addition, an amount of 116,0529 kW was
also delivered to the main grid, which reduced the total daily energy bill of the
microgrid to 137.6627 Furo, and reduced GHG emissions to 1246.1 kg.

It is remarkable that the photovoltaic and wind energy sources are fully
exploited during the day, in order to take advantage of the benefits of injecting
green energy into the main grid, thus reducing the energy bill and the rate of
GHG emissions. The power management of the other sources seems identical
to the first scenario, except for the main grid that is modified due to its price,
which remains very high during the day compared to the micro-turbine and the
storage system.

The grid provides precise power to meet the load requirements. However, this
energy is not fully counted in the energy bill, and the power injected during a
given hour is subtracted and compensates for the energy that is supposed to be
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Fig. 15. Optimal power setpoints obtained in the second scenario

supplied by the network. In this way, during consumption billing, only the power
paid will be considered.
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Fig. 16. The unit prices of the powers resulting from the optimal management and the
optimal billing prices

Figure 17 shows the power supplied by the grid, the power injected, as well
as the power taken into account in the billing.
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Fig. 17. The unit prices of the powers resulting from the optimal management and the
optimal billing prices for the second scenario

The quantity of emissions is directly related to the two sources: the main
grid and the micro-turbine, which are responsible for greenhouse gas emissions.
According to Figure 18, it is clear that emissions are higher during the night
due to the reduced unit prices of the grid and thus the primary operation of the
microgrid, taking advantage of this to recharge the storage system. The emission
rate, in this case, remains lower than the first scenario.
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Fig. 18. The total daily emissions due to the use of fossil fuel sources in the microgrid
with injection
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7 Conclusion and Future Works

This study investigated the problem of energy management in microgrid systems
by considering the impact of the wind speed intermittent aspect on wind turbine
power production. For that matter, a prediction model based on the artificial
intelligence of neural network (ANN) has been developed to ensure a forecast
of the wind velocity parameter, the performance of the model was evaluated by
the mean squared error (MSE) value. On the other hand, this work showed a
comparison between several optimization methods used by the energy manage-
ment system (EMS) proposed for the optimal dispatch of energy inside a micro-
grid, ensuring a reduced energy cost. In particular, five optimization approaches
were proposed, including two versions of Particle Swarm Optimization (PSO)
algorithm, a Genetic Algorithm (GA), Linear Programming (LP) based on the
simplex method, and finally a hybrid approach (LP-PSO), all programmed in
the M AT LAB software. However, the proposed PSO has shown a high level of
performance. Two scenarios were adopted to assess the technical-economic and
environmental impact of bi-directional interconnection between the microgrid
and the main grid. In fact, the low energy price and the reduced rate of emis-
sions have made it possible to present one of the important advantages that a
microgrid could bring in the reduction of the energetic cost as well as in the
contribution to the reduction of the greenhouse gases (GHG) emissions respon-
sible for the global warming. Differently to the uni-objective approach that gave
an optimal point, a multi-objective optimization approach will be developed as
future work on which an energy management system is dedicated to ensuring the
optimal scheduling of the distributed generators and the energy storage system
accompanied by a moderate exchange between the MG and the main grid while
considering the simultaneous optimization of both economic and environmental
criteria. The results will deliver a set of optimal solutions (Pareto front), that
will represent scenarios, in which the best Trade-off between price and emission
is selected by the microgrid operator to give the optimal scheduling.
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