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POST-MODERN GMRES

STEPHEN THOMAS∗, ERIN CARSON† , MIRO ROZLOŽNı́K‡ , ARIELLE CARR§ , AND KASIA

SWIRYDOWICZ¶

Abstract. The GMRES algorithm of Saad and Schultz (1986) for nonsymmetric linear systems relies on the Arnoldi
expansion for the Krylov basis. The algorithm computes the QR factorization of the matrix B = [ r0, AVm ]. Despite
an O(ε)κ(B) loss of orthogonality, the modified Gram-Schmidt (MGS) formulation was shown to be backward stable in
the seminal papers by Paige, et al. (2006) and Paige and Strakoš (2002). Classical Gram-Schmidt (CGS) exhibits an
O(ε)κ2(B) loss of orthogonality, whereas DCGS-2 (CGS with delayed reorthogonalization) reduces this to O(ε) in practice
(without a formal proof). We present a post-modern (viz not classical) GMRES algorithm based on Ruhe (1983) and the
low-synch algorithms of Swirydowicz et al (2020) that achieves O(ε) ∥Avk∥2/hk+1,k loss of orthogonality. By projecting
the vector Avm with Gauss-Seidel onto the orthogonal complement of the space spanned by the computed Krylov vectors
Vm where V̄ T

m V̄m = I + Lm + LT
m, we can further demonstrate that the loss of orthogonality closely follows O(ε). For a

broad class of matrices, unlike MGS-GMRES, significant loss of orthogonality does not occur and the relative residual no
longer stagnates for highly non-normal systems. The Krylov vectors remain linearly independent and the smallest singular
value of Ṽm is close to one. We also demonstrate that Henrici’s departure from normality of the lower triangular matrix
Tm ≈ ( Ṽ T

m Ṽm )−1 in the Gram-Schmidt projector P = I − VmTmV T
m is an appropriate quantity for detecting the loss of

orthogonality.

1. Introduction. The purpose of the present work is to derive a post-modern (viz. not classical)
formulation of the GMRES algorithm that uses an orthgonalization scheme based on the iterated solution
of the normal equations in the Gram-Schmidt projector, as described by Ruhe [1], and the low-synch
algorithms introduced by Swirydowicz et al. [2]. The essential idea developed here is to project the vector
Aṽk onto the orthogonal complement of the space spanned by the computed Krylov vectors represented
by the columns of Ṽm ∈ Cn×m, where Ṽ T

m Ṽm = I+Lm+LT
m and Lm ∈ Cm×m is strictly upper triangular.

Ruhe [1] suggested applying LSQR, whereas Björck [3, pg. 312] recommended conjugate gradients.
Instead, we apply two Gauss-Seidel iterations and note that Higham and Knight [4] proved norm-wise
backward stability for such stationary iterations. We demonstrate that the loss of orthogonality may
then be bounded by O(ε) without any need for reorthogonalization in the Arnoldi-QR algorithm. Unlike
the relative residual for MGS-GMRES, the stagnation shown in Paige and Strakoš [5] does not occur
and yet the seminal backward stability result of Paige et al. [6] still applies.

In the present study, linear systems of the form Ax = b with A an n × n real-valued matrix, are
solved with Krylov subspace methods. Here, let r0 = b − Ax0 denote the initial residual with initial
guess x0. Inside GMRES, the Arnoldi QR algorithm is applied to generate an orthonormal basis for
the Krylov subspace Km( A, r0 ) spanned by the columns of the n×m matrix, Vm, where m ≪ n, and
produces the (m+ 1)×m Hessenberg matrix, Hm+1,m, in the Arnoldi expansion such that

AVm = Vm+1Hm+1,m.

The Arnoldi algorithm produces a QR factorization of B = [ r0, AVm ] and the columns of Vm+1 form
an orthogonal basis for the Krylov subspace Km [6]. When the Krylov vectors are orthogonalized via
the finite precision MGS algorithm, their loss of orthogonality is related in a straightforward way to
the convergence of GMRES. Orthogonality among the Krylov vectors is effectively maintained until the
norm-wise relative backward error approaches the machine precision as discussed in Paige and Strakoš [5]
and Paige et al. [6]. The growth of the condition number of B is related to the norm-wise relative
backward error

β(x(k)) =
∥r(k)∥2

∥b∥2 + ∥A∥∞∥x(k)∥2
and in particular, it is observed in exact arithmetic that β(x(k)) κ([ r0, Avk ]) = O(1).

The orthogonality of the columns determines the numerical rank of the Krylov basis. However, in
finite-precision arithmetic, Vm may “lose” orthogonality and this loss, as measured by ∥I − V T

mVm∥F ,
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may deviate substantially from machine precision, O(ε). When linear independence is completely lost,
the relative residual may stagnate at a certain level above O(ε) and this occurs when ∥Sm∥2 = 1, where
Sm = (I + LT

m)−1LT
m and Lm is the m×m strictly lower triangular part of Ṽ T

m Ṽm.
The development of low-synchronization Gram-Schmidt and generalized minimal residual algorithms

by Świrydowicz et al. [2] and Bielich et al. [7] was largely driven by applications that need stable, yet
scalable solvers. Both the modified (MGS) and classical Gram-Schmidt algorithms with delayed re-
orthogonalization (DCGS-2) are stable for a GMRES solver. Although the DCGS-2 results in an O(ε)
loss of orthogonality, which suffices for GMRES to converge, stability has not been proven formally.
Paige et al. [6] demonstrate that despite O(ε)κ(B) loss of orthogonality, MGS-GMRES is backward
stable for the solution of linear systems. Here, the condition number of the matrix B is given by
κ(B) = σmax(B)/σmin(B), where σmax(B) and σmin(B) are the maximum and minimum singular values
of the matrix B, respectively.

An inverse compact WY modified Gram-Schmidt algorithm is presented in [2] and is based upon
the application of the projector

P = I − Vm Tm V T
m , Tm ≈ ( Ṽ T

m Ṽm )−1

where Ṽm is again n×m, I is the identity matrix of dimension n, and Tm is an m×m lower triangular
matrix. To obtain a low-synch MGS algorithm, or one MPI global reduction per GMRES iteration,
the normalization is delayed to the next iteration. The matrix Tm is obtained from the strictly lower
triangular part of Ṽ T

m Ṽm, denoted Lm. Note that because Vm has almost orthonormal columns, the
norm of Lm is small, and Tm is close to I (here, the identity matrix of dimension m).

A Neumann series expansion for the inverse of the lower triangular matrix, Tm, results from the
compact WY form of the projector P , Thomas et al. [8]. A post-modern GMRES (PM-GMRES)

formulation based upon the matrix polynomial T
(2)
m associated with two Gauss-Seidel iterations for the

normal equations

(1.1) V T
m−1Vm−1r1:m−1,m = V T

m−1 A vm

can be derived, with the projector

(1.2) P (2) = I − Vm T (2)
m V T

m , T (2)
m = I − Lm − LT

m + L2
m + LT

mLm + LmLT
m − · · · ,

where the rows of Lm are constructed from the matrix-vector products V T
m−1vm−1. The sum is finite

because the matrix Lm is nilpotent, as originally noted by Ruhe [1]. The loss of orthogonality then
follows O(ε) ∥Aṽm∥2/hm+1,m. For extremely ill-conditioned and non-normal matrices, the convergence
history of the PM-GMRES algorithm has been found to be identical to the original MGS-GMRES
algorithm introduced by Saad and Schultz [9], with the exception that the (implicit) relative residual
continues to decrease monotonically and never stagnates until reaching the level O(ε) and thus matches
the Householder HH-GMRES of Walker [10].

Contributions. In this paper, we present a new formulation of the MGS-GMRES algorithm of Saad
and Schultz [9], and prove backward stability of the solutions, thus extending the results of Paige et
al. [6]. The computed Krylov vectors maintain orthogonality to machine precision level by projection
onto their orthogonal complement and this is accomplished with two Gauss-Seidel iterations in the
low-synchronization Gram-Schmidt algorithms of Swirydowicz et al. [2]. The triangular matrix Tm is
an approximation of the matrix (Q̃T

mQ̃m)−1 and is recognized as a Neuman series. Two Gauss-Seidel

iterations results in T
(2)
m that is symmetric to O(ε). This matrix was split and applied across two

iterations to achieve O(ε) orthogonality for DCGS-2. Giraud et al. [11] demonstrated how a rank-k
correction could be applied in an à posteriori step to improve orthogonality by computing the polar
decomposition of Q̂k−1, the matrix exhibited by Björck and Paige [12]. The algorithms described herein
allow us to maintain the orthogonality of the normalized Q̃k−1 at each iteration or ‘on-the-fly’ instead
of as a post-processing step.

Our paper is organized as follows, low synchronization Gram-Schmidt algorithms are reviewed in
Section 2 and two Gauss-Seidel iterations are applied to solve the normal equations QT

k−1Qk−1r1:k−1,k =
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QT
k−1ak. A rounding error analysis of the new Gram-Schmidt algorithm is presented in Section 3, leading

to bounds on the representation error and the orthogonality of the columns of Q̄k−1. Section 4 extends
these results to the Arnoldi-QR algorithm and post-modern GMRES. The relationship with Henrici’s de-
parture from normality is explored in Section 5. Finally, numerical experiments on challenging problems
studied over the past thirty-five years are presented in Section 6.

Notation Lowercase bold letters denote a column vector and uppercase letters are matrices (e.g. v
and A, respectively). aij represents the (i, j) scalar entry of a matrix A, and aj denotes the jth column
of A. Where appropriate, Aj is the j–th column of a matrix. Superscripts indicate the approximate
solution and corresponding residual (e.g. x(k) and r(k)) of an iterative method at step k. Throughout
this article, the notation Uk (or Lk) and Us (or Ls) will explicitly refer to strictly upper/lower triangular
matrices.1 Vector notation indicates a subset of the rows and/or columns of a matrix; e.g. V1:k+1,1:k

denotes the first k + 1 rows and k columns of the matrix V and the notation V:,1:k represents the
entire row of the first k columns of V . Hm+1,m represents an (m + 1) × m matrix, and in particular
H refers to a Hessenberg matrix. In cases where standard notation in the literature is respected that
may otherwise conflict with the aforementioned notation, this will be explicitly indicated. Bars denote
computed quantities such as Q̄k−1. While Q̃k−1 indicates a correctly (properly) normalized matrix as
was introduced in Björck and Paige [12].

2. Low-synchronization Gram-Schmidt Algorithms. Krylov linear system solvers are often
required for extreme scale physics simulations on parallel machines with many-core accelerators. Their
strong-scaling is limited by the number and frequency of global reductions in the form of MPI AllReduce

and these communication patterns are expensive [13]. Low-synchronization algorithms are based on
Ruhe [1], and are designed such that they require only one reduction per iteration to normalize each
vector and apply projections. The Gram-Schmidt projector applied to ak , the k-th column of A, in the
A = QR factorization can be written as

Pak = ak −Qk−1r1:k−1,k = ak −Qk−1 (Q
T
k−1Qk−1 )

−1 QT
k−1ak,

where the vector r1:k−1,k is a solution of the normal equations

(2.1) QT
k−1Qk−1r1:k−1,k = QT

k−1ak.

Ruhe [1] established that the iterated MGS algorithm employs a multiplicative Gauss-Seidel relaxation
scheme with matrix splitting Q̃T

k−1Q̃k−1 = Mk−1 −Nk−1, where Mk−1 = I + Lk−1 and Nk−1 = −LT
k−1

and M−1
k−1 = T

(1)
k−1. The iterated CGS is an additive Jacobi relaxation.

The inverse compact WY form for MGS was derived in Świrydowicz et al. [2], with strictly lower
triangular matrix Lk−1 . Specifically, these inverse compact WY algorithms batch the inner-products
together and compute one row of Lk−1 as

(2.2) Lk−1,: = (QT
k−1 qk−1 )

T .

The resulting projector P (1) is given by

P (1) = I −Qk−1 T
(1)
k−1 Q

T
k−1, T

(1)
k−1 = ( I + Lk−1 )

−1

and corresponds to one Gauss-Seidel iteration for the normal equations (2.1). The MGS algorithm with
two Gauss-Seidel iterations is given as Algorithm 2.1 below.

1We note that the distinction between these two notations in crucial. For Uk, the size of the strictly upper triangular
matrix changes with k, whereas the size of Us remains fixed.
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Algorithm 2.1 Inverse compact WY MGS Algorithm with Normalization Lag

Input: Matrices Qk−1, and Rk−1, Ak−1 = Qk−1Rk−1; column vector ak; matrix Lk−2

Output: Qk and Rk, such that Ak = QkRk; Lk−1, wk

1: if k = 1 return
2: [ LT

:,k−1, rk ] = QT
k−1[qk−1 ak] ▷ Global synchronization

3: rk−1,k−1 = ∥wk−1∥2
4: qk−1 = wk−1/rk−1,k−1 ▷ Lagged normalization

5: r
(0)
1:k−1,k = r1:k−1,k/rk−1,k−1 ▷ Scale for Arnoldi

6: LT
:,k−1 = LT

:,k−1/rk−1,k−1 ▷ Scale for Arnoldi

7: r
(1)
1:k−1,k = ( I + Lk−1 )

−1 r
(0)
1:k−1,k ▷ First G-S

8: r
(2)
1:k−1,k = r

(1)
1:k−1,k − ( I + Lk−1 )

−1 LT
:,k−1 r

(1)
1:k−1,k ≈ r

(1)
1:k−1,k − LT

:,k−1 r
(1)
1:k−1,k ▷ Second G-S

9: wk = ak − Q̃k−1 r
(2)
1:k−1,k

The representation error e
(1)
k in the computed projection after one Gauss-Seidel iteration, where

r
(1)
1:k−1,k is a solution of the normal equations, can be expressed as

(2.3) wk = ak −Qk−1 ( I + Lk−1 )
−1 r

(0)
1:k−1,k + e

(1)
k

After two Gauss-Seidel iterations, the error e
(2)
k is given by

(2.4) wk = ak −Qk−1 r
(1)
1:k−1,k −Qk−1 ( I + Lk−1 )

−1 LT
k−1 r

(1)
1:k−1,k + e

(2)
k

The correction matrix for two Gauss-Seidel iterations is found to be

T
(2)
k−1 = M−1

k−1 [ I +Nk−1 M
−1
k−1 ],

which is no longer triangular but is close to the symmetric matrix Tk−1 = I − Lk−1 − LT
k−1 .

The backward error analyses of Björck [14] and Björck and Paige [12] can be applied in the case of
one Gauss-Seidel iteration. In particular, the triangular solve Mkx = b implied by Step 7 of Algorithm
2.1 with Mk = I + Lk is backward stable as shown by Higham [15], where

(Mk + Ek ) x = b, ∥Ek∥2 ≤ O(ε) ∥Mk∥2

for small ∥Lk∥2 ≤ 1/2. Therefore, it follows that the error for the computed r̄
(0)
1:k−1,k is bounded according

to

r̄
(0)
1:k−1,k = Q̄T

k−1 ak + e
(0)
k , ∥e(0)k ∥2 ≤ O(ε) ∥Q̄k−1∥2 ∥ak∥2

as in the error analysis of the traditional MGS algorithm. The backward error E
(1)
k−1 for the triangular

solve is bounded as follows

(Mk−1 + E
(1)
k−1 ) r̄

(1)
1:k−1,k = r̄

(0)
1:k−1,k, ∥E(1)

k−1∥2 ≤ O(ε) ∥Mk−1∥2

3. Backward Stability. Our next step consists of a rounding error analysis of the low-synch MGS
algorithm with two Gauss-Seidel iterations. We begin with the derivation of the representation error for
the QR factorization using an induction argument. Algorithm 2.1 contains the following recurrence,

r
(0)
1:k−1,k = QT

k−1ak

r
(1)
1:k−1,k = ( I + Lk−1 )

−1 r
(0)
1:k−1,k = M−1

k−1 r
(0)
1:k−1,k

r
(2)
1:k−1,k = r

(1)
1:k−1,k − ( I + Lk−1 )

−1 LT
k−1 r

(1)
1:k−1,k = r

(1)
1:k−1,k +M−1

k−1 Nk−1 r
(1)
1:k−1,k
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where r̄k−1,k−1 = ∥r̄(2)1:k−1,k∥2 and āk = r̄
(2)
1:k−1,k/r̄k−1,k−1. The associated error terms and bounds are

then given by

r̄
(0)
1:k−1,k = Q̄T

k−1ak + e
(0)
k , ∥e(0)k ∥2 ≤ O(ε)∥Q̄k−1∥2 ∥ak∥2

(Mk−1 + E
(1)
k−1 ) r̄

(1)
1:k−1,k = r̄

(0)
1:k−1,k, ∥E(1)

k−1∥2 ≤ O(ε)∥Mk−1∥2

r̄
(1/2)
1:k−1,k = NT

k−1r̄
(1)
1:k−1,k + e

(1)
k , ∥e(1)k ∥2 ≤ O(ε)∥Nk−1∥2∥r̄(1)1:k−1,k∥2

(Mk−1 + E
(2)
k−1 ) r̄

(3/2)
1:k−1,k = r̄

(1/2)
1:k−1,k, ∥E(2)

k−1∥2 ≤ O(ε)∥Mk−1∥2

r̄
(2)
1:k−1,k = r̄

(1)
1:k−1,k − r̄

(3/2)
1:k−1,k + e

(2)
k , ∥e(2)k ∥2 ≤ O(ε)( ∥r̄(1)1:k−1,k∥2 + ∥r̄(3/2)1:k−1,k∥2 )

where

r̄
(1)
1:k−1,k = M−1

k−1 Q̄
T
k−1 ak +M−1

k−1 f
(1)
k , f

(1)
k = e

(0)
k −E

(1)
k−1 r̄

(1)
1:k−1,k

r̄
(3/2)
1:k−1,k = M−1

k−1 Nk−1 r̄
(1)
1:k−1,k +M−1

k−1 f
(2)
k , f

(2)
k = e

(1)
k − E

(2)
k−1 r̄

(3/2)
1:k−1,k

r̄
(2)
1:k−1,k = M−1

k−1 Q̄
T
k−1 ak +M−1

k−1 Nk−1 M
−1
k−1 Q̄

T
k−1 ak + ek

ek = M−1
k−1 f

(1)
k +M−1

k−1 Nk−1 M
−1
k−1f

(1)
k +M−1

k−1 f
(2)
k

After one Gauss-Seidel iteration, the following bound holds

∥r̄(1)1:k−1,k∥2 ≤ (Mk−1 + E
(1)
k−1 )

−1 ( Q̄T
k−1ak + e

(0)
k )

≤ ∥Q̄k−1∥2 ∥ak∥2 ( 1 +O(ε) )

σk−1(Mk−1)− ∥E(1)
k−1∥2

≤
∥Q̄k−1∥2 ∥ak∥2 ( 1 +O(ε) ) ∥M−1

k−1∥2
1−O(ε)κ(Mk−1)

For the next step in Algorithm 2.1, the Gauss-Seidel iteration matrix appears explicitly

r̄
(3/2)
1:k−1,k = M−1

k−1 Nk−1 r̄
(1)
1:k−1,k +M−1

k−1 f
(2)
k

and an upper bound is given by

∥r̄(3/2)1:k−1,k∥2 ≤
∥M−1

k−1 Nk−1∥2 ∥r̄(1)1:k−1,k∥2 + ∥e(1)k ∥2
1− ∥M−1

k−1∥2 ∥E
(2)
k−1∥2

≤
∥M−1

k−1 Nk−1∥2 +O(ε)∥Nk−1∥2
1−O(ε)κ(Mk−1)

∥r̄(1)1:k−1,k∥2

In order to bound the 2-norm of the iteration matrix, we have ∥M−1
k−1Nk−1∥2 < ∥M−1

k−1∥2 ∥Nk−1∥2,
and assume that ∥Nk−1∥2 < 1/2, where ∥Nk−1∥2 ≤ ∥Nk−1∥2/(1−∥Nk−1∥2 ) and the result follows. The
individual terms in ek are then bounded as follows

∥f (1)k ∥2 ≤ ∥e(0)k ∥2 + ∥E(1)
k−1∥2 ∥r̄

(1)
1:k−1,k∥2

≤ O(ε)∥Q̄k−1∥2 ∥ak∥2 +
O(ε)κ(Mk−1) ∥Q̄k−1∥2 ∥ak∥2

1−O(ε)κ(Mk−1)

from which it follows that

∥M−1
k−1∥2 ∥f

(1)
k ∥2 ≤ O(ε)κ(Mk−1)

1−O(ε)κ(Mk−1)
∥Q̄k−1∥2 ∥ak∥2.

For the third term in the error, a bound follows from

∥f (2)k ∥2 ≤ ∥e(1)k ∥2 + ∥E(2)
k−1∥2 ∥r̄

(3/2)
1:k−1,k∥2

≤ O(ε)∥Nk−1∥2 ∥r̄(1)1:k−1,k∥2 +
O(ε)κ(Mk−1) ( 1 +O(ε)∥Nk−1∥2 ∥r̄(1)1:k−1,k∥2)

1−O(ε)κ(Mk−1)
5



and therefore the last term is given by

∥M−1
k−1∥2 ∥f

(2)
k ∥2 ≤ O(ε)κ(Mk−1)

[ 1−O(ε)κ(Mk−1) ]2
∥Q̄k−1∥2 ∥ak∥2.

The bounds for the remaining computed vectors in the representation error can now be determined.

Mk−1 r̄
(1)
1:k−1,k = Q̄T

k−1 ak + e
(0)
k − E

(1)
k−1 r̄

(1)
1:k−1,k = Q̄T

k−1 ak + f
(1)
k

Mk−1 r̄
(3/2)
1:k−1,k = Nk−1 r̄

(1)
1:k−1,k + e

(1)
k − E

(2)
k−1 r̄

(3/2)
1:k−1,k = Nk−1 r̄

(1)
1:k−1,k + f

(2)
k

Finally, the columns of the computed R̄ are bounded according to

(3.1) ∥r̄(2)1:k−1,k∥2 ≤ ∥M−1
k−1( I +Nk−1M

−1
k−1 )∥2 ∥Q̄k−1∥2 ∥ak∥2 + ∥ek∥2

The computed form of the projection in Step 9 of Algorithm 2.1 can be written as

w̄k = ak − Q̄k−1 r̄
(2)
1:k−1,k + fk

where
∥fk∥2 ≤ O(ε)

[
∥ak∥2 + ∥Q̄k−1∥2 ∥r̄(2)1:k−1,k∥2

]
From equation (3.1), it therefore follows that

∥fk∥2 ≤ O(ε)
[
∥ak∥2 + ∥M−1

k−1∥2 ∥Q̄k−1∥22 ∥ak∥2
]
+O(ε2)

≤ O(ε)∥ak∥2
[
1 +

∥Q̄k−1∥22
1− ∥Nk−1∥2

]
≤ O(ε)∥Q̄k−1∥22 ∥ak∥2

1− ∥Nk−1∥2

The representation error for the QR factorization is now determined from the following equations

Ak−1 = Q̄k−1 R̄
(2)
k−1 − Fk−1

ak = Q̄k−1 r̄
(2)
1:k−1,k + w̄k − fk

Combining these into an augmented matrix form, we obtain

Ak =
[
Ak−1, ak

]
= Q̄k−1

[
R̄k−1, r̄

(2)
1:k−1,k

]
+
[

−Fk−1 w̄k, −fk
]

and the representation error is bounded as follows

||Fk∥ =
∥∥[ Fk−1, fk

]∥∥
2
+ ∥w̄k∥2 ≥

∥∥[ −Fk−1, w̄k − fk
]∥∥

2
≥ σk(Ak)

Thus, the 2-norm of the projected vector w̄k is bounded below by

∥w̄k∥2 ≥ σk(Ak)− ∥Fk∥2

4. Loss of Orthogonality. The loss of orthogonality at the k–th iteration of the Gram-Schmidt
algorithm with two Gauss-Seidel iterations is characterized by the 2-norm of the vector

∥Q̄T
k−1 q̄k ∥2 = ∥Q̄T

k−1 w̄k ∥2 / ∥w̄k ∥2

From our error analysis, the projected vector is expanded as follows

Q̄T
k−1 w̄k = Q̄T

k−1

[
ak − Q̄k−1 r̄

(2)
1:k−1,k + fk

]
= Q̄T

k−1

[
ak − Q̄k−1M

−1
k−1 ( I +Nk−1 M

−1
k−1 ) Q̄

T
k−1 ak−1

]
− Q̄T

k−1Q̄k−1 ek + Q̄T
k−1 fk

6



We have already established that fk is bounded, however, at this point the residual of the normal
equations can be identified, and they are solved to O(ε)

τ =
∥∥∥ Q̄T

k−1 ak − Q̄T
k−1Q̄k−1 r̄

(2)
1:k−1,k

∥∥∥
2
≤ O(ε) ∥Q̄k−1∥2 ∥ak∥2

The largest singular value ∥Q̄k−1∥22 ≤ 1 + 2∥Lk−1∥2 and 1 − ∥Nk−1∥2 ≤ 1. Therefore, an appropriate
bound on the loss of orthogonality at the k-th iteration of Algorithm 2.1 is given by

∥Q̄T
k−1 q̄k ∥2 ≲ O(ε)∥ak ∥2 / r̄(2)k,k

Let A be an n× n real-valued matrix, and consider the Arnoldi expansion of the matrix A. After k
steps, in exact arithmetic, the algorithm produces the factorization

AVk = Vk+1 Hk+1,k, V T
k+1Vk+1 = Ik+1,

where Hk+1,k is an upper Hessenberg matrix. When applied to the linear system Ax = b, assume
x0 = 0, r0 = b, ∥b∥2 = ρ and v1 = b/ρ. The Arnoldi algorithm produces an orthogonal basis for the
Krylov vectors spanned by the columns of the matrix Vk.

Consider the properly normalized matrix Ṽk with Krylov vectors as columns. The strictly lower
triangular matrix Lk is computed incrementally one row per iteration and is obtained from the loss of
orthogonality relation

Ṽ T
k Ṽk = I + Lk + LT

k .

The essential result is based on the QR factorization of the matrix

B = [ r0, Avk ] = Vk+1 [ e1ρ, Hk+1,k ] .

Our backward error analysis is now applied to the Arnoldi-QR algorithm, where the vector Avk is
projected onto the orthogonal complement of the computed Krylov vectors. Two Gauss-Seidel iterations
reduce the error in equation (2.3)

(4.1) w̄k+1 = Aṽk − Ṽk h̄1:k,k + fk

For Arnoldi-QR, we multiply A times vk at iteration k. In effect, this is MGS (or our iterated Gauss-
Seidel MGS) with ak in Algorithm 2.1 is replaced by Avk. By applying the Arnoldi-QR recurrence

with Avk−1 in the Gram-Schmidt algorithm, we define the column vectors h1:k−1,k ≡ r
(2)
1:k−1,k, and the

representation error E for the computed Arnoldi expansion

AṼm − Ṽm+1H̄m+1,m = Em

is a matrix that grows by one column in size at each iteration. It is important to note that the Arnoldi
expansion represents the underlying recurrence relation based on the Krylov subspace, Km(A, r0 ) and
equation (4.1) is one column of the Arnoldi expansion. The bound ∥f̄k∥2 ≤ O(ε)∥āk∥2 in the error
analysis is given above and thus a bound on the loss-of-orthogonality is given by

∥ I − Ṽ T
k Ṽk ∥2 ≲ O(ε) ∥Aṽk∥2/h̄k+1,k

In practice, this bound is close to ∥Nk∥2 and is closely related to the departure from normality

dep(T−1
k )2 = dep(Q̄T

k−1Q̄k−1)
2 = ∥Lk∥2F

5. Departure from Normality. A normal matrix A ∈ Cn×n satisfies A∗A = AA∗. In the present
study we consider Henrici’s definition of the departure from normality

(5.1) dep(A) =
√

∥A∥2F − ∥D∥2F ,

where D ∈ Cn×n is the diagonal matrix containing the eigenvalues of A [16] serves as a useful metric
for the loss of orthogonality. While we find practical use for this metric for measuring the degree of
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(non)normality of a matrix, there are of course other useful metrics to describe (non)normality. We
refer the reader to [16–18] and references therein. In particular, we have that the loss of orthogonality
is signaled by the departure from normality of T−1

k as follows

dep(T−1
k )2 = dep(I + Lk)

2 = ∥I + Lk∥2F − ∥I∥2F = ∥I∥2F + ∥Lk∥2F − k = ∥Lk∥2F

We can then relate this to Sk = ( I +Uk )
−1 Uk as we observe in practice that ∥Sk∥F = ∥Lk∥F up to the

first order in ε (noting that due to symmetry ∥Lk∥F = ∥Uk∥F ); see Figure 2.
Ipsen [17] characterizes the convergence of GMRES in terms the (non)normality of the matrix A. A

numerical measure of normality was presented by Ruhe [19], where normality implies that the eigenvalues
and singular values of a matrix A are the same, namely σi(A) = |λi(A)| for a certain ordering of the
eigenvalues. Ruhe [19] establishes the connection between Henrici’s metric and the distance between the
eigenvalues and singular values

dep2 =
∑
i

σ2
i −

∑
i

|λi|2

The loss of orthogonality in GMRES is signaled by σ2
max(I+Lk−1 ) increasing above one and this closely

follows ∥Sk∥2.

6. Post-Modern GMRES. The MGS–GMRES orthogonalization algorithm is the QR factor-
ization of a matrix B formed by adding a new column to vk in each iteration. For the PM-GMRES
Algorithm 2.1 below, note that bold-face (e.g. r0) denotes the residual vector at iteration k and sub-
scripting (e.g. r1:k,k+1) denotes the corresponding element in the upper triangular matrix R.

The MGS-GMRES algorithm was proven to be backward stable for the solution of linear systems
Ax = b in [6] and orthogonality is maintained to O(ε)κ(B), depending upon the condition number of
the matrix B = [r0, Avk]. The normalization for the Krylov vector vk at iteration k represents the
delayed scaling of the vector vk−1 in the matrix-vector product vk = Awk−1. Therefore, an additional
Step 8 is required in the low-synch Algorithm 6.1, r1:k−1,k = r1:k−1,k/rk−1,k−1 and vk−1 = vk/rk−1,k−1.
The diagonal element rk−1,k−1 of the R matrix, corresponds to hk,k−1 in the Arnoldi QR factorization
of the matrix B, and is updated after the MGS projection in Step 12 of the PM-GMRES Algorithm 6.1.

Algorithm 6.1 applies the close to symmetric matrix T
(2)
k in Step 11 as two Gauss-Seidel iterations in

the form of a lower triangular solve and matrix-vector multiply where the matrix is dimension k.

Algorithm 6.1 Low-synchronization PM-GMRES

1: r0 = b−Ax0, v1 = r0.
2: for k = 1, 2, . . . do
3: vk = Awk−1 ▷ Matrix-vector product
4: [ LT

:,k−1, rk ] = V T
k−1[wk−1 vk] ▷ Global AllReduce

5: rk−1,k−1 = ∥vk∥2
6: r1:k,k+1 = r1:k,k+1/rk−1,k−1 ▷ Scale for Arnoldi
7: vk−1 = vk−1/rk−1,k−1 ▷ Scale for Arnoldi
8: LT

:,k−1 = LT
:,k−1/rk−1,k−1

9: r1:k−1,k = T
(2)
k−1 r1:k−1,k ▷ projection

10: wk = vk − Vk−1 r1:k−1,k

11: Hk = Rk−1

12: Apply Givens rotations to Hk

13: end for
14: ym = argmin∥(Hmym − ∥r0∥2e1 )∥2
15: x = x0 + Vmym

The low-synch DCGS-2 algorithm introduced by Swirydowicz [2] was recently applied to the Arnoldi-
QR factorization in the Krylov-Schur eigenvalue and GMRES solvers [7]. Although a formal backward
stability analysis is not yet available, the algorithm exhibits desirable numerical characteristics including
the computation of invariant subspaces of maximal size for the Krylov-Schur algorithm [20]. However,
the Arnoldi algorithm was modified to account for the delayed re-orthogonalization and it was not
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Fig. 1: GMRES residual for fs1836 matrix.

obvious how to adapt this approach to restarted GMRES. The PM-GMRES algorithm presented herein
does not require any modifications to the basic Arnoldi-QR iteration.

Our first numerical experiment illustrates that the bounds derived in the previous sections are tight
and properly capture the numerical behavior of the PM-GMRES algorithm. In particular, we examine
the fs1836 matrix studied by Paige and Strakoš [5]. Our Figure 1 should be compared with Figures
7.1 and 7.3 of their paper. In order to demonstrate empirically that the backward error is reduced

by the iteration matrix M−1
k−1Nk−1, the quantity ∥S(1)∥1/pk

2 is plotted, where the ∥S(1)∥2 measures the
loss of orthogonality for one Gauss-Seidel iteration in MGS, as defined by Paige et al. [6]. Recall that
pm = − log10 ρ, and ρ the spectral radius of the matrix M−1

m Nm. The result is a constant value of one
(1), indicating that two Gauss-Seidel iterations would be sufficient to reduce the loss of orthogonality
to O(ε). The spectral radius and the metric ∥S(2)∥2 for two Gauss-Seidel iterations are also plotted in
Figure 1. Unlike the relative residual in Figure 7.1 of Paige and Strakoš [5] which stagnates at 1e−7
before reaching O(ε), the relative residual for PM-GMRES continues to decrease monotonically. The
matrix in our tests was also column-scaled, as in the earlier work. We employed a diagonal matrix Dc

with the max-norm of each column as the diagonal elements.

7. Computational Complexity and Parallel Communication. The GMRES algorithm of
Saad and Schultz [9] has a thirty-five year history and several variations or alternative formulations
of the basic algorithm have been proposed over that time frame. A comprehensive review of these
developments is presented by Zou [21]. In particular, pipelined s-step and block algorithms have been
proposed which are better able to hide latency in parallel implementations and are described in Yamazki
et al. [22]. In the case of the DCGS2 algorithm, the symmetric correction matrix Tk−1 was derived in
Appendix 1 of [2] and is given by

Tk−1 = I − Lk−1 − LT
k−1

This form of the correction matrix was employed in the s-step and pipelined GMRES.When the matrix
Tk−1 is split into I − Lk−1 and LT

k−1 and applied across two iterations of the DCGS2 algorithm, the
resulting loss of orthogonality is O(ε) in this case. Indeed, it was conjectured in Bielich et al. [7] that two
iterations of DCGS2 are needed to achieve O(ε) orthogonal vectors, however, our results demonstrate
that one MGS iteration is sufficient without an additional projection step.

The low-synchronization modified Gram-Schmidt and GMRES algorithms described in Swirydowicz
et al. [2] improve parallel strong-scaling by employing one global reduction for each iteration. A review
of compact WY Gram Schmidt algorithms and their computational costs is given in [7]. The triangular
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solve and matrix-vector multiply for the Gauss-Seidel iterations require an additional (k − 1)2 flops at
iteration k−1 and thus lead to a slightly higher operation count compared to the original MGS algorithm.
The matrix-vector multiply in (2.2) increases the complexity by mn2 (3mn2 total) but decreases the
number of global reductions from k − 1 at iteration k to only one reduction when combined with the
lagged normalization of a Krylov vector. The above costs can be compared with the DCGS2 algorithm
with delayed reorthogonalization which requires 4mn2 flops.

Block generalizations of the DGCS2 and CGS2 algorithm are presented in Carson et al. [23,24]. The
authors generalize the Pythagorean trick to block form and derive BCGS-PIO and BCGS-PIP algorithms
with the more favorable communication patterns described herein. An analysis of the backward stability
of the these block Gram-Schmidt algorithms is also presented.

8. Numerical Results. Numerically challenging test problems for GMRES have been proposed
and analyzed over the past 35 years. These include both symmetric and non-symmetric matrices.
Simoncini and Szyld [25] introduced a symmetric, diagonal matrix with real eigenvalues, causing MGS-
GMRES to stagnate. Highly-non-normal matrices from Walker [10] were used to explore the convergence
characteristics of the Householder HH-GMRES and then the non-normal fs1836 from Paige et al. [6]
and west0132 from Paige and Strakoš [5] encounter stagnation. In addition to these, the impcol e
matrix from Greenbaum et al. [26], reaches the O(ε) relative residual level level on the final iteration,
unless it stagnates. Matrices with complex eigenvalues forming a disc inside the unit circle such as the
Helmert matrix from Liesen and Tichy [27], are also evaluated. Results from a very large fluid mechanics
pressure continuity solver with AMG preconditioner and a circuit simulation with the ADD32 matrix
from Rozložńık, Strakoš and Tuma [28] are also presented.

8.1. Ill-conditioned Diagonal Matrix. Simoncini and Szyld [25] consider several difficult ill-
conditioned problems that can lead to stagnation of the GMRES relative residual before converging to
the level of machine precision O(ε). In example 5.5, they construct A = diag([1e − 4, 2, 3, . . . , 100]), a
diagonal matrix, while the right-hand side is b = randn(100, 1), normalized so that b = 1. The condition
number of this matrix is 1e+6.

With the MGS-GMRES algorithm, the relative residual stagnates at the level 1e−12 after 75 it-
erations, when ∥S∥2 = 1 indicating that the Krylov vectors are not linearly independent. In the case
of the PM-GMRES algorithm, the convergence history is plotted in Figure 2, where it can be ob-
served that the relative residual continues to decrease monotonically. Furthermore. the upper bound
O(ε) ∥Aṽk∥2/hk+1,k is plotted along with Henrici’s departure from normality dep(T−1). The latter
overlaps with the metric ∥S∥2 and indicates that a significant loss of orthogonality does not occur.

8.2. Ill-Conditioned Symmetric and Non-Symmetric Matrices. Figures 1.1 and 1.2 from
Greenbaum et al. [26] describe the results for STEAM1 (the HH and MGS implementations, respectively).
Similarly, Figures 1.3 and 1.4 correspond to IMPCOLE. They emphasize that the behaviour illustrated
in these figures represents typical behaviour of the MGS and HH-GMRES. The condition number of the
system matrix was κ(A) = 2.855× 107 for STEAM1 and κ(A) = 7.102× 106 for IMPCOLE.

Greenbaum et al. [26] observe that although orthogonality of the MGS vectors is not maintained
near the machine precision, as for the Householder implementation, the norms of the computed residuals
of the MGS-GMRES are almost identical to those of the HH-GMRES, until the smallest singular value of
the matrix Vm begins to depart from the value one. At that point the MGS-GMRES residual norm begins
to stagnate close to its final precision level. This observation is demonstrated on the numerical examples
for matrices STEAM1 (N = 240, symmetric positive definite matrix used in oil recovery simulations)
and IMPCOLE (N = 225, nonsymmetric matrix from modelling of the hydrocarbon separation problem)
( Figures 1.1-1.4). In both experiments x = (1, ..., 1)T , b = Ax and x0 = 0.

The convergence histories for the PM-GMRES algorithm applied to these matrices are plotted in
Figures 7 and Steam1. The impcol e matrix was also diagonally column scaled as in other tests. A
significant loss of orthogonality is not observed until the last iteration at convergence. Otherwise the
computed metric ∥S∥2 and the associated bound remain at O(ε).

8.3. Highly Non-Normal Matrices. Bidiagonal matrices with a δ off-diagonal were studied by
Embree [29]. These are non-normal matrices where 0 < δ ≤ 1 and also defective. The pseudo-spectra [18]
of these matrices are discs in the complex plane. Our PM-GMRES algorithm leads to convergence after
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16 iterations without stagnation and orthogonality is maintained to machine precision as plotted in
Figure 3.

Walker [10] employed the highly non-normal matrix below to compare the Gram-Schmidt and House-
holder implementations of GMRES. The element α controls both the condition κ(A) and departure from
normality dep(A) of the matrix.

A =


1 0 · · · 0 α
0 2 · · · 0 0
...

...
...

...
0 0 · · · 0 n

 , b =


1
1
...
1


For large values of α, Walker found that the MGS-GMRES relative residual would stagnate and that the
CGS algorithm led to instability. Furthermore, it was found that even CGS-2 with re-orthogonalization
exhibited some instability near convergence. The Householder HH-GMRES maintainsO(ε) orthogonality
as measured by ∥I − vT

k vk∥F and reduces the relative residual to machine precision.
In our experiments, the value α = 2000 leads to a matrix with κ(A) = 4e+ 5. The departure from

normality, based on Henrici’s metric, is large dep(A) = 2000. The convergence history for PM-GMRES is
displayed in Figure 4 where the matrix A has been column scaled. The loss of orthogonality as measured
by ∥S∥2 remains close to O(ε) and our upper bound is tight for this problem.

Paige and Strakoš [5] study two highly non-normal matrices, FS1836 and WEST0132. In all their
experiments b = (1, . . . , 1)T . Results for the matrix FS1836 with n = 183, ∥A∥2 ≈ 1.2 × 109, κ(A) ≈
1.5 × 1011.For the matrix WEST0132 with n = 132, ∥A∥2 ≈ 3.2 × 105, κ(A) ≈ 6.4 × 1011. The MGS-
GMRES algorithm is employed in all the experimental results reported by the authors. Their Figure 7.1
indicates that the relative residual for FS1836 stagnates at 1e−7 at iteration 43 when orthogonality is
lost. The relative residual for the WEST0132 matrix also stagnates at the 1e−7 level after 130 iterations.

These results contrast with our Figures 5 and 8. In both cases the relative residuals continue to
decrease monotonically and metric ∥S∥2 either grows slowly or remains close to machine precision.
For both cases, the matrices have been column-scaled by a diagonal matrix Dc containing the column
max-norms.

8.4. Complex Eigenvalues in a Disc. For their final experiment, Liesen and Tichy [27] use the
Helmert matrix generated by the Matlab command gallery(’orthog’,18,4). Helmert matrices occur
in a number of practical problems, for example in applied statistics. Their matrix is orthogonal, and the
eigenvalues cluster around −1, as in the right part of their Figure 4.4. The worst-case GMRES residual
norm decreases quickly throughout the iterations and stagnates at the 12–th iteration, where the relative
residual remains at 1e−10. From the PM-GMRES convergence history plotted in Figure 10, the loss of
orthogonality as measured by ∥S∥2 remains close to machine precision and the relative residual does not
stagnate. The bound O(ε) ∥Aṽk∥2/hk+1,k is an excellent predictor of the metric ∥S∥2.

8.5. Nalu-Wind Model. Nalu-Wind solves the incompressible Navier-Stokes equations, with a
pressure projection scheme. The governing equations are discretized in time with a BDF-2 integrator,
where an outer Picard fixed-point iteration is employed to reduce the nonlinear system residual at each
time step. Within each time step, the Nalu-Wind simulation time is often dominated by the time
required to setup and solve the linearized governing equations. The pressure systems are solved using
PM-GMRES with an AMG preconditioner, where a polynomial Gauss-Seidel smoother is now applied
as described in Mullowney et al. [30]. Hence, Gauss-Seidel is a compute time intensive component, when
employed as a smoother within an AMG V -cycle.

The McAlister experiment for wind-turbine blades is an unsteady RANS simulation of a fixed-wing,
with a NACA0015 cross section, operating in uniform inflow. Resolving the high-Reynolds number
boundary layer over the wing surface requires resolutions of O(10−5) normal to the surface resulting
in grid cell aspect ratios of O(40, 000). These high aspect ratios present a significant challenge. The
simulations were performed for the wing at 12 degree angle of attack, 1 m chord length, denoted c, 3.3
aspect ratio, i.e., s = 3.3c, and square wing tip. The inflow velocity is u∞ = 46 m/s, the density is

ρ∞ = 1.225 kg/m
3
, and dynamic viscosity is µ = 3.756× 10−5 kg/(m s), leading to a Reynolds number,

Re = 1.5× 106. Due to the complexity of mesh generation, only one mesh with approximately 3 million
grid points was generated.
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The smoother is hybrid block-Jacobi with two sweeps of polynomial Gauss-Seidel applied locally on
an MPI rank and then Jacobi smoothing for globally shared degrees of freedom. The coarsening rate for
the wing simulation is roughly 4× with eight levels in the V -cycle for hypre [31]. Operator complexity
C is close to 1.6 indicating more efficient V -cycles with aggressive coarsening, however, an increased
number of GMRES iterations are required compared to standard coarsening. The convergence history
is plotted in Figure 9, where the loss of orthogonality is completely flat and close to machine precision.

8.6. Circuit simulation. Rozložńık et al. [28] study a typical linear system arising in circuit sim-
ulation (the matrix from a 32-bit adder design). In exact arithmetic the Arnoldi vectors are orthogonal.
However, in finite precision computation the orthogonality is lost, which may potentially affect both
the convergence rate and the ultimate attainable accuracy of the computed approximate solution. In
their Figure 3, the authors have plotted the loss of orthogonality of the computed Krylov vectors for
different implementations of the GMRES method (MGS, Householder and CGS). The equivalent results
for the PM-GMRES algorithm are plotted in Figure 11, where the loss of orthogonality is identical to
the Householder HH-GMRES solver.

9. Conclusions. The essential contribution of our work was to derive a post-modern (viz. not clas-
sical) formulation of the GMRES algorithm that employs an iterated solution of the normal equations
appearing in the Gram-Schmidt projector, as described by Ruhe [1], and the low-synchronization algo-
rithms introduced by Swirydowicz et al. [2]. The essential idea developed here was to project the vector
Avk onto the orthogonal complement of the space spanned by the computed Krylov vectors represented
by the columns of Ṽm ∈ Cn×m,.

The insights of Ruhe [1] led to the conclusion that the iterated modified Gram-Schmidt algorithm was
in fact a Gauss-Seidel iteration for the normal equations QT

k−1Qk−1 r = QT
k−1a. The Gram-Schmidt pro-

jector is then given by Pa = a−Qk−1 T
(1)
k−1Q

T
k−1a, with lower triangular matrix T

(1)
k−1 ≈ ( Q̃T

k−1Q̃k−1 )
−1.

Swirydowicz et al. [2] identified the ICWY form of MGS with T
(1)
k−1 = ( I + Lk−1 )

−1, where the strictly
lower triangular matrix Lk−1 comes from the loss of orthogonality relation

Q̃T
k−1Q̃k−1 = I + Lk−1 + LT

k−1.

where Q̃k−1 is the correctly (properly) normalized matrix as described in Björck and Paige [12]. The

matrix T
(1)
k−1 was also present, but not yet defined, in the error analysis of Björck [14], in his Lemma 5.1,

as given by
Q̄ = Q̃ ( I + U )

In effect, the low-synch MGS algorithm presented in [2] represents one Gauss-Seidel iteration to construct
the projector. The iteration can be applied twice, resulting in a correction matrix that is close to a
symmetric matrix

T
(2)
k−1 = M−1

k−1 [ I +Nk−1 M
−1
k−1 ] = ( I + Lk−1 )

−1 − LT
k−1

We have employed the iterated low-synch MGS algorithm without a re-orthogonalization step for the
Arnoldi-QR algorithm which forms the basis of a post-modern GMRES.

When applied in the context of the Arnoldi-QR algorithm, two iterations of Gauss-Seidel relaxation
have the effect of embedding the iteration matrix M−1

k−1Nk−1 into the columns of the representation error
for the Arnoldi expansion AVm = Vm+1Hm+1,m, thereby reducing the bound on the loss of orthogonality
of the Krylov vectors to O(ε)∥Aṽk∥2/hk+1,k where B = [r0, AVm ]. This is related to recent work on the
iterative solution of triangular linear systems using Jacobi iterations. The Jacobi iterations can diverge
for highly non-normal matrices. Here, the departure from normality dep(T−1

k−1) is an indicator of the loss
of orthogonality. Both of these indicate a loss of numerical rank for the Krylov vectors with the smallest
singular value decreasing from one. Our numerical experiments, on challenging problems proposed over
the past thirty-five years, demonstrate that the relative residual does not stagnate above the level O(ε).
Furthermore, the loss of orthogonality remains bounded and close to machine precision.
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Fig. 2: GMRES relative residual for Simoncini matrix using two Gauss-Seidel iterations.

Fig. 3: GMRES relative residual for Embree bidiagonal δ matrix.
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Fig. 4: GMRES relative residual for Walker matrix.

Fig. 5: GMRES residual for fs1863 matrix .
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Fig. 6: GMRES residual for steam1 matrix .

Fig. 7: GMRES residual for impcol e matrix .
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Fig. 8: GMRES residual for west0132 matrix .

Fig. 9: Pressure-continuity GMRES+AMG
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Fig. 10: GMRES residual for Helmert matrix

Fig. 11: GMRES residual for Add32 matrix. Tracks HH-GMRES.
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[23] E. Carson, K. Lund, M. Rozložńık, S. Thomas, Block Gram-Schmidt algorithms and their stability properties, Linear
Algebra and its Applications 638 (2022) 150–195.
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