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Abstract. Perovskite solar cells have been emerged as most promising third generation solar 

cell technology. In past few years, the efficiency of PSCs has increased drastically from 3.8% to 

25.6% for lab scale devices in single junction architecture. The conventional way to develop 

materials is generally based on trial and error, continuous synthesis methods which are time 

consuming and costly. This motivates the use of autonomous experimentation toolkits like 

linear or multiple regression (MR) or various machine learning algorithms. A dataset containing 

100 plus data points are collected from various published papers and analyzed using multiple 

regression algorithm in excel. The multiple regression (MR) model is applied for predicting the 

bandgap of the perovskite with the formula CsaFAbMA(1-a-b)Pb(ClxBryI(1-x-y))3 which takes into 

account the compositional engineering of cations and halide anions for predicting the optimum 

bandgap. The bandgap predicted by this model has a R square error of 0.96 which indicates the 

power of this model in prediction of the bandgap from their constituent material. 
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Introduction 

 
Gustav Rose in 1839 had discovered perovskite for the first time in the Ural 

Mountains of Russia. Historically, oxide-based perovskite was most actively studied 

perovskite family as they exhibit superior ferroelectric, magnetic and superconductive 

properties. CsPbX3 is the first halide-based perovskite structure identified by Moller in 

1958. Organic Methylammonium (MA) appeared in halide perovskite family as 

cation, was first reported by Weber et al in 1978[1]. The solar-cells are categorized 

into three-generations where first-generation and second generation solar-cells are 

mainly based on wafer, thin film respectively, whereas the third-generation solar cells 

employ organic structures. Silicon based Tandem solar cells have achieved a large 

power conversion-efficiency (PCE) of 25–26% in recent few years. Nevertheless, this 

new variety of third generation solar-cells are termed as perovskite solar-cells which 

are an alternative for silicon based solar-cells having ability to exhibit PCE of 

22.1%[2]. 

Hybrid organic-inorganic perovskite (HOIP) shows unique optical, electrical & 

optoelectronic performance in many applications. The properties like high efficiency, 

low temperature solution-based fabrication method, high absorption coefficient, high 

open circuit voltage and high diffusion length make the PSCs superior to other types 

of solar cells. The bandgap of perovskite materials plays an important role in light 

harvesting capability which governs the performance of different optoelectronic 

devices such as photodetectors, tandem solar cells, LEDs etc.[3,4]. 
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The value of Tolerance factor (t) lies between 0.85 to 1.11 for halide perovskite and 

0.89 to 1 for Oxide perovskites[5]. First 3D HOIPs discovered by replacing Cs in 

CsPbX3 with MA cations by Weber. CH3NH3PbI3 is most common materials for 

making high efficiency PSCs with a band gap of 1.55eV with absorption coefficient 

104-105 cm-1[6].  

Compositional mapping of perovskites is required to extend the absorption to longer 

wavelengths without sacrificing α. Keeping α constant, we can use it under UV range 

or Visible range or Near IR range. The band gap of PSCs can be tuned from 1.55eV to 

1.17eV by replacing Lead (Pb) to Tin (Sn)[7,8]. So, at 1.55eV bandgap the 

wavelength, the PSC can absorb is up to 800 nm. By changing the bandgap from 1.55 

eV to 1.17 eV the absorption of incident wavelength can be varied up to near IR 

range(700nm) along with visible range(400-800nm).  

To fabricate these types of HOIPs with the required bandgap the conventional way is 

trial and error-based experiments that requires high cost, lots of time, and materials. 

Meanwhile, though triple halide strategy with partial Br replaced by Cl is proved to be 

effective in achieving wide bandgap with reduced Br fraction, it faces challenges in 

doping Cl in the crystal lattice[9,10]. As Cl typically volatizes as MACl or FACl 

during annealing of the perovskite film[11]. Hence this limits the screening of the 

intrinsic elemental information of these materials. 

To overcome this, Density Function Theory (DFT), Molecular Dynamics (MD) are 

introduced for exploring the relationship between the structural, elemental, and 

technical descriptors & performance parameters. Still, it would be a chronophagous 

and inefficient way to find stable and high-performance perovskites simply by 

performing experiments or DFT calculations. Based on many existing literature and 

computational data, modern algorithms like linear regression, multiple regression and 

artificial intelligence have gradually played a major role in Perovskite 

discovery[12,13,14]. 

 

Methods 
 

Here we searched for the different literatures reporting the bandgap of the perovskites 

for building the dataset from web up to the end of 2021. Only Pb-based perovskites 

are considered, and Sn-based perovskites are excluded since Sn is not stable as it 

makes oxide on open atmosphere. Then the datasets are cleaned by removing the 

duplicate data points with same material composition and bandgap values. Finally, a 

dataset including 100 datapoints are extracted which cover Cl, Cl-Br mixed, Br, Br-I 

mixed, and I based MA, FA, and Cs. In the dataset MAPbCl3 has the maximum 

bandgap of 3.16eV while the minimum value is 1.48eV for FAPbI3[15]. The prepared 

dataset is shown in table 1 where 10 datapoints are shown. 

 

Table 1. Dataset prepared from different experimental literatures. 

 

Sample 

Id 

MA FA Cs Cl Br I Bandgap 

(eV) 

Ref. 

01 1.00 0.00 0.00 0.00 0.00 1.00 1.60 [16] 



02 0.70 0.20 0.10 0.00 0.00 1.00 1.56 [17] 

03 0.50 0.40 0.10 0.00 0.00 1.00 1.54 [16] 

04 0.40 0.60 0.00 0.00 1.00 0.00 2.20 [18] 

05 0.25 0.75 0.00 0.00 0.00 1.00 1.55 [16] 

06 0.20 0.70 0.10 0.00 0.00 1.00 1.49 [16] 

07 0.17 0.83 0.00 0.00 0.00 1.00 1.53 [16] 

08 0.00 0.80 0.20 0.00 0.18 0.82 1.66 [16] 

09 0.00 0.83 0.17 0.00 0.17 0.83 1.63 [19] 

10 0.00 0.85 0.15 0.00 0.15 0.85 1.53 [20] 

 

After preparing the error free dataset a correlation between all the independent 

variables and dependent variable is established by calculating the Pearson 

Coefficient(r). Accordingly, from fig 1 it can be said MA, Cl and Br have the highest 

influence over the bandgap as the r values are 0.46, 0.88 and 0.44 respectively. More 

the r value near to 1 the parameters are more closely related. So other variables like 

FA, Cs and Br don’t have much influence over bandgap. 

 

 
 

Fig 1. Relation between the influence of anions and cations over bandgap 

 



90% of the total data points are used for training purpose and rest 10% for the testing. 

After applying the multiple regression algorithm in excel on the 90% training data, a 

fixed intercept (c) value of 6.42639 and the slope(m) for each composition of our 

perovskite solar cell e.g., 0.013 for MA or -0.084 for FA is obtained. So, the bandgap 

can be predicted by the formula  

                                y = (m1x1+m2x2+m3x3+m4x4+m5x5+m6x6) + c                             (1)               

where, mn and xn represent the slope and percentage compositions of MA, FA, Cs, Cl, 

Br, I, respectively and y represent the bandgap. 

Using this multiple regression algorithm, the bandgap of any perovskite having 

formula CsaFAbMA(1-a-b) Pb (ClxBryI(1-x-y))3 can be predicted. A relative comparison is 

done between the actual bandgap and the predicted bandgap in fig 2. Some residual 

values are found for each bandgap reading, in some cases the value is high or 

sometimes it is negligible. This ununiform behavior of residuals is mainly due to the 

error of the algorithm itself and some noises present in the dataset. Noises refers to the 

data repetition, duplicate data, wrong data etc. To reduce this error, the residual plots 

shown in fig 3 are considered and accordingly refined the dataset. 

 

 
 

Fig. 2. Comparison between the predicted bandgap and the experimental bandgap 

from MR algorithm 

 

Once it applied MR algorithm, the residual plots for each cationic and anionic 

compositions are obtained shown in fig 3. The percentage amount of every cationic 

and anionic compositions is extracted from the curves for which the residuals are 

minimum.  

 



    

   

   
 

Fig. 3. Comparison of the residuals for each cationic and anionic compositions- (a) 

MA (b) FA (c) Cs (d) Cl (e) Br (f) I 

 

A fresh dataset of compositions is prepared where the residuals are minimum. The 

newly generated dataset from the residual plots is shown in table 2. With the obtained 

equation (1) the bandgaps of newly generated datasets are predicted and then the 

optimum bandgap is finalized. 

 

 

 

 

 

 

 

 

 



Table 2. Dataset from the residual plots of multiple regression algorithm. 

 

Sample 

Id 

MA FA Cs Cl Br I Predicted 

Bandgap (eV) 

01 0.15 0.75 0.10 0.10 0.05 0.85 1.683 

02 0.11 0.79 0.10 0.00 0.06 0.94 1.528 

03 0.15 0.75 0.10 0.10 0.00 0.90 1.641 

04 0.00 0.80 0.20 0.00 0.10 0.90 1.555 

05 0.16 0.84 0.00 0.00 0.10 0.90 1.550 

06 0.00 0.83 0.17 0.00 0.06 0.94 1.525 

 

Table 3 indicates the best perovskites having bandgap 1.52 eV to 1.68 eV. These are 

generated from the residual plots of the MR algorithm. Among these the bandgap of 

1.55 eV is considered as optimum bandgap as it is more focused on absorption of 

visible region wavelengths. So, PSCs like CsFAMAPb(BrI)3, FAMAPb(BrI)3 are 

selected as they have exact bandgap of 1.55eV.  

 

Table 3. Obtained PSCs from residual plots with bandgap ranging from 1.52 eV to 

1.68 eV 

 

Sample ID Obtained PSCs 

01 CsFAMAPb(ClBrI)3 

02 CsFAMAPb(BrI)3 

03 CsFAMAPb(ClI)3 

04 CsFAPb(BrI)3 

05 FAMAPb(BrI)3 

 

The multiple regression model gives R square error of 0.959 ≈ 0.96. The R square 

value suggest the coefficient of determination of a model. These indicate the accuracy 

of the model is 96%. The Root Mean Square Error (RMSE) is calculated by the 

formula  

                                                                      (2) 

Where  is predicted value and  is actual value which gives a value of 0.083 

is shown in table 4. It determines the dataset prepared is with less error.  



 

 

Table 4. Calculation of RMSE value from Actual vs Predicted Bandgap 

 

Actual Bandgap Predicted 

Bandgap 

Residuals Squared Error RMSE 

1.600 1.564 0.036 0.001277213 

0.083988 

1.560 1.545 0.015 0.000216058 

1.540 1.525 0.015 0.000200708 

1.520 1.561 -0.041 001.522E-05 

1.550 1.490 0.060 0.003450862 

1.490 1.496 -0.060 4.39632E-05 

1.530 1.483 0.047 0.002165165 

 

Conclusions 
 

MR algorithm has reduced the time and material cost in experiment significantly to 

explore and design new HOIPs. It shows high precision in predicting the bandgap of 

perovskites from their elemental properties. Here we show how cationic or anionic 

compositional tuning lead to vary the bandgaps of PSCs. Along with that new PSCs 

having bandgap from 1.52 eV to 1.68 eV can be predicted which are not in the 

experimental literature. The MR model gives a R square error of 0.96 and RMSE 

value of 0.08 according to the dataset we fed to it. Also, the r value between 

experimental and predicted bandgap is calculated to be  0.979 which indicates a strong 

relation between them. These optimized bandgaps predicted by MR algorithm leads to 

the roads of high efficiency PSCs. 
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