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Abstract—Carbon neutrality is a global target pursued by 

cities worldwide to achieve a balance between carbon emissions 

and removals, reaching a net-zero carbon state. Mitigation 

measures are being implemented to reduce emissions and 

enhance carbon sequestration, aiming to meet the targets set for 

2050 or 2060. However, challenges posed by urban sprawl and 

increasing urbanization raise concerns about the feasibility of 

achieving carbon neutrality. Various studies have been 

conducted to project the attainment of this goal by developing 

prediction models. Machine learning (ML) prediction models 

use socio-economic, energy, and technological data to forecast 

carbon neutrality. These models consider factors like GDP per 

capita, urbanization rate, total energy consumption, and forest 

stock volume, formulating scenarios based on policy documents 

and historical data. Some models have incorporated 

optimization methods like the sparrow search algorithm, genetic 

neural network, and aquila optimizer to improve prediction 

accuracy. However, classical optimization methods have 

limitations, such as susceptibility to getting trapped in local 

optima, which can affect model performance. Quantum-based 

optimization methods, particularly quantum annealing (QA), 

are emerging as potential solutions to address these challenges 

by leveraging the principles of quantum mechanics to optimize 

complex problem spaces. QA enhances ML processes like 

feature selection, hyperparameter optimization, and regression 

model optimization. This study provides a review of pipeline 

processes from state-of-the-art methods, as well as their 

potential quantum-based enhancements, to achieve more 

precise predictive models. 

Keywords—Prediction Model, Carbon Neutrality, Machine 

Learning (ML), Quantum Annealing (QA) 

I. INTRODUCTION 

Carbon neutrality, the goal of achieving a balance 

between carbon emissions and removals to reach net-zero 

carbon, is being pursued by cities worldwide [1],[2]. Human 

activities in urban areas, including energy usage, 

transportation, waste management, and land use, directly and 

indirectly impact carbon emissions [3]. Many countries have 

set specific targets to achieve carbon neutrality by 2050 or 

2060, with carbon peak times centered around 2030 [4]–[8]. 

To meet these targets, various efforts and mitigation 

measures have been implemented [9], including reducing 

carbon emissions and increasing carbon sequestration. 

However, challenges such as urban sprawl and the trend of 

urbanization pose obstacles to this progress [10]. As a result, 

there are concerns about whether the vision of carbon 

neutrality can be achieved or if it will remain an aspiration. 

Several studies have developed ML prediction models to 
assess the attainment of carbon neutrality using socio-
economic, energy, and technological data [4]–[8]. These 
models consider factors such as GDP per capita, urbanization 
rate, total energy consumption, and forest stock volume as 
predictors of carbon emissions and sinks. Additionally, 
various scenarios based on policy documents and historical 
development levels have been formulated to measure future 
progress towards carbon neutrality. Successfully achieved 
scenarios include the green development scenario [7], 
adjusting electricity emission intensity [5], low energy 
demand with multiple treatments [8], and the high-
enhancement scenario [4]. The findings of these studies 
provide valuable policy recommendations, such as improving 
energy utilization efficiency, developing carbon removal 
technologies, managing population, and controlling total 
energy consumption [4]–[8]. 

While classical optimization methods like the sparrow 
search algorithm [7], elastic net regression [5], genetic neural 
network [8], and the aquila optimizer [4] are still commonly 
used to enhance ML predictions, they have limitations in 
optimization. These limitations include being prone to getting 
trapped in local optima and being unable to guarantee global 
optima [11], which can impact the quality of solutions 
obtained. Consequently, there is a growing interest in utilizing 
quantum-based optimization methods, such as QA [11], [12], 
to improve ML. QA can be employed for various ML 
optimization processes, including training, prediction, 
classification, clustering, and neural network optimization. 

Unlike classical approaches that rely on classical 
mechanics, quantum-based approaches utilize the principles 
of quantum mechanics, including quantum bits (qubits), 
superposition, and inference. These approaches have the 
ability to overcome the limitations of conventional computing, 
which is crucial for obtaining optimal solutions in complex 
problem spaces [11]. Quantum-based approaches are 
commonly used to solve optimization problems such as NP-
hard and probabilistic sampling [11], [13]. However, in the 
context of this study, the current state-of-the-art methods still 
rely on classical ML. By integrating quantum-based 
approaches with ML, it is possible to enhance predictive 
models and produce better results. This study aims to integrate 
quantum-based approaches with ML to create an optimal 
carbon neutrality prediction model. The integration of ML 
with quantum approaches offers several advantages, including 
optimized feature selection, accelerated hyperparameter 
optimization, and streamlined regression model optimization 
[12]. Therefore, this paper proposes two main contributions: 
(1) a carbon neutrality prediction model framework developed 
by state-of-the-art methods, and (2) the enhancement of ML 
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prediction models using quantum-based methods to improve 
predictive accuracy. 

Section II provides background information, Section III 
reviews relevant previous research, Section IV explains the 
quantum-based prediction model, and Section V presents the 
conclusions and future directions of this study. 

II. BACKGROUND 

A. Carbon Emissions 

The calculation of carbon emissions from various sources 

follows the established formulation in the global protocol for 

greenhouse gas inventory [14], with the following equation: 

𝐶𝑒 = ∑ 𝐴𝐷𝑖
𝑛
𝑖=1  .  𝐸𝐹𝑖                          (1) 

where 𝐶𝑒  is the total carbon emissions, 𝐴𝐷  represents 

activity data in quantitative form, and 𝐸𝐹  is the carbon 

emission factor. Generally, carbon emission inventories 

involve several key sources, such as energy, transportation, 

industrial processes, land use, and waste. 

B. Carbon Sinks 

Carbon sink in urban areas is calculated based on the 

vegetation in green open spaces using the following equation 

[15]: 

𝐶𝑠 = 𝐿𝐴 ∙ 𝑆                                     (2) 

where 𝐶𝑠  is the carbon sink capacity based on green open 

spaces, 𝐿𝐴  is the area of green open space (m2), 𝑆  is the 

carbon sequestration rate (𝜇𝑔/𝑚2/𝑦𝑒𝑎𝑟)  given by 

0.2278𝑒(0.0048∙𝐼),  with I representing light intensity 

(kal/cm2/day).   

C. Carbon Peak 

Carbon peak refers to the point in time when a country's 

carbon dioxide (CO2) emissions reach their highest level 

before starting to decline. Most countries have set targets to 

achieve carbon peak around the year 2030 [4], [16]. 

D. Carbon Neutrality 

Carbon neutrality refers to the achievement of a state in 

which there is a balance between carbon emissions and 

carbon absorption from the atmosphere. The goal is to have 

net-zero carbon, meaning the amount of CO2 emitted is offset 

by the amount removed [4], [7]. The formula for measuring 

carbon neutrality is as follows: 

𝐶𝑛 = 𝐶𝑒 − 𝐶𝑠              (3) 

where 𝐶𝑛 is the total remaining carbon after substracting 𝐶𝑠 

from 𝐶𝑒. An area is considered carbon neutral if 𝐶𝑛 ≤ 0. 

E. Quantum Annealing (QA) 

The quantum gate model and QA differ significantly in 

their implementation and offer unique benefits compared to 

classical computing. The gate model tackles problems by 

breaking them down into a series of basic operations (gates) 

that yield clearly defined "digital" measurement outcomes, 

similar to classical computing. On the other hand, QA 

effectively samples low-energy configurations of quantum 

systems and excels in solving optimization problems, 

including NP-hard, combinatorial, and probabilistic sampling 

problems [11], [17]. 

 

Fig. 1. Combinatorial optimization problem utilizing quantum annealing 

machines (adopted from [17]) 

Fig. 1 shows the process of solving optimization poblem 

using QA machines. QA operates via a quantum adiabatic 

process, beginning with the preparation of the ground state 

using the Initial Hamiltonian. It then evolves adiabatically 

until it transforms into the Final Hamiltonian, which 

represents the optimal solution to the problem. QA machines 

solve large-scale optimization problems by converting them 

into quadratic unconstrained binary optimization (QUBO) or 

Ising models with mathematical representation. The 

following equation is the formulation of QUBO [18]: 

𝐸(𝑥𝑖) = ∑ 𝐴𝑖,𝑗𝑥𝑖𝑥𝑗𝑖,𝑗          (4) 

where 𝑥𝑖 ∈ {0,1} is the binary decision variable of problem, 

and 𝐴𝑖,𝑗 ∈ ℝ are the coefficients. 

 

III. RELATED WORKS 

A. Prediction Models for Carbon Neutrality  

1) Dataset 

The datasets used to predict carbon neutrality come from 

various sources, including energy, socio-economic, carbon 

emissions, and climate data. These datasets represent both 

direct and indirect factors that influence carbon emissions 

projections for the future. Carbon emissions in a specific area 

can be calculated using Equation 1, while reduction factors 

such as the area of green open spaces can be calculated using 

Equation 2. In one study [8], diverse datasets such as C-GEM, 

MESSAGEix, GAINS, and CE3METL energy models, along 

with Shared Socio-Economic Pathways (SSPs), were used. 

Another study [5] relied on a crucial dataset that included 

building-level electricity consumption in Hong Kong for over 

39,000 buildings from 1982 to 2016. This dataset was 

supplemented with additional variables such as temperature, 
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construction details, socio-economic factors, and local 

climatic conditions. Studies [4] and [7] used national and 

international datasets that provide information on GDP, 

population, urbanization, energy consumption, and carbon 

emissions. Similarly, study [6] used historical data on China's 

carbon emissions from 1990 to 2018 as the basis for future 

projections. Selecting appropriate datasets is crucial in 

developing accurate prediction models. 

2) Feature Extraction 

Feature extraction is important for identifying key factors, 

reducing data redundancy, and filtering out irrelevant criteria. 

The study [8] used different methods for feature extraction. 

For energy structure (ES), energy intensity (EI), and 

industrial structure (IS), they used partial least squares (PLS) 

regression, while linear regression was used for economic 

output (EO) and population (P) due to their one-dimensional 

inputs. The logarithmic mean divisia index (LDMI) model 

was used to decompose driving factors related to CO2 

emissions, considering variables such as P, per capita GDP, 

EI, and carbon intensity. This helped identify the 

contributions of different factors to total emissions. In study 

[5], the STIRPAT model and machine learning regression 

(MLR) techniques like least absolute shrinkage and selection 

operator (LASSO), Elastic Net, and Ridge regression were 

combined to select relevant factors and establish their 

historical correlation with building energy consumption. The 

MLR approach addressed issues of multicollinearity and 

overfitting. Study [7] used IPAT and STIRPAT to determine 

influencing factors, considering environmental impact, 

population, affluence, and technology levels as key factors. 

Gray relation analysis (GRA) was also used to handle 

complex problems involving multiple factors and nonlinear 

relationships, helping to understand the relationship between 

different factors and their impact on the target variable. Other 

methods for feature selection included LASSO, bayesian 

information criterion (BIC), and principal component 

analysis (PCA) as used in study [6]. LASSO extracted 

important information from various influencing factors, BIC 

guided the inclusion or exclusion of variables in a model, 

while PCA extracted features of the remaining variables to 

avoid missing information caused by feature selection. 

3) Prediction Method 

Previous studies have used various hybrid machine 

learning methods for predicting carbon neutrality. These 

include GRA-SSA-ENN [7], AO-ELM [4], DE-GWO-SVR 

[6], MLR [5], and ANN [8]. Study [7] employed the GRA 

algorithm to rank correlations and extract eight core elements 

as input variables for the prediction model, improving 

operational efficiency. The elman neural network (ENN) was 

used to handle dynamic temporal patterns, while SSA was 

utilized to optimize ENN parameters, addressing the issue of 

potential local optima. This optimization step ensures 

superior performance and accuracy. In study [4], the aquila 

optimizer (AO) was used to enhance the extreme learning 

machine (ELM) by finding optimal weights and thresholds. 

The AO technique simulates the hunting behavior of an 

aquila (eagle), involving steps to search and capture prey until 

the optimal solution is found. The AO-ELM model 

demonstrated better forecasting performance and lower 

simulation errors compared to traditional BPNN and single 

ELM models, indicating its effectiveness. Study [6] 

employed support vector regression (SVR) optimized with 

differential evolution-grey wolf optimization (DE-GWO). 

SVR excels with small sample sizes and avoids overfitting 

through a convex objective function. However, SVR's 

performance heavily depends on manually set and suboptimal 

initial parameters. DE-GWO was used to optimize SVR 

parameters, combining the strengths of DE and GWO to 

enhance the search for optimal parameters. DE effectively 

explores the search space, while GWO ensures convergence 

to the global optimum. Study [5] used MLR to forecast the 

carbon footprint by determining the historical correlation 

between building electricity consumption and its influencing 

factors. MLR also addresses potential multicollinearity and 

overfitting problems by selecting relevant variables and 

analyzing their correlations. Shrinkage methods like LASSO, 

Elastic Net, and Ridge regression were used. The results 

showed that MLR models demonstrated high accuracy in 

predicting electricity consumption, evidenced by the close 

match between estimated and reported values and high 

coefficients of determination (R²). In another study, [8] used 

an artificial neural network (ANN) to predict driving factors 

of CO2 emissions. The research utilized a multilayer 

feedforward neural network trained with the error back-

propagation algorithm to forecast driving factors. The 

parameters of the carbon emission network were optimized 

using a genetic neural network in MathWorks MATLAB 

r2016a, achieving high accuracy and minimal error. Training 

performance was evaluated through mean square error 

(MSE), ensuring the artificial neural network (ANN) models 

delivered reliable predictions without overfitting. This 

thorough validation process was crucial in selecting the 

optimal networks for each driving factor. 

4) Performance Measurement 

Various evaluation methods, such as mean absolute 

percentage error (MAPE), mean absolute error (MAE), and 

root mean squared error (RMSE), can be used to measure the 

performance of predictive models. These indicators help 

gauge the discrepancy between actual values and predicted 

results. The lower the values of MAPE, MAE, and RMSE, 

the better the prediction model performs. The formulas for 

these indicators are provided below [7]: 

𝑅𝑀𝑆𝐸 = √
1

𝑇
∑ (𝑦(𝑖) − �̂�(𝑖))2𝑇

𝑖=1             (5) 

𝑀𝐴𝑃𝐸 =
1

𝑇
∑ |

𝑦(𝑖)−�̂�(𝑖)

𝑦(𝑖)
| × 100%𝑇

𝑖=1                (6) 

𝑀𝐴𝐸 =
1

𝑇
∑ |𝑦(𝑖) − �̂�(𝑖)|𝑇

𝑖=1          (7) 

where 𝑦(𝑖) is the actual value and �̂�(𝑖) is the predicted value. 

5) Scenario Analysis 

To effectively predict carbon emissions and achieve 

carbon neutrality, the study [4] proposes scenario analysis. 

The process begins by identifying key variables such as GDP 

per capita (GDPPC), urbanization rate (UR), and total energy 

consumption (TEC). Multiple scenarios are then developed 

based on different combinations of these variables, which 

reflect varying levels of economic growth, urbanization, and 
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energy consumption patterns. Each scenario incorporates 

different policy measures aimed at reducing emissions, 

enhancing carbon sinks, or promoting renewable energy 

sources to understand their impact on carbon emissions. 

Historical data is used to calibrate the models, ensuring that 

the scenarios are realistic and creating a baseline scenario that 

mirrors current trends and policies. Using these constructed 

scenarios, future carbon emissions and carbon sinks are 

projected over a specified period, taking into account 

potential carbon peaks. Prediction models are then applied to 

each scenario to forecast the future trajectory of carbon 

emissions and assess the effectiveness of different strategies. 

Finally, the outcomes of each scenario are evaluated by 

comparing the predicted emissions with the carbon neutrality 

targets, using Equation 3, to help identify the most effective 

pathways to achieve net-zero carbon. 

B. Integrating ML with QA in Prediction Tasks 

The integration of ML with QA has the potential to 

revolutionize computational methodologies, offering 

groundbreaking solutions for complex real-world problems 

and enhancing problem-solving capabilities. Classical ML 

demands extensive computational resources for parameter 

optimization due to the vastness of the solution space. In 

contrast, QA leverages quantum fluctuations to efficiently 

navigate these intricate spaces, providing accelerated 

solutions. The potential enhancements of ML through QA 

include [12]: 

• Optimized Feature Selection: Feature selection is 

essential for model interpretability and performance, 

especially with high-dimensional datasets. QA offers a 

robust method to streamline this process by effectively 

exploring extensive feature spaces. 

• Accelerated Hyperparameter Optimization: 

Hyperparameter optimization greatly impacts model 

performance, yet exploring large parameter spaces is 

computationally intensive. QA revolutionizes this 

process by simultaneously evaluating numerous 

hyperparameter settings. 

• Streamlined Regression Model Optimization: 

Regression models used to predict carbon emissions, as 

seen in studies [5], [6], require precise parameter tuning, 

which is challenging in high-dimensional parameter 

spaces. QA addresses this by efficiently navigating 

parameter spaces, ensuring accurate predictions. 

The fusion of QA with ML presents a transformative 

approach to computational challenges, promising enhanced 

efficiency, speed, and accuracy in various predictive tasks. 

IV. THE QUANTUM-BASED PREDICTION MODEL 

In developing a quantum-based prediction model, the 

framework is formulated by integrating steps from previous 

studies [4]–[8], as shown in Fig. 2. The model consists of 

three main phases: feature selection, model development, and 

carbon neutrality projection. Feature selection is the phase 

where the most suitable features are identified to be used as 

inputs for the prediction model. Model development involves 

constructing a prediction model with the highest possible 

accuracy through comprehensive evaluation. Finally, carbon 

neutrality projection is the phase where the achievement of 

carbon neutrality is projected under different scenarios to 

determine the optimal scenarios. 

 

Fig. 2. Framework for carbon neutrality prediction models with quantum-based enhancements (combined from: [4]–[8]) 

Fig. 2 illustrates the stages of the overall prediction 

model, integrating various state-of-the-art methods utilized in 

previous studies along with proposed enhancements using 

quantum methods. The model combines classical and 

quantum approaches to optimize feature selection, 

hyperparameter tuning, and scenario analysis for predicting 
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carbon neutrality. The integration of quantum techniques, 

such as QA, aims to improve the efficiency and accuracy of 

the prediction model by effectively addressing combinatorial 

optimization problems compared to classical methods. The 

process begins with Feature Selection, which aims to identify 

and extract the most relevant features for the prediction 

model. It starts by collecting comprehensive dataset, 

including variables related to carbon emissions, energy, 

economy, society, and climate. Key influencing factors are 

identified using models like IPAT, STIRPAT, and LMDI. 

Feature extraction methods such as LASSO, Ridge 

Regression, Elastic Net, and BIC are employed to extract 

significant features. Dimensionality reduction techniques like 

PLS, GRA, and PCA streamline the feature set, and this 

process is enhanced by utilizing QA for more efficient 

reduction and final selection of features. Next is Model 

Development, which focuses on creating and optimizing the 

prediction model. Initially, hyperparameters are optimized 

using algorithms like AO, DE-GWO, SSA, and GNN. This 

process is improved the classical methods with QA for 

superior optimization results. Prediction models are 

developed using machine learning techniques such as ENN, 

ANN, ELM, and SVR. The models are then evaluated using 

metrics like MAPE, MAE, RMSE, and R2 to ensure accuracy 

and reliability, resulting in the final models. Finally, in the 

Carbon Neutrality Projection phase, multiple scenarios are 

constructed and analyzed to predict future carbon neutrality 

outcomes. This process is improved by incorporating QA, 

enhancing the scenario setting process for more accurate and 

comprehensive analysis. The final models classify scenarios 

to project whether they will result in a neutral or non-neutral 

carbon status, providing valuable insights for stakeholders. 

Each of these improved processes is explained in the points 

below: 

1) Dimensionality Reduction 

Dimensionality reduction during feature selection is 

recognized as a combinatorial problem that can be effectively 

optimized using QA [19]. This problem must be converted 

into a format compatible with QA, such as the QUBO format. 

In this method, each feature's inclusion or exclusion is 

represented by binary variables, where "1" indicates the 

feature is selected, and "0" indicates it is not. The significance 

of each feature is evaluated based on its correlation with the 

target variable. QA's capability to find solutions without 

strictly enforcing constraints offers an advantage over 

classical techniques. The QUBO formulation seeks to 

identify the binary variable arrangement that optimizes the 

objective function, representing the subset of features that 

most effectively improves prediction accuracy. This 

formulation is designed to maximize the relevance of selected 

features while minimizing redundancies and irrelevant 

features. The detailed process of optimizing QUBO for 

feature selection is outlined below: 

Minimize   𝐹(𝑥) = 𝑥𝑇𝐹𝑥 = ∑ ∑ 𝐹𝑖𝑗𝑥𝑖𝑥𝑗
𝑁
𝑗=𝑖+1

𝑁
𝑖=1  (8) 

where 𝑥 is a vector of binary variables 𝑥𝑖 (or 𝑥𝑗), each taking 

value of either 0 or 1, and 𝐹 is a specified real-valued upper 

triangular matrix 𝐹 ∈  ℝ𝑁𝑥𝑁  with elements 𝐹𝑖𝑗  representing 

weights.  

2) Hyperparameter Optimization 

Hyperparameter optimization (HPO) aims to find the best 

set of hyperparameters that maximize a model’s performance. 

Unlike model parameters, which are learned during training, 

hyperparameters are set before the training process begins 

and govern the overall behavior of the model [20]. HPO is 

essential for implementing advanced ML techniques, 

including hybrid quantum-classical algorithms, which 

depend on well-optimized hyperparameters to outperform 

classical methods. The integration of quantum methods in 

hyperparameter optimization has shown significant potential 

in enhancing efficiency and performance [20], [21]. In the 

proposed model shown in Fig. 2, HPO can be enhanced using 

quantum-based methods like QA. The initial step involves 

formulating the problem as QUBO. The QUBO matrix P is 

an 𝑁𝑥𝑁 matrix where each element 𝑃𝑖𝑗  represents the weight 

or interaction between the 𝑖-th and 𝑗-th binary variables. The 

formulation can be used to optimize parameters such as the 

learning rate and the number of layers. The matrix P  is 

structured as follows: 

𝑃 = [

𝑃11     𝑃12     ⋯     𝑃1𝑁

𝑃21     𝑃22     ⋯     𝑃2𝑁

⋮         ⋮        ⋱        ⋮
𝑃𝑁1     𝑃𝑁2     ⋯     𝑃𝑁𝑁

]               𝑥 = [

𝑥1

𝑥2

⋮
𝑥𝑁

] 

in this matrix, the diagonal elements 𝑃𝑖𝑖  represent the self-

contributions of the binary variables, while the off-diagonal 

elements 𝑃𝑖𝑗  denote the interaction between different binary 

variables. The goal is to minimize the quadratic objective 

function 𝑃(𝑥) = 𝑥𝑇𝑃𝑥 , where 𝑥  is the vector of binary 

variables. This optimization identifies the best combination 

of hyperparameters for the machine learning prediction 

model. The next step is to solve the QUBO problem using 

quantum annealing machines, which explore the solution 

space to find the optimal set of hyperparameters, as outlined 

in the workflow in Fig. 1. 

One of the primary functions of hyperparameters is to 

balance a model's complexity and generalization. Well-tuned 

hyperparameters help prevent overfitting—where the model 

excels on training data but fails on unseen data—and 

underfitting—where the model is too simplistic to capture 

underlying patterns. Achieving this balance is crucial for the 

model's real-world performance, including in predicting 

carbon neutrality. 

3) Scenario Setting 

To measure the achievement of carbon neutrality, it is 

necessary to create a set of scenarios to explore future carbon 

emissions. These scenarios are typically constructed 

manually by analyzing various determining factors such as 

GDPPC, UR, secondary industry (SI), and TEC [4], [5], [7]. 

This process can be optimized using QA to identify the best 

scenarios for achieving carbon neutrality. An example of 

scenario construction can be modeled as shown in Table 1 

below: 
TABLE I.  LIST OF SAMPLE SCENARIOS 

Scenario 𝑭𝟏 𝑭𝟐 … 𝑭𝒏 

𝑆1 Low Medium … High 

𝑆2 Medium Low … High 

⋮ ⋮ ⋮ ⋮ ⋮ 
𝑆𝑛 High High … Low 
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with 𝑆 representing scenarios, 𝐹 representing factors such as 

GDPPC, UR, and SI, and Low-Medium-High representing 

the set of assumptions about future development. The QUBO 

formulation is defined for each 𝑆  dan 𝐹 , where 𝑥𝑖𝑗  could 

represent the setting of 𝐹1 in 𝑆1. The optimization goal is to 

minimize the objective function 𝑆(𝑥) = ∑ 𝑠𝑖𝑗𝑥𝑖𝑗 , where 𝑠𝑖𝑗  

are weights for each senario-factor pair. Similar to other QA 

optimization processes, this QUBO formulation is then 

processed in a quantum annealing machine as can be seen in 

Fig. 1 to determine the most optimal carbon neutrality 

scenario. 

 

V. CONCLUSION 

This paper presents a quantum-based prediction model for 

carbon neutrality by integrating machine learning (ML) and 

quantum annealing (QA). The model comprises of three main 

phases: feature selection, model development, and carbon 

neutrality projection. The proposed enhancements utilize QA 

in each phase, which previously relied on classical methods 

for processes such as dimensionality reduction, 

hyperparameter optimization, and scenario setting. QA is 

employed to solve combinatorial problems by converting 

them into QUBO format, which is then processed using 

quantum annealing machines to find the most optimal 

solutions. This study provides valuable insights into the 

development of prediction models that integrate ML and QA 

to forecast future carbon neutrality achievements. In future 

research, the carbon neutrality prediction framework will be 

implemented in real-world scenarios. Adjustments will be 

made to the dataset, features, and ML methods to address 

specific challenges. Performance measurements, such as 

accuracy, efficiency, and computational cost, between 

classical and quantum methods will also be conducted to 

validate the proposed approach. This continuation aims to 

refine the model developed in this paper for practical 

applications. 
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