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Abstract—The rise of artificial intelligence brings information
security challenges for intelligent connected vehicles. Securing the
CAN is crucial to ensuring the overall security of the in-vehicle
network. Traditional cryptography technology faces challenges
of low computational efficiency and excessive data load when
identifying ECU. This paper proposes a light-weighted machine
learning based identification algorithm that leverages the physical
characteristics of ECU. By analyzing the CAN voltage signals
in the time and frequency domains, reducing the data load and
choosing a suitable classification model, this method achieves high
accuracy, high efficiency and low load for safety identification in-
vehicle networks. The experimental results on the data sets of
both actual vehicles and CAN bus prototypes have verified the
rationality and feasibility of the method.

Index Terms—CAN; ECU identification; physical characteris-
tics; light-weighted; machine learning

I. INTRODUCTION

Intelligent Connected Vehicle(ICVs) are growing rapidly
and also suffer from security threats[1]. The Controller Area
Network (CAN), which connects various sensors and Elec-
tronic Control Units(ECU), is the de facto communication
standard for in-vehicle network[2][3]. Since the CAN protocol
is designed under the resource constrains in-vehicle environ-
ment, it does not support message origin authentication. So it
lacks encryption and authentication protocols[4][5][6].

Traditional cryptographic authentication schemes based on
Message Authentication Code (MAC)[7] are no longer appli-
cable to CAN frame. Different ECUs show inherent variations
in signaling behavior due to hardware and manufacturing
inconsistencies. Therefore, the unique physical characteristics
based on clock offset could be used as ECU fingerprinting.
Based on this, researchers analysed the physical characteristics
of the CAN signals transmitted from the ECU as its authentica-
tion ID[8]. Since the physical characteristics extraction based
on clock offset is easily falsified[9][10], researchers collected
different data segments in CAN message frames as training
samples and build machine learning models to classify and
identify ECUs for intrusion detection. Most of these methods
do not take sufficient account of lightweight requirements, or
do not select a more suitable machine learning algorithm given
the limited resources available.
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To implement an ECU fingerprinting technology in CAN
networks using low-cost and resource-limited hardware, we
propose a light-weighted machine learning identification
method, which provides authentication capability for CAN
networks. Firstly, dozens of features are extracted from voltage
data of CAN signals in the time and frequency domains.
The data preprocessing and feature selection are conducted
on those features. Finally, two kinds of machine learning
classification models are trained and compared based on
experiment results. By means of proper feature reduction and
a suitable classification model, the proposed method achieves
high efficiency and low data load for ECU identification
in CAN. In brief, the contributions of our work can be
summarized as follows:

• The data load of the identification algorithm is greatly
reduced. The amount of training data is reduced by only
adopting the dominant segment. Furthermore, the original
dozens of features extracted from the dominant segment
are filtrated to a few by recursive feature elimination.

• Aiming to the light-weighted requirement, the more suit-
able machine learning model is chosen in steps. Two
kinds of models are initially adopted considering the lim-
ited resource constraints. Then experimental comparisons
are conducted between them on classification precision
and performance.

• Comprehensive experimental validation is performed on
a public dataset from real vehicles and a CAN bus
Prototype respectively. Both experimental scenarios show
the rationality and feasibility of our method.

The rest of the paper is organized as follows. Section II
contains the basic knowledge and related work. Section III
describes the fingerprint identification method in detail. The
experimental dataset and results are presented in Section IV.
Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORKS

In this section we introduce some brief background on
Controller Area Network and the related works.



A. Background on Controller Area Network

The CAN bus enables electronic control units to exchange
data at rates of up to 1 Mbps over twisted pair cables[3]. The
CAN protocol uses differential signals of high-level CAN-H
and low-level CAN-L to make CAN noise-resistant and fault
tolerant. Fig.1 shows the CAN bus signal logic. The voltage
levels of the two differential lines (CAN-H and CAN-L) are
approximately 2.5 V. When transmitting dominant bits, the
voltage level on CAN-L is about 1.5V and the voltage level
on CAN-H is about 3.5V. The unique physical characteristics
of CAN signals arise from minor variations in voltage levels in
the line, which are caused by small, uncontrollable variations
in the ECU manufacturing process, as well as by the influence
of the transmission medium itself.

Fig.2 represents the structure of a standard frame of CAN
data.The CAN data frames are available in both standard and
extended frame formats, and the ECU can determine if it is
interested in the received message based on the CANID. In
the arbitration phase, the ECU with the smaller ID value gets
the priority to send the message. During the voltage signal
collection phase, we will remove the SOF, ACK and EOF
fields that may be affected by multiple ECUs and keep the ID
field to mark the frame.

(a) Voltage signal of CANH and CANL (b) Voltage differential signal

Fig. 1. Part of data frame signal at the physical layer.

Fig. 2. Data frame of CAN.

B. Related Works

ECU identification based on physical layer voltage signals is
hot research in recent years. Murvay was one of the first[11],
who used voltage samples for CAN intrusion detection and
sender identification. Choi et al[12] extracted the physical
features of the differential signal from the extended frames,
and they also analysed all signals after the ID domain in a
frame of messages[13]. The voltage samples in Scission[14]
were divided into three groups, and time domain statistical
characteristics were used as features. The subsequent work of
Scission[15] used a reduced amount of acquired signals and
a reduced sampling rate to achieve light-weighted. And [19]
extracted transient and steady-state parameters of the electrical

signal. In [16][17][20], several feature values were extracted
and inputted a convolutional neural networks for training.
Viden[18] used voltage profiles of CAN frames and ACK
voltage thresholds to identify ECUs and detect hostile ECUs.In
addition, [21] used a reinforcement learning approach. And in
[23], the authors calculated the voltage difference or similarity
between ECUs by studying the Marxist distance. The authors
of [24] extracted the voltage characteristics between two points
on a CAN communication channel to train a random forest
model. [25] separated singular pulses from the data to perform
ECU classification using three different machine learning
models.

Among the above research works different aspects have
been analyzed such as extraction methods of physical features
and classification models. However, considering the require-
ment for light-weighted, existing methods neither sufficiently
reduce the data load for training and classifying, nor ade-
quately examine the classification model, and all methods
have been validated on only few real vehicles or CAN bus
prototype. Recently, [22] has provided a very informative
dataset of ten vehicles which we have been experimenting on.

III. OUR METHOD

In this section, an ECU identification method based on the
physical features of CAN signals is present in details. The
specific steps of the identification method are shown in Fig.3.

A. Electrical CAN Signal Sampling and Processing

In step 1, the CAN voltage signals from different ECUs are
sampled. Since the CAN has CAN-H and CAN-L channels,
we have to collect the electrical signals on these two channels.
As explained in Section II, the CAN protocol uses differential
signals to ensure noise immunity and fault tolerance. To
avoid being affected by electromagnetic interference or other
variations, after sampling the output voltages from CAN-H
and CAN-L on the CAN bus, we need to subtract the CAN-
H and CAN-L signals to obtain the differential signal during
step 2. In addition, some invalid data and noise may be
collected and need to be filtered out. When identifying the
physical characteristics of the electrical signal, we focus on
the dominant state part and the part of the signal in which the
state is changed from recessive to dominant or vice versa, and
these parts of the signal are referred to as the rising edge and
falling edge parts. This helps to improve both robustness and
accuracy of the system.

As shown in Fig.4, we divide a complete signal into three
parts: rising edge, falling edge and dominant state. For our
purposes, we sample the mean value of the dominant state part
in the middle of the signal as the threshold. The threshold is
used as a segmentation point to split the signal. It is possible
to make important physical characteristics more observable by
considering the individual segments.



Fig. 3. Overview of the ECU identification.

Fig. 4. Three segments of a complete: rising edge, dominant state, and falling
edge.

B. Feature Extraction and Selection

After the preprocessing of the signal, we extracted 29
features in time and frequency domains from each segment of
the rising edge, falling edge, and dominant state. This means
a total feature set of 87 features and three feature subsets
are collected for each signal. Feature extraction is an attribute
reduction process that enables fewer and more meaningful
attributes to describe the data and greatly reduces the data
load, further improving model quality as well as the speed
and efficiency of machine learning algorithms. The signal
is not only time-dependent but also can be converted into
information such as frequency and phase. To extract the rich
features, we use Fourier transform to convert the time domain
signal to the frequency domain signal. Table I and II list the
multidimensional features in the time and frequency domains
used. For this purpose, we use the Matlab toolbox to extract
features.

In the feature selection phase, we use the recursive feature
elimination(RFE) method for feature selection, which can
select features recursively by considering smaller and smaller
sets of features. Since they preserve the original representation
of the variables, the accuracy of the classifier is not reduced
after removing these features and selecting only a subset of

TABLE I
TIME DOMAIN FEATURES

Feature Description
Maximum max = max (x(i))i=1...N

Minimum min = min (x(i))i=1...N

Mean µ = 1
N

∑N
i=1 x(i)

Peak xp = max |x(i)|

Mean Absolute |x̄| = 1
N

N∑
i=1

|xi|

Variancem σ2 = 1
N

N∑
i=1

(x(i)− µ)2

Standard Deviation sigma =

√
1
N

N∑
i=1

(x(i)− µ)2

Kurtosis κij =
1
N

N∑
i=1

(
xij(i)−µij

σij

)4

− 3

Skewness ρij =
1
N

N∑
i=1

(
xij(i)−µij

σij

)3

Root Mean Square xrms =

√
1
N

N∑
n=1

x2(n)

Form Factor W = xrms

|x̄|

Peak Factor C =
xp

xrms

Impulse Factor I =
xp

|x̄|

Crest Factor L =
xp

xr

informative features, and the processing can be accelerated
by reducing the complexity and dimensionality of the feature
space. Therefore, feature selection can further reduce the data
load and make the identification model more compliant with
light-weighted standards.

C. Classification Model Generation

We input the extracted features into the machine learning
model for training. Since any CAN frame sent from the same
ECU will have the hardware characteristics of the sender
node, the identification can be considered as a classification
problem. In this phase, we trained and tested machine learning
models using several classification algorithms in Scikit-Learn.
Considering the lightweight perspective, we compared four
typical machine learning models as shown in the table III.
The K-Nearest Neighbor(KNN) algorithm is computationally
expensive and requires a large amount of memory. Artificial



TABLE II
FREQUENCY DOMAIN FEATURES

Feature Description

Centroid c = (
N∑

k=1

fks(k))/(
N∑

k=1

s(k))

Crest cr = (max (s(k))k=1...N )/( 1
N−1

N∑
k=1

s(k))

Peak sp = max |s(k)|

Mean µs =
1
N

N∑
k=1

s(k)

Decrease sd = (
N∑

k=2

s(k)−s(1)
k−1 )/(

N∑
k=2

s(k))

Entropy se = (−
N∑

k=1

s(k) log (s(k)))/ log (N − 1)

Flatness Sf = (

(
N∏

k=1

s(k)

) 1
N−1

)/( 1
N−1

N∑
k=1

s(k))

Arithmetic Mean µa = 1
N−1

N∑
k=1

s(k)

Geometric Mean µg =

(
N∏

k=1

s(k)

) 1
N−1

Flux flux(t) =

(
N∑

k=1

|sk(t)− sk(t− 1)|P
)1/p

Kurtosis κs =

(
N∑

i=1

(ym(i)− Cs)
4
ym(i)

)
/σ4

s − 3

Rolloff Point i,
i∑

k=1

s(k) = κ
N∑

k=1

s(k)

Skewnes ρs = (
N∑

k=1

f(k)s(k))/σ3
s

Slope

sp = (

N∑
k=1

(fk − µf ) (s(k)− µS))/

(

N∑
k=1

(fk − µf )
2
)

Spread σs =

√(
N∑

k=1

(fk−c)
2
s(k)

)
/

N∑
k=1

(s(k))

Neural Network(ANN) has high memory usage due to its
requirement of lots of parameters, long learning time and high
computational cost. Neither of these two models is suitable for
the light-weighted requirement. Logistic Regression (LR) is
simple to implement, computationally small, fast in classify-
ing, and requires fewer storage resources. Random Forest(RF)
can be parallelized to speed up computation and handle large
datasets, making training faster and more accurate for imbal-
anced datasets. These two algorithms are more in line with
the light-weighted requirement. Therefore, we choose logistic
regression and random forest for comparison experiments to
train the optimal machine learning model.

TABLE III
PERFORMANCE COMPARISON OF CLASSIFICATION MODELS

Model Memory Usage Computing Speed Training Speed
RF –a – ⃝
LR ⃝ b ⃝ –

KNN ×c × –
ANN × × ×

a ”–” means average.
b ”⃝” means suitable.
c ”×” means not suitable.

The generation of machine learning models is divided into
two major phases, namely training and testing. In the training
phase, each sample is labeled with the ECU ID. Physical

features are extracted from the CAN voltage signal as the
fingerprint of the ECU to set up the feature set, and the
best feature subset is selected for model training by feature
selection. For different datasets, cross-validation is applied
to adjust the model parameters to improve the generalization
ability and computational efficiency of the model. The com-
pleted model after training is a multi-classification classifier. In
the testing phase, the fingerprints and IDs are extracted using
the new CAN information as test data, and then the trained
machine learning model is used for classification. Finally, we
obtained the predicted ID and the actual ID for each sample,
the predicted ID and the actual ID can be used to evaluate
the accuracy of the model identification. We compared the
machine learning models by evaluating the accuracy and false
positive rate and the prediction time.

IV. EXPERIMENTAL RESULTS

This section introduces our evaluation of ECU identification
method on actual vehicles and CAN bus prototype. A series of
experiments have proved that our method has high accuracy
and low false detection rate, which accord with the light-
weighted standard.

A. Datasets

We used public datasets from ten actual vehicles in [22]
and a dataset sampled from the CAN bus prototype for our
experiment. The dataset was split into a training (70%) and
test set (30%)for each run.

1) Actual Vehicles: Actual vehicles datasets which included
9 cars and 1 tractor came from a public paper published by
Lucian Popa et al [22]. They used Scope 5000 Series devices
to collect voltage data. The sample rate was set to 500 MS/s,
with a sample interval of 2 nanoseconds. The specific vehicles
information as already shown in Table IV. The cars used
fall in three different body configurations with manufacturing
dates between 2006 and 2021. The datasets provide a reliable
basis for the experiment by fully considering the diversity of
vehicles. the dataset is publicly released to serve for future
investigations and can be retrieved from the ECUPrint project
on GitHub and the authors institution server

TABLE IV
INTRODUCTION OF VEHICLES AND DATA COLLECTION

Vehicle Model year No. ECUs Collected bits (voltage)
Honda Civic 2012-2017 6 40,073
Opel Corsa 2006-2014 4 9,187
Hyundai i20 2014-2020 7 17,767

John Deere Tract. 2010-2018 3 4,021
Dacia Duster 2010-2017 3 9,086
Dacia Logan 2012-2019 6 31,579
Hyundai ix35 2009-2015 6 23,104
Ford Fiesta 2017-2020 6 43,861
Ford Kuga 2013-2019 9 28,024

Ford Ecosport 2018-2021 4 22,808
a The dataset is publicly released.



2) CAN Bus Prototype: We set up a CAN bus prototype to
simulate a CAN bus network. The CAN Bus Prototype consists
of four Arduino Uno boards with CAN bus shields connected
by twisted-pair cable of the same channel length, as shown
in Fig.5. Three of the simulation ECUs were programmed to
transmit respectively standard frames with different message
IDs but identical data contents, and one received the signals
as the receiver. The message IDs are used to label the
different ECUs, and the identical data contents are used to
assure that only the physical features of the voltage signal
are considered in our experiments. In addition, we collected
the electrical signal of the message frame at the receiver by
random sampling with an oscilloscope TBS1102C and set the
sampling rate to 250 MS/s and the number of sampling points
to 2000. The 18724 bits of electrical signals were collected
from CAN-H and CAN-L respectively.

Fig. 5. CAN Bus Prototype

B. Feature Extraction and Selection

We extracted time and frequency domain features from the
rising edge, dominant state and falling edge of the differential
signals to obtain 87-dimensional total feature sets, rising edge
feature subsets, falling edge feature subsets and dominant state
feature subsets.

The Linear Discriminant Analysis(LDA) dimensionality re-
duction technique was used to process the total feature set,
and two-dimensional scatter plots are shown in Fig.6. It can
be noticed that the projections of the voltage data from the
same ECU are generally clustered together when the amount of
ECUs is less, conversely, there are obvious distances between
the different ECUs.However, when the amount of ECUs is
more, the projection points may overlap. We can preliminarily
conclude that the physical characteristics of the CAN voltage
data could be used to classify different ECUs, but it is
necessary to further train the machine learning classification
model for identification.

The total feature set and feature subsets of rising edge,
falling edge and dominant states were individually put into
the machine learning model for testing. The results on random
forest and logistic regression are shown in Fig.7. We have
found that even using a part of the feature subset, such as the

Dacia Duster Opel Corsa

Honda Civic Hyundai i20

Ford Kuga John Deere Tractor

Fig. 6. Two-dimensional scatter plot after feature extraction on five typical
real cars with different number of ECUs.

Fig. 7. Accuracy of the three feature subsets and the total feature set in two
machine learning models.

dominant state part, still achieves a similarly higher accuracy
as using the full feature set. It may be that because the
dominant voltage state is actively driven by the transmitter
but the recessive state is passively returned to voltage by
a resistor, the dominant state may include relatively more
electrical characteristics that enable the ECU to be identified.

We chose recursive feature elimination for feature selec-



Ford Fiesta John Deere Tractor

Fig. 8. Feature selection for two types of vehicles.

tion.The Fig.8shows the example of the cross-validation results
on the training set.For random forest,the accuracy remains
relatively constant as the number of features selected varies,but
for logistic regression it affects the accuracy. The number of
features selected is automatically adjusted by cross-validation
to ensure that the optimal number of features is selected. Most
of the vehicles selected the optimal number of features with
less than 10. Therefore, by using only a subset of features
from the dominant state and feature selection, we enable to
achieve high identification accuracy rate while reducing the
data load and reach the lightweight effect.

C. Evaluation of ECU identification

In this subsection, the results of the experiment on actual
vehicles and on the CAN bus prototype are presented sepa-
rately.

TABLE V
RESULTS OF ACTUAL VEHICLES

Dataset No.
ECUs Model

Predicted Time(ms)
ACC(%) FPR(%)Feature Selection

yes no

Dacia Duster 3
RF 0.87 2.39 100 0.00
LR 0.12 1.73 100 0.00

Ford Kuga 9
RF 3.29 7.04 99.87 0.00
LR 0.41 3.01 98.25 0.01

Dacia Logan 6
RF 3.86 10.62 100 0.00
LR 0.26 5.87 99.93 0.00

Ford Ecosport 4
RF 3.75 5.33 100 0.00
LR 0.13 2.30 100 0.00

Hyundai i20 7
RF 3.26 7.15 99.63 0.01
LR 0.10 1.65 99.42 0.01

Ford Fiesta 6
RF 2.61 7.21 100 0.00
LR 0.25 3.33 99.67 0.01

Honda Civic 6
RF 2.15 7.52 100 0.00
LR 0.23 3.91 98.35 0.01

Hyundai ix35 6
RF 4.28 8.31 99.93 0.00
LR 0.45 4.45 96.43 0.05

John Deere
Tractor 3

RF 0.24 1.86 99.41 0.00
LR 0.08 1.15 96.88 0.02

Opel Corsa 4
RF 0.81 5.74 100 0.00
LR 0.12 4.62 100 0.00

1) Actual Vehicles: Table V shows the experimental re-
sults for 10 vehicles, including the model prediction time,
accuracy(ACC) and false positive rate(FPR). We compared
the model prediction time using the subset of dominant state
features with feature selection and the total feature set without

feature selection. It can be seen that our method can improve
the efficiency of the model and ensure high accuracy and low
false detection rate.

2) CAN Bus Prototype: Performing our method on CAN
bus prototype. Fig.9 shows the results of feature extraction and
feature selection.Fig.10 show the random forest and logistic
regression confusion matrices. The confusion matrix clearly
shows the identification of each ECU. From the two figures,
we can find that the random forest performs significantly better
than the logistic regression.

Fig. 9. Feature extraction and feature selection on CAN bus prototype

RF LR

Fig. 10. CAN Bus Prototype Confusion Matrix

From the results of the experiments on actual vehicles and
CAN bus prototypes, there is evidence that the accuracy of ran-
dom forest is higher than that of logistic regression, which in-
dicates that physical characteristics identification is not a linear
classification problem. The accuracy of the logistic regression
model on the vehicle dataset is mostly good, indicating that the
physical characteristics of the ECU devices in the real vehicle
environment has greater disparity; however, the accuracy of the
logistic regression model decreases significantly when used in
the CAN prototype simulation environment (which has less
disparity between devices). In contrast, the random forest has
high accuracy both in the vehicle and simulation environment.
Thus we can conclude that random forest is suitable for
physical fingerprinting in terms of accuracy metrics.

V. CONCLUSION

In this paper, we propose a light-weighted machine learn-
ing based ECU identification method by extracting physical
characteristics of CAN signals in both time and frequency
domains. Use only dominant segment physical features and



feature selection. Our method decrease the data load and the
computational burden of the CAN bus, enables accurate identi-
fication of message senders with high efficiency. Validated the
feasibility and effectiveness of the method on actual vehicles
datasets and CAN bus prototypes. Provides authentication
capabilities for in-vehicle networks. This light-weighted ECU
identification method can be used as an effective tool in
intrusion detection systems.
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