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Abstract—Knowledge is acquired by humans through experi-
ence, and no boundary is set between the kinds of knowledge
or skill levels we can achieve on different tasks at the same
time. When it comes to Neural Networks, that is not the
case, the breakthroughs in the field are extremely task and
domain-specific. Vision and language are dealt with in separate
manners, using separate methods and different datasets. Current
text classification methods, mostly rely on obtaining contextual
embeddings for input text samples, then training a classifier on
the embedded dataset. Transfer learning in Language related
tasks, in general, is heavily used in obtaining the contextual text
embeddings for the input samples. In this work, we propose to use
the knowledge acquired by benchmark Vision Models which are
trained on ImageNet to help a much smaller architecture learn
to classify text. A data transformation technique is used to create
a new image dataset, where each image represents a sentence
embedding from the last six layers of BERT projected on a 2D
plane using a t-SNE based method. We trained five models con-
taining layers sliced from vision models pre-trained on ImageNet
on the created image dataset for the IMDB dataset embedded
with the last six layers of BERT. Despite the challenges posed by
the very different datasets, experimental results achieved by this
approach which links large pre-trained models on both language
and vision, are very promising, without needing high compute
resources. Specifically, Sentiment Analysis is achieved by five
different models on the same image dataset obtained after BERT
embeddings are transformed into gray scale images.
Index Terms—Natural language processing, Text Classification,

Image Classification, t-SNE, BERT, Transfer Learning, Convolu-
tional Neural Networks, Domain Adaptation

I. Introduction
Attention-based architectures and specifically the Trans-

former [25] sparked a revolution in the world of Natural
Language Processing and Deep Learning in General. BERT-
representations [5] opened a lot of new goals and challenges
for the Machine Learning Community, because of their highly
semantic embeddings and the kind of knowledge they encode
given textual data. Being pre-trained to predicted Masked
Language and next sentences, and on a huge Wikipedia
Corpus, makes it a powerful benchmark for Natural Lan-
guage Processing and a current standard for word and sen-
tence representations. Computer Vision made very remarkable
achievements [29]. The seminal work introduced in AlexNet [14]
and the parallel structure of Convolutional Neural Networks
enabled the use of GPUs, then it became a standard for training

Neural Networks for Visual Recognition. Different architectures
have emerged [14] [15] [21] [9] [27] since then using CNN’s as
a building block and achieving higher accuracies on different
datasets. Transfer Learning [1] [2] opened the doors for a very
wide range of applications, allowing for the exchange of previ-
ously acquired knowledge from a large dataset on a certain task
to another task with a much smaller dataset. This philosophy
is a current essential practice in both academia and industry
as it helps avoid a very long and computationally demanding
procedure. In Visual Understanding tasks, transfer learning in
the last decade heavily relied on ImageNet [4] as a base or
Source dataset, ImageNet [4] is a huge dataset containing over
14 million images and their different one-thousand class labels
and is considered the de facto for pre-training Vision Models.
The work described in this paper aims to use knowledge
acquired by vision models to train text-classifiers for Sentiment
Analysis, using a t-SNE based transformation method brought
about in [19] to transform IMDB Text Embeddings from BERT
into Gray Scale Images. The main objective of this paper is
to bring Language and V ision a step closer, and to harness
the power of transfer learning from large image datasets in
Natural Language Processing and vice-versa. Hoping this would
be an opening to further work on the topic using appropriate
resources and datasets since none were available during the
conception of this paper. Adding yet another approach to the
ones mentioned in the survey [18] on the integration of language
and vision, with a complete TransferLearning based fusion
between the two, summarized in:

• Using the BERT [5] embeddings for the IMDB-Dataset [16]
to create an IMDB-Image Dataset using the method de-
scribed in [19] with a t-SNE [24] backbone.

• Analyzing Domain Shifts between the Source (Ima-
geNet [4]) and Target (IMDB-Image) datasets, and avoiding
such problems with feature normalization.

• Using early layers from benchmark Vision Mod-
els [14] [15] [21] [9] [27] which are trained on a huge
ImageNet [4] dataset as feature extractors in a common
architecture between five models.

• Training five models containing pre-trained layers on a
Vision Dataset(ImageNet [4]) on the IMDB-Image dataset.



In this work, a new approach to classifying textual data
is proposed, based on the transformation of text embeddings
obtained from the last six layers of BERT [5] into images using
t-SNE feature projection. Training five models containing pre-
trained layers from Vision Models trained on ImageNet [4], on a
generated IMDB-Image Dataset. The contributions of this paper
are stated as follows:
• Exchanging knowledge between language and vision mod-

els through transfer learning and data transformations.
• Generating an image dataset for IMDB textual dataset,

analyzing data domains between source and target datasets
(ImageNet [4] and IMDB-Images), avoiding domain shifts
with pixel normalization.

• Harnessing the pre-training of Vision models on a large
image dataset in text classification, and achieving accept-
able and promising results.

II. Related Work

A. Transfer Learning

The modern learning paradigm for most Vision mod-
els, is mostly based on extracting features from the Ima-
geNet dataset [4], then finetuning certain layers on a new
smaller dataset concerned with a new task. The concept of
TransferLearning evolved from when it was first intro-
duced by Stevo Bozinovski and Ante Fulgosi [1] [2]. Due to
the revolution in hardware allowing training on very large
datasets, all training paradigms nowadays are bound to transfer
knowledge obtained from a large dataset to solve a target task
with a target dataset. Authors in [33] provide a complete survey
on TransferLearning, its applications, types, methods, and
challenges. Yosinski et al. [28] conducted a detailed study on
what kind of features different layers in a Neural Network
learn about the source dataset, and how TransferLearning
can make the most of the acquired knowledge to solve a target
task.

B. Transfer Learning in Language and Vision

Transfer Learning in Computer Vision and Natural Language
Processing as two separate sub-fields, is the current standard,
as it allows large pre-trained models to be used in multiple
tasks after acquiring a certain understanding of features in a
large dataset.

1) Transfer Learning in Language: BERT [5] representations
and Fine-Tuning, allowed for state-of-the-art results in tasks
such as Text Classification, following different approaches
mentioned in [22], commonly using the [CLS] representations
from certain layers as an input to a classifier, freezing the
BERT model or finetuning it depending on the task and size
of task dataset. The current approaches mentioned in [22]
achieved very low error rates. TransferLearning in this
case, is mostly learning contextualized representations for the
input text, in a self-supervised manner, where the generated
embeddings can be directly used as an input to another model
to solve a target task.

2) Transfer Learning in Vision: Vision Models, more
specifically [14] [15] [21] [9] [27] are pre-trained on Ima-
geNet [4]. Considered benchmarks for image classification, they
achieved very high accuracies for smaller datasets through
TransferLearning and DomainAdaptation [3]. Being pre-
trained on a very large dataset (ImageNet [4]), the features they
can extract are mostly present in most datasets. Finetuning
them on a new dataset for a new task, gives optimal results,
since after further training both general and task specific
features are visible to the finetuned models as suggested and
discussed by Yosinski et al. [28].

C. Text Classification using Convolutional Neural Networks
The work conducted by Yoon Kim [12] suggested a CNN

based architecture with multiple filter widths and feature maps,
and a fully connected layer, using padding to fix the input size
to a vector with length d. A similar approach is taken in [31],
where sentence classification is achieved, usingWord2V ec [17]
embeddings, 3 filter region sizes, with 2 filters for each region
size, which generates 6 variable size feature maps, forming
a feature vector after concatenation, then fed into a Softmax
layer. The mentioned approach, treats text embeddings as fixed
length inputs, with no regard to which order the tokens in
the sentence appear, and no consideration of the geometrical
abilities and nature of kernels in a Convolutional Neural
Network.

III. Preliminaries
A. IMDB Dataset
IMDB [16] is a Polarity Dataset for Sentiment Analysis or Text

Classification in broader terms, it contains 50000 Sentences and
their binary class labels, being either "Positive" or "Negative",
IMDB is a relatively small dataset that provides a level of
flexibility and suitable testing for the study this paper is
concerned with, due to the computational resources both Data
Generation and Training of different models require.

B. BERT
BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding [5], is a language representation model
with the Transformer [25] as its building block, pre-trained on
very large unlabelled textual data for two main tasks: Masked
Language Modelling, where the model is required to predict
words intentionally masked in a multi-layered context as it was
mentioned in the paper, The Second Task is Next Sentence
Prediction, also in a self-supervised manner, BERT is trained
to classify a sentence as "Next" or "Not Next" for a previous
sentence as input. BERT pre-training provides an understanding
of the possible relationships, between two sentences especially
when being trained on the entire Wikipedia English Corpus
and the Books-Corpus [32]. The Attention mechanism heavily
used in all layers of BERT produces extremely semantic, and
context-sensitive representations, where a token might have
many representations depending on the context it is being
used in. For the sake of this study, A pre-trained BERT model
provided by HuggingFace [26] is used, containing twelve layers,



768 hidden-size (Each Layer produces a 768 sized vector for
each word), 12 attention heads, and 110M parameters.1

C. DeepInsight
Sharma et al in [19], proposed a methodology to transform

non-image data to an image, using t-SNE [24] or K-PCA [6] to
project the transpose of a dataset creating a set of features re-
lated on a 2D plane according to their similarity, re-transposing
the set to obtain the original set size with [NxNx3] images
as new samples. The method was heavily used in Cancer
Detection and related medical applications.

D. t-SNE
t-SNE [24] (t-distributed Stochastic Neighbor Embedding), is

a similarity measuring and dimensionality reduction technique,
developed in 2008 by Geoffrey Hinton and Laurens Van Der
Maaten. What separates t-SNE [24] from classical dimension-
ality reduction techniques, is that it is a non-linear method,
meaning that datasets with a very large number of dimensions
can be easily viewed or projected on a 2D or 3D dimensional
space, even when features are not related linearly. The mapping
from the high dimensional space to the lower dimensional
space (2D or 3D), happens according to the similarity between
features and data points, where samples with similar features
are clustered together. The similarity between two points is
computed as probabilities based on Euclidean Distances
between pairs of data points.

IV. Method
In this section, the steps taken to generate the dataset

used in our experimental part are explained. Going through
obtaining BERT-embeddings from the pre-trained BERT [5]
model for the original IMDB dataset [16], transforming the
embeddings into images, and visualization of some obtained
IMDB-Image Dataset samples, and normalizing the pixel space.
Along with an analysis of Source and Target domains for
the TransferLearning conducted in this paper, and the
architectures trained on the generated IMDB-Image dataset,
providing sample feature maps produced by the pre-trained
layers from [9] [15] [21].

A. Generating the IMDB-Image Dataset
1) BERT Embeddings Generation: A very special feature of

BERT is the [CLS] token that is added at the beginning of
a sentence embedding at each layer output, which indicates
the beginning of a sentence and is also a unique Sentence
Representation for classification purposes. Since our procedure
requires a high Dimensional Space because we attempt to
obtain images after a t-SNE [24] projection of different features
representing each input from IMDB [16], as it will be further
discussed in following sections. The study conducted in [11],
demonstrates the semantic nature of the output from the higher
layers of BERT, thus, the [CLS] embeddings from the last six

1more information on the BERT model used is at: https://huggingface.
co/transformers/pre-trained_models.html

layers are concatenated for each input sentence from the IMDB-
Dataset [16], giving a [6x768] sized vector for each input sample
as Fig.1 depicts.

Fig. 1. IMDB [CLS] Embeddings from the Last Six layers of BERT,
where the input to the pre-trained model is indexes representing each
word in a sentence, outputting a fixed [768] sized vector from each layer.
The outputs of [CLS] tokens from the last six layers are stacked into a
[6X768] sized embedding for each text sample.

2) Transforming BERT Embeddings into Images: After
stacking 6 vectors with 768 features for each sample in the
original IMDB [16] dataset, our dataset is now of shape [50000,
4608]. Following the pipeline introduced in [19], We have
n = 50000 samples, with d = 4608 features for each sample,
thus our dataset can be defined as D = {x1, x2, ...., xn},
where each feature vector x is defined as x = {f1, f2, ..., fd},
our feature set is then defined as F = {f1, f2, ..., fd}, where
each feature f has n dimensions. In short terms F = DT ,
and transposing the dataset allows for features to be treated
as elements that can be related on a 2D plane according
to similarity measuring using t-SNE [24]. The obtained 2D
plane demonstrated in Fig.2, represents the location of features,
and a Convex Hull algorithm is used to isolate the rectangle
containing all the points as depicted in Fig.2, the rectangle is
then rotated to obtain a horizontal matrix containing Cartesian
coordinates for the pixels.

Fig. 2. Feature locations represented by blue points on a 2D plane, as
described above. The green rectangle represents the smallest rectangle
containing all points and is obtained using a Convex Hull algorithm. We
can observe a size of [50x50] is obtained for the rectangle which is then
rotated to obtain a horizontal image, ready for use in a Convolutional
Neural Network.

https://huggingface.co/transformers/pre-trained_models.html
https://huggingface.co/transformers/pre-trained_models.html


Since the frame is limited by image size, the points rep-
resenting feature locations can have more than 1 feature per
location, therefore, during mapping features to their locations,
averaging is required to avoid confusion which may lead to
noisy pixels. Each feature is then mapped to its location,
averaging features which fall on the same point or location on
the 2D plane. Respecting our hardware capacity and to avoid
excessive overlapping of features on the same location, a size
of [50x50] for our pixel frames is chosen.

Fig. 3. A Density Matrix, after rotating the Convex containing all the
points representing locations projected on a 2D plane with respect to
their Cartesian Coordinates obtained from t-SNE [24]. Showing regions
that are more dense, due to features being mapped to the same locations
causing overlapping. We can observe that our new IMDB-Image Dataset
has a certain geometrical distribution of features, with clear edges and
blobs.

Fig.3 is an experimental result of applying t-SNE [24] to our
[50000,4608] shaped dataset. The Density Matrix reflects the
actual distribution of features in the new IMDB-Image Dataset,
with an obvious concentration of features on the diagonal,
this is due to the overlapping of features if more than one
feature is projected with the same Cartesian coordinates on
the 2D plane. The next step is to map feature values to their
Cartesian coordinates, and averaging feature values that share
the same coordinates.

3) Image Data Visualization: After running the method
with a t-SNE [24] backbone on our [50000,6x768] IMDB-bert
dataset, we obtain gray-scale images with height=50, width=50
and 3 channels having the same values for each pixel, most
probably caused by the unnatural data-source which is the
pre-trained BERT model which is used to obtain all the
values in the [6x768] sized vectors, theoretically forcing the
same regularities and irregularities between all samples. Fig.4
demonstrates the Image-Embeddings for the first three IMDB
input-samples.
Text Samples for Images in Fig.4:

• "One of the other reviewers has mentioned that after
watching just 1 Oz episode you’ll be hooked. The..."

• "A wonderful little production. <br /><br />The filming
technique is very unassuming- very old-time-B..."

• "I thought this was a wonderful way to spend time on a
too hot summer weekend, sitting in the air con..."

Fig. 4. Image Embeddings for the three first IMDB samples, each image
is a projection of a [6x768] sized embedding obtained from BERT for each
sample in the IMDB [16] dataset (The text samples above respectively).
A new IMDB-Images dataset is generated in the same manner, giving
50000 images, each one representing a text sample in 50000 from the
original IMDB [16] dataset.

B. Data Domains and Transfer Learning
Our generated IMDB-Image dataset and the original dataset

(ImageNet [4]) on which the models used in this work are
trained, are extremely different as depicted in Fig.5, which
according to [3] causes a distribution mismatch and domain
shift problems to the classifiers. Generalization across domains
is extremely affected by the nature of domains and the style of
the data especially in Visual Understanding related tasks.
According to [33] a domain D is composed of a feature space

χ and a marginal distribution P (X) formulated as:

D = χ, P (X) (1)

where X is an instance set which is defined as:

X = x|xi ∈ χ, i = 1, ...., n

The Task T is composed of a label space Y and a decision
function f , meaning:

T = (Y, f) (2)

where f is learned explicitly via training data samples.

Fig. 5. (a): An image sample from the generated IMDB-Images dataset,
showing a gray scale distribution with weak edges and no obvious
geometrical features or shapes, (b): An image of a Dog from the Source
Dataset (ImageNet [4]), an RGB iamge with clear geometrical features
and shapes. This figure depicts the differences between the Source and
Target datasets, and suggests inevitable domain shifts between the two.



1) Data Domains: fig.5 shows obvious differences in data
style in the source and target datasets, which according to
[23] and [20] and further discussed in [30] causes a distribution
mismatch and domain shifts, due to the differences between
the two domains like channels, colors, background, lighting,
etc. This is a major problem in Transfer Learning between
image datasets. Survey [3] gives a broad overview of the recent
approaches and methods developed for Transfer learning to
overcome the mentioned issues through Domain Adaptation.

2) Transfer Learning: For successful Transfer Learning to
be achieved, an architecture should be able to adapt the Target
Domain DT to Source Domain DS , which are IMDB-images
and ImageNet [4] respectively in our case. One special technique
for domain adaptation so far proposes specific training for
domain prediction [7]. Limited by compute power and extreme
domain shifts, in this work, another approach is taken. In [28],
Jason Yosinski et al, stress on the different kinds of features
different zones of layers learn in a neural network, stressing
on the generality observed in lower layers and specificity in
higher layers, meaning general features like curves, color blobs,
and edges are extracted in the lower layers, and task specific
features are handled by higher layers. Threatened by the large
model sizes in our pre-trained arsenal [14] [15] [21] [9] [27],
and the relatively small dataset with only 50000 samples,
which could lead to extreme overfitting, the approach taken
in this work is to focus on features that both datasets share
instead of forcing the model to learn the domains themselves
as targets. Since the color channels are clearly going to cause
a major domain shift, the focus should be on geometrical
features like edges, curves and blobs. In order to have more
defined edges, normalization of the entire pixel space is applied,
a normalization technique named Z − Normalization [8],
adjusting image contrast after moving our input images to a
clearer pixel space:

µ = EX ∈ [X],

σ2 = EX ∈ X [(x− µ)2],

x̂i =
xi − µ
σ + ε

(3)

X is a set of input vectors, µ, σ are the mean and standard
deviation of the entire image pixel space, ε is a small value to
prevent dividing by zero or small denominators.

Fig. 6. The image to the left, represents a raw image from the generated
IMDB-Images dataset. The image to the right, is the same as the one
to its left after Z −Normalization, showing stronger edges and more
defined geometrical shapes like blobs.

As fig.6 shows, the mentioned normalization technique pre-
vails in creating more distinguishable feature zones in one
image, due to the new mean which is close to 0.0 and standard
deviation nearing 1.0, which imposes a standard normal distri-
bution on the features, removing noisy regions and enhancing
outlying pixels.

C. Architectures used
Since our IMDB-Image dataset is very small compared to

the source ImageNet dataset [4], the Convolutional Feature
Extractors are sliced from their original pre-trained models,
and stacked to a Convolutional Auto-Encoder with randomly
initialized parameters, followed by a Dense (Linear) Classifier.
A common approach would be to freeze the pre-trained feature
extractors, which was followed in this paper to avoid any
overfitting problems.

Fig. 7. Main Architecture Used, the pre-trained block represents early
layers from five pre-trained Vision Models [14] [15] [21] [9] [27], outputting
the input to a Convolutional Auto-encoder, stacked to a Dense Classifier
(3 Linear fully connected layers)

As it is depicted in fig.7, the most important part of the archi-
tecture is the pre-trained feature extractor. In this paper, for the
sake of comparison and confirmation, early layers from five pre-
trained models were used as feature extractors, followed by the
exact same Conv-AE (Convolutional AutoEncoder) and Dense
classifier to ensure fairness in results. The detailed architectures
of the pre-trained models are outside the scope, of this paper.
1) pre-trained Feature Extractors: 2

Visualization of feature maps produced by frozen early layers
from the models to be mentioned, depicted in fig.8 lead to
choosing specific layers from each model to construct fixed
feature extractors to be appended to our standard Conv-AE
and Dense Classifier as discussed earlier.
• AlexNet: introduced in [14], Using the first two pre-trained

Convolutional Layers, outputs 192 feature maps for each
input image from the IMDB-image dataset, with fairly
distinguishable differences and focus.

• ResNet: A deep residual model from [9], known as wide-
resnet50-2, in torchvision terms. Using the first downsam-
pling Convolutional layer and the first residual layer which
contains skip connections described in the original paper.

• ResNext: [27], proposes an aggregated version of the pre-
vious ResNet, for the feature extractor we need, the first
Convolutional layer, and the first Residual layer are used
as well.

2All pre-trained models can be found at: https://pytorch.org/vision/
stable/models.html

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html


• ShuffleNet V2: From [15] the first Convolutional layer
followed by Batch normalization, and stage2 mentioned
in the paper.

• VGG16: introduced in [21], We only use the first 12 layers,
containing 4 Convolutional layers for the feature extractor.

fig.8 shows sample Feature maps from the feature extractors
from: resNet [9],. ShuffleNet [15], Vgg16 [21].

Fig. 8. Feature Maps from early layers of (a) : resNet, (b) : shuffleNet,
(c) : VGG16. The pre-trained feature extractors used in our common
architecture do in fact output feature maps with defined geometrical
features extracted due to the pre-training on the ImageNet [4] dataset.
We can observe the adjusted edges and blobs using Z−Normalization
being successfully detected by all pre-trained feature extractors, clearest
in the depicted three.

In fig.8 we can observe that the pre-trained models are
in fact able to extract global features from the new dataset,
edges and curves are distinguished by all the pre-trained feature
extractors, but clearest in the depicted three. Yielding that [28]
stated a concrete study of the transfer-ability of pre-trained
models to other datasets and tasks, requiring a considerate
treatment of the nature of the features learned by different
layers, and the different natures and domains of the source
and target datasets.

V. Experiment
This section discusses the training procedure for the men-

tioned architecture containing five different pre-trained feature
extractors from the Vision Models [14] [15] [21] [9] [27], pre-
trained on ImageNet [4], and the experimental results achieved
by each one on the generated IMDB-Image dataset.

A. Training
As shown in Fig.7, our five models share a Convolutional

AutoEncoder, and three Linear Layers, and differ in the pre-
trained feature extractors obtained from 5 different pre-trained
vision models [14] [15] [21] [9] [27]. Given the differences in data
domains depicted in Fig.5, avoiding any possible dataset and
covariate shifts is necessary. Using ReLU to keep the same
activation patterns within layers of our architecture, given that
all 5 pre-trained feature extractors contain ReLU activations.
Batch Normalization [10] is applied after each convolutional
layer in our Convolutional AutoEncoder block, since our pre-
trained feature extractors are trained with 1000 classes on the
label side, and our classification task only has 2 classes, this
causes an Internal Covariate Shift, representing the change in
the distributions of internal nodes of our network as mentioned
in [10]. Adam Optimizer [13], is used for all 5 models, to ensure
fairness in comparisons, and a fixed batch size of 32. Our
IMDB-Image dataset contains 50000 images samples, we split
the dataset into a 40000 train and a 10000 validation samples.
Differential learning rates are used for our Adam [13] optimizer,
while keeping the pre-trained feature extractors frozen during
training, since our dataset is very small compared to the Source
Dataset (imageNet [4])
An NVIDIA GEFORCE GTX 1060 GPU was used for the

entire procedure.

B. Experimental Results
As mentioned in the previous subsection, the different models

were trained, with different learning rates, but yet reached very
close Validation Accuracies. Higher learning rates caused all
models to stagnate and converge very fast to local optimal
points, which prevented the models to further learn features
necessary to distinguish between different variations contained
in each image representing the text samples in the original
IMDB-dataset [16].
The following table depicts the number of feature maps

outputted by each Feature Extractor along with different Learn-
ing Rates used for each one, and the corresponding achieved
Validation Accuracies. Fig.9 shows the progress of the validation
performance of the five models during training. TABLE 1 and
Fig.9 both emphasize the very close results obtained from
training all five models on the same IMDB-Image dataset.
Freezing the pre-trained Feature Extractors allows for the

complexity of the model as a whole for the five variations
to drop, avoiding any chance of overfitting due to the gray
scale nature of our IMDB-Image dataset and the RGB channel
space of the Source Dataset (ImageNet [4]). The experimental
analysis conducted in this paper, is explicitly dedicated to
the results obtained by our method and architectures. No
comparison with benchmarks or state-of-the-art results in either
Image or Text Classification is necessary, since our method
is explicitly probing the Text to Image Transformation
approach described throughout this work.
Given that the pre-trained Feature Extractors, followed by the
exact same Convolutional AutoEncoder and Dense Classifier,
are trained on the same generated IMDB-Image dataset, and



Feature Ext Nbr of FM’s CAE LR LC LR Val Acc

AlexNet [14] 192 0.00001 0.0005 0.81 (±0.01)

ResNet [9] 256 0.00005 0.0001 0.82 (±0.01)

ResNext [27] 256 0.00005 0.001 0.82 (±0.01)

ShuffleNet [15] 116 0.0005 0.001 0.81 (±0.01)

VGG16 [21] 256 0.00005 0.001 0.81 (±0.01)

TABLE I
Nbr of FM’s (Number of feature-Maps), Learning Rates for
CONV-AE (Convolutional AutoEncoder and LC (Linear

Classifier) and Val Acc (Validation Accuracy) for each model
defined by its Feature Ext (Extractor)

Fig. 9. Validation Accuracy for Five Models during Training process
VS. Steps(10 Epochs), where each graph is identified by the model from
which its feature extractor is taken. Showing relatively close learning
graphs.

observing the experimental results obtained in TABLE 1 and
Fig.9, suggests the following:
• The normalized IMDB-Image Dataset, is still not fully

avoiding domain shifts due to its raw gray-scale nature.
• The different number of features outputted by each feature

extractor, and the almost identical Validation Accuracies,
suggests that some feature maps are duplicated, also due
to the gray scale nature of the IMDB-Image dataset.

• We can clearly see in Fig.9 that the five models learned
at different rates, yet reached close Validation results, this
can imply that the models do indeed vary in complexity
and generalization abilities, yet limited by dataset size, forc-
ing a maximum validation performance which is almost
achieved by all of them.

• The general features learned from the early layers used
as feature extractors are extremely similar as suggested
in [28], yielding similar results even with different learn-
ing rates, since the feature maps play the role of fixed

representations for the same dataset.
• Although the Validation Results accomplished do not rise

to the State-Of-The-Art in Text Classification, they are still
promising given the circumstances and the complexity of
the methodology underwent to obtain them.

• The main goal of the paper is achieved, being the classifi-
cation of text after transforming it into images, with Vision
Models pre-trained on ImageNet [4].

As mentioned above, our work is by no means an attempt to
reach state-of-the-art results in either Image Classification
nor Text Classification. Hence, the only comparison con-
ducted in our experiment, measures how different pre-trained
models with different architectures vary in the way they extract
feature maps for the newly generated IMDB-Image Dataset.

VI. Data and Code Availability
Both the generated IMDB-image dataset, the code for:
• BERT Embedding, Data Transformation and loading.
• Different architectures and training scripts using PyTorch.
• Reproducible paradigm with commented and explained

steps.
Are available and ready to be shared.
After initial replies from the conference reviewers, the available
dataset and entire code with explained steps for the whole
procedure described in this paper will be posted and shared,
and links will be added to future versions, with respect to the
review period.

VII. Conclusion
In this paper a new approach to Sentiment Analysis via

Supervised Learning is suggested, using Transfer Learning of
pre-trained Vision Models on an Image Dataset (ImageNet [4]),
to a textual polarity Dataset (IMDB [16]) embedded using
a pre-trained BERT [5] model, where text embeddings are
transformed into images using t-SNE [24] feature similarity
measuring (Inspired from the work done in DeepInsight [19]),
and pre-trained Vision models, are used as feature extractors for
a much smaller Neural Classifier to learn sentiment labels. The
contributions of our work, is mainly the generation of a new
dataset representing textual data from the IMDB [16], avoid-
ing possible domain shifts with pixel normalization, and the
expansion to possible future applications using larger datasets
and resources. Our results are not compared to the state-of-the-
art results because of the unfairness due to DomainShifts
and hardware requirements for the generation of an Image
Dataset for a larger Textual Dataset. Future work aims to
further normalize the discussed approach, as it gives promising
results for a small dataset, opening a new challenge for the
fusion of Language and Vision via Transfer Learning and Data
transformation.



References

[1] S Bozinovski and A Fulgosi. The influence of pattern similarity and
transfer learning upon the training of a base perceptron b2.(original
in croatian). In Proceedings of the Symposium Informatica, pages
3–121.

[2] Stevo Bozinovski. Reminder of the first paper on transfer learning
in neural networks, 1976. Informatica, 44(3), 2020.

[3] Gabriela Csurka. Domain adaptation for visual applications: A
comprehensive survey. arXiv preprint arXiv:1702.05374, 2017.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages
248–255. Ieee, 2009.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional transformers
for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics.

[6] Mingtao Ding, Zheng Tian, and Haixia Xu. Adaptive kernel
principal component analysis. Signal processing, 90(5):1542–1553,
2010.

[7] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain,
Hugo Larochelle, François Laviolette, Mario Marchand, and Victor
Lempitsky. Domain-adversarial training of neural networks. The
journal of machine learning research, 17(1):2096–2030, 2016.

[8] Dina Q Goldin and Paris C Kanellakis. On similarity queries for
time-series data: constraint specification and implementation. In
International Conference on Principles and Practice of Constraint
Programming, pages 137–153. Springer, 1995.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. corr abs/1512.03385 (2015),
2015.

[10] Sergey Ioffe and Christian Szegedy. Batch normalization: Acceler-
ating deep network training by reducing internal covariate shift.
In International conference on machine learning, pages 448–456.
PMLR, 2015.

[11] Ganesh Jawahar, Benoît Sagot, and Djamé Seddah. What does bert
learn about the structure of language? 2019.

[12] Yoon Kim. Convolutional neural networks for sentence classifica-
tion. corr abs/1408.5882 (2014). arXiv preprint arXiv:1408.5882,
2014.

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[14] Alex Krizhevsky. One weird trick for parallelizing convolutional
neural networks. arXiv preprint arXiv:1404.5997, 2014.

[15] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architecture
design. In Proceedings of the European conference on computer
vision (ECCV), pages 116–131, 2018.

[16] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang,
Andrew Y. Ng, and Christopher Potts. Learning word vectors for
sentiment analysis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language
Technologies, pages 142–150, Portland, Oregon, USA, June 2011.
Association for Computational Linguistics.

[17] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Ef-
ficient estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781, 2013.

[18] Aditya Mogadala, Marimuthu Kalimuthu, and Dietrich Klakow.
Trends in integration of vision and language research: A survey
of tasks, datasets, and methods. arXiv preprint arXiv:1907.09358,
2019.

[19] Alok Sharma, Edwin Vans, Daichi Shigemizu, Keith A Boroevich,
and Tatsuhiko Tsunoda. Deepinsight: A methodology to transform
a non-image data to an image for convolution neural network
architecture. Scientific reports, 9(1):1–7, 2019.

[20] Hidetoshi Shimodaira. Improving predictive inference under co-
variate shift by weighting the log-likelihood function. Journal of
statistical planning and inference, 90(2):227–244, 2000.

[21] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[22] Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. How to fine-
tune bert for text classification? In China National Conference
on Chinese Computational Linguistics, pages 194–206. Springer,
2019.

[23] Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias.
In CVPR 2011, pages 1521–1528. IEEE, 2011.

[24] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data
using t-sne. Journal of machine learning research, 9(11), 2008.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin.
Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[26] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault,
Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transform-
ers: State-of-the-art natural language processing. arXiv preprint
arXiv:1910.03771, 2019.

[27] Saining Xie, Ross B Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. corr abs/1611.05431 (2016). arXiv preprint
arXiv:1611.05431, 2016.

[28] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How
transferable are features in deep neural networks? arXiv preprint
arXiv:1411.1792, 2014.

[29] Syed Sahil Abbas Zaidi, Mohammad Samar Ansari, Asra Aslam,
Nadia Kanwal, Mamoona Asghar, and Brian Lee. A survey of mod-
ern deep learning based object detection models. arXiv preprint
arXiv:2104.11892, 2021.

[30] Lei Zhang and Xinbo Gao. Transfer adaptation learning: A decade
survey. arXiv preprint arXiv:1903.04687, 2019.

[31] Ye Zhang and Byron Wallace. A sensitivity analysis of (and
practitioners’ guide to) convolutional neural networks for sentence
classification. arXiv preprint arXiv:1510.03820, 2015.

[32] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel
Urtasun, Antonio Torralba, and Sanja Fidler. Aligning books and
movies: Towards story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE international
conference on computer vision, pages 19–27, 2015.

[33] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun
Zhu, Hengshu Zhu, Hui Xiong, and Qing He. A comprehensive
survey on transfer learning. Proceedings of the IEEE, 109(1):43–76,
2020.


	Introduction
	Related Work
	Transfer Learning
	Transfer Learning in Language and Vision
	Transfer Learning in Language
	Transfer Learning in Vision

	Text Classification using Convolutional Neural Networks

	Preliminaries
	IMDB Dataset
	BERT
	DeepInsight
	t-SNE

	Method
	Generating the IMDB-Image Dataset
	BERT Embeddings Generation
	Transforming BERT Embeddings into Images
	Image Data Visualization

	Data Domains and Transfer Learning
	Data Domains
	Transfer Learning

	Architectures used
	pre-trained Feature Extractors


	Experiment
	Training
	Experimental Results

	Data and Code Availability
	Conclusion
	References

