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ABSTRACT

In this paper, we develop real-time applications including
virtual instruments and plate reverb using the Kirchhoff
plate model with loss and tension terms. Finite-difference
time-domain (FDTD) methods are employed, and they are
implemented on central processing units (CPUs) and op-
timized by loop unrolling or advanced vector extensions
(AVX), enabling these programs to be executed in real time
at fast speeds. applications such as virtual plate instru-
ments and plate reverb using FDTD schemes are devel-
oped as puredata (Pd) externals which can serve as objects
in puredata, a real-time graphical programming environ-
ment for audio and graphics. In these applications, multi-
ple inputs (excitation or audio signal) and outputs whose
positions are free to change in real time are allowed, and
physical parameters can be dynamically manipulated in
real time, allowing users the ability to produce both re-
alistic sound and new sounds not possible to generate in
the real world. Additionally, these Pd externals can also be
used as modules to build Pd patches, which provides more
possibilities for experimental artists.

1. INTRODUCTION

Physical modeling sound synthesis is an application of nu-
merical simulation techniques, and those algorithms, espe-
cially models based on partial differential equations (PDEs),
are in general computationally intensive compared with
earlier abstract synthesis methods. Finite-difference time-
domain (FDTD) schemes are one of the major numeri-
cal approaches to solving PDEs in electromagnetics [1]
and acoustics [2] and have been used for sound synthesis
for some time [3]. For most musical instruments, a cou-
pled set of partial differential equations, describing the dis-
placement of the instruments’ vibrating components like
strings, bars, membranes, or plates, will be numerically
solved through different methods of approximation, for ex-
ample, finite-element methods, finite-volume methods, mesh-
free methods, or finite-difference methods we used in this
paper. One major advantage of PDE-based physical mod-
els is that users can manipulate the interpretable control pa-
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rameters even throughout the synthesis process, which al-
lows them to generate novel sounds using parameters with
real-world meanings.

The main drawback to using these algorithms is their rel-
atively large computational expense. However, Recent ad-
vances in both algorithm design and computer hardware
have the potential to enable the generation of sound synthe-
sis with complex physical models in real time. One major
advance in hardware capability is low-level parallelization
on the CPU by single instruction multiple data (SIMD) in-
trinsics, such as streaming SIMD extensions (SSE) and ad-
vanced vector extensions (AVX) intrinsics, which are suit-
able for accelerating operations in FDTD schemes when
numerically solving PDEs [4] at the scale of applications
in the field of musical acoustics. There are an increas-
ing number of studies about using different hardwares to
perform these algorithms in real time. Researchers have
explored the potential of field-programmable gate array
(FPGA) [5–7] or graphics processing units (GPUs) [8–10]
for fast or real-time implementation of FDTD-based simu-
lation algorithms, although the performance is acceptable,
such hardware is not suitable for real-time audio plugin or
software development which is highly used in music pro-
duction and live performance. Recently, researchers also
studied the use of CPUs for fast [10] or real-time [11, 12]
sound simulation using FDTD methods. However, the use
of AVX intrinsics on CPUs for accelerating physical mod-
eling sound synthesis is still an under-explored area.

For developing real-time audio software or plugins, one
can use the well-known C++ framework, JUCE [13].
Max/MSP [14] and Puredata [15] externals are also pos-
sible options and both are heavily used by experimental
musicians in conjunction with existing objects in their own
patches.

In this paper, we will implement a simple FDTD scheme
of the Kirchhoff thin plate equation on rectangular regions,
which is used to synthesize the sound of plates or shells
(when curved) [3], and introduce the optimization tech-
niques used to accelerate the operations of FDTD schemes,
which are used in physical modeling sound synthesis through
PDEs. As applications, the design of simple Pd externals
of this plate model with multiple dynamic inputs and out-
puts is also discussed. Numerical results show the speed of
our optimized implementation methods by loop unrolling
and/or SIMD parallelization using AVX intrinsics, which
are capable to be performed in real time.
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2. MODEL

The plate model described in this section, assumed made
of steel, is described by a number of physical and numeri-
cal parameters, provided, for reference, in the tables below.

Symbol Value Description Units
L 0.4 length parameter m
ϵ 1.5 domain aspect ratio 1
ρ 7.86× 103 material density kg/m3

H 0.0021 plate thickness m
E 2.06× 1011 Young’s modulus Pa
ν 0.3 (< 1/2) Poisson’s ratio 1
T 1 tension/meter N/m
σ0, σ1 5.5, 0.001 damping parameter 1/s, m2/s
c0 1 amplitude of crc m
rhw 0.3 half-width of crc m
SR 44100 sample rate Hz
k 1/SR time step interval s
h, hx, hy 0.0437 grid spacing m

2.1 Kirchhoff Thin Plate Equation

The Kirchhoff model of a uniform thin isotropic plate [16]
is defined as

ρHutt = −D∆∆u, (1)

where u(x, y, t) is the plate deflection in a transverse direc-
tion at time t; here, subscripts t indicate partial differenti-
ation with respect to time t, and ∆ is the two-dimensional
Laplacian operator (and ∆∆ is the biharmonic operator).
ρ is a material density, H is the plate thickness, and the
flexural rigidity D is defined by

D =
EH3

12(1− ν2)
in terms of Young’s modulusE and Poisson’s ratio ν. When
spatially scaled with respect to a length parameter L, the
Kirchhoff model may be written as

utt = −κ2∆∆u, (2)

where
κ2 =

D

ρHL4
.

The followings are two sets of boundary conditions (clamped
and simply supported, respectively) over the boundary ∂U
of the domain U :

u =
∂

∂n
u = 0 clamped, (3a)

u = ∆nu = 0 simply supported, (3b)

where ∂
∂n and ∆n denote the first-order and second-order

scalar derivative in the normal direction of the boundary
∂U .

A simple, perceptually correct plate model with loss and
tension is shown as follows,

utt = −κ2∆∆u+ γ2∆u− 2σ0ut + 2σ1∆ut, (4)

where γ =
√
T/ρH , σ0 with σ1 = 0 indicates frequency-

independent damping, and if σ1 ̸= 0, increasing damping
at higher frequencies is modeled. Note that it is possible to
rewrite σ0 and σ1 in terms of two chosen values of decay
constant T60 at specified frequencies 1 .

1 If σ1 = 0, we have σ0 = 6 ∗ log 10/T60.

2.2 Excitation

A raised cosine distribution could be used as an all-purpose
forcing condition to model both plucks and strikes [3]:

crc(x, y) =

{
c0
2
(1 + cos (πdi(x, y)/rhw)) , di(x, y) ≤ rhw

0, di(x, y) > rhw
(5)

where di(x, y) =
√
(x− xi)2 + (y − yi)2, c0 is the am-

plitude, rhw is the half-width, and (xi, yi) is the center of
the excitation. One can also couple other complex exci-
tation models like mallets and bows with the plate model
to make it more musically interesting and plausible. Each
excitation term could be added to the plate models as an
extra term 2

X(x, y, t) = eexc(x, y)F (t), (6)

where eexc(x, y) is a distribution representing the spatial
extent of the excitation, and F (t) is a force divided by the
total plate mass. For virtual instruments, one can use crc
as the excitation with F (t) = 1(t = 0); a direct choice
of the excitation distribution for plate reverb is the Dirac
function, i.e., eexc(x0, y0) = δ(x−x0, y−y0) with the in-
put waveform as the force term F (t). For multiple inputs,
one can simply add multiple Xs to the right-hand side of
equation (4).

A single output is defined as

m(xo, yo, t) = u(xo, yo, t) (7)

is normally drawn from the transverse displacements of the
plate at given coordinate (xo, yo).

3. NUMERICAL SCHEMES AND
IMPLEMENTATION

In this paper, these equations will only be solved on a rect-
angular domain U = {x, y|0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly}.
Assume the indices of grid points in U for discretization
are GP = {(l,m) | l = 0, 1, . . . , Nx, m = 0, 1, . . . , Ny}.
However, to involve the fourth-order difference operators,
we need to create a ”virtual” boundary defined as ul,m,
where the (l,m)-pairs satisfying (l+1)(l−Nx− 1)(m+
1)(m − Ny − 1) = 0, l = −1, 0, 1, . . . , Nx + 1, m =
−1, 0, 1, . . . , Ny+1. Thus, the indices for grid points with
both natural and virtual boundaries areEGP = {(l,m) | l =
−1, 0, 1, . . . , Nx + 1, m = −1, 0, 1, . . . , Ny + 1}. Define
the set for internal grid points as IGP = {(l,m) | l =
1, 2, . . . , Nx − 1, m = 1, 2, . . . , Ny − 1}, the set for nat-
ural boundaries as NBD = GP\IGP , the set for vir-
tual boundaries as V BD = EGP\GP and the set for
boundaries as BD = NBD ∪ V BD. Grid spacings for
x-axis and y-axis are hx = Lx/Nx and hy = Ly/Ny , re-
spectively, and here we assume hx = hy , i.e., equal grid
spacing. A demonstration for the partition of grid points is
shown in Fig. 1.

2 For the Kirchhoff thin plate (1), just add it to the right-hand side of
the equation.



(a) (b) (c)

Figure 1. (a) Nx = 7, Ny = 4, red: V BD, blue: NBD,
black: IGP ; (b,c): stencils of δ∆⊞ and δ∆⊞,∆⊞, respec-
tively

3.1 Grid functions and finite difference operators

Let unl,m denote the numerically updated u at time step n
on grid point (l,m) ∈ EGP . First, we define temporal
operators can be defined as follows,

et±u
n
∗ = un±1

∗ , 1un∗ = un∗ , (8a)

δt± ≜ ±1

k
(et± − 1), δt· ≜

1

2k
(et+ − et−), (8b)

δtt = δt+δt− =
1

k2
(et+ − 2 + et−), (8c)

The following are spatial operators 3 :

ex±u
n
l,m = unl±1,m (9a)

δx± ≜ ± 1

h
(ex± − 1), δx· ≜

1

2h
(ex+ − ex−) (9b)

δxx = δx+δx− =
1

h2
(ex+ − 2 + ex−) (9c)

δ∆⊞ = δxx + δyy =
1

h2
(ex+ + ex− + ey+ + ey− − 4)

(9d)

δ∆⊞,∆⊞ ≜ δ∆⊞δ∆⊞ = δxxδxx + δyyδyy + 2δxxδyy
(9e)

Stencils or footprints for discrete Laplacian and bihar-
monic operators δ∆⊞, δ∆⊞,∆⊞ are shown in Fig. 1. The
above difference operators are used to approximate differ-
ential operators in PDEs and derive schemes for numeri-
cal solutions. Interpolation operators and discrete spread-
ing functions for approximating the Dirac delta function
defined as follows are also needed when we numerically
solve PDEs.

A zeroth-order (westward/southward) interpolant I0(xo, yo)
operating at position (xo, yo) is defined by

I0(xo, yo)u = ulo,mo , (10)

where lo = floor(xo/h), mo = floor(yo/h). Another
choice that is more accurate is the bilinear interpolant,

I1 (xo, yo)u =(1− αx,o) (1− αy,o)ulo,mo

+ (1− αx,o)αy,oulo,mo+1

+ αx,o (1− αy,o)ulo
+ 1,mo + αx,oαy,oulo+1,mo+1

, (11)

3 y-counterparts of the first three operators could be defined similarly.

where αx,o = xo/h− lo and αy,o = yo/h−mo.
Spreading grid functions J0(xi, yi) and J1(xi, yi), oper-

ating at position (xi, yi) which approximate the 2D Dirac
delta function δ(x − xi, y − yi), may be similarly defined
as the duals to these interpolants as follows,

Jl,m,0 (xi, yi) =
1

h2

{
1, l = li,m = mi

0, else

Jl,m,1 (xi, yi)

=
1

h2


(1− αx,i) (1− αy,i, ) l = li,m = mi

(1− αx,i)αy,i, l = li,m = mi + 1
αx,i (1− αy,i) , l = li + 1,m = mi

αx,iαy,i, l = li + 1,m = mi + 1
0, else

(12)
where li = floor (xi/h),mi = floor (yi/h), αx,i = xi/h−
li, and αy,i = yi/h−mi.

3.2 A simple explicit FDTD scheme for the Kirchhoff
thin plate

For the linear plate model with loss (4), its explicit scheme
could be written as follows,

δttu = −κ2δ∆⊞,∆⊞u+γ
2δ∆⊞u−2σ0δt·u+2σ1δt−δ∆⊞u,

(13)
when written out in full,

un+1
l,m = [(2− 20µ2 − 4ψ − 8σ1ξ)u

n
l,m

+
(
8µ2 + ψ + 2σ1ξ

)
(unl,m+1 + unl,m−1

+ unl+1,m + unl−1,m)− 2µ2(unl+1,m+1 + unl+1,m−1

+ unl−1,m+1 + unl−1,m−1)− µ2(unl,m+2 + unl,m−2

+ unl+2,m + unl−2,m)− (1− σ0k − 8σ1ξ)u
n−1
l,m

− 2σ1ξ(u
n−1
l,m+1 + un−1

l,m−1 + un−1
l+1,m + un−1

l−1,m)]

/ (1 + σ0k)
(14)

for (l,m) ∈ IGP , where µ = κk
h2 , ψ = γ2k2

h2 , and ξ = k
h2

are the scheme parameters.

3.2.1 Matrix-form update rules

Let [un] be the by-column(y-axis) flattened vector of unl,m
restricted on IGP , i.e.,

[un](l−1)(Ny−1)+m = unl,m,

and ũn be the grid matrix, where ũnm,l = unl,m, normally
(l,m) ∈ IGP so ũn ∈ R(Ny−1)×(Nx−1), but we can also
extend it to other grid points in BD and V BD. Thus, the
matrix-form update rules for (14) have the following gen-
eral formula:

[un+1] = S[un]− T [un−1], (15)



where S, T ∈ R(Ny−1)(Nx−1)×(Ny−1)(Nx−1) are given as
follows for different boundary conditions:

S = 2I−µ2(L2+P )+(ψ+2σ1ξ)L
1+σ0k

T = (1−σ0k)I+2σ1ξL
1+σ0k

, clamped, (16a)

S = 2I−µ2L2+(ψ+2σ1ξ)L
1+σ0k

T = (1−σ0k)I+2σ1ξL
1+σ0k

, simply supported,

(16b)

here

L =


A I 0
I A I

. . . . . .
. . . . . .
I A I

0 I A

 , ∈ RNN×NN ,

P =


2N 0 0
0 N 0

. . . . . .
. . . . . .
0 N 0

0 0 2N

 , ∈ RNN×NN ,

(17)
whereNN = (Ny−1)(Nx−1),L is the discrete Laplacian
operator, I ∈ R(Ny−1)×(Ny−1) is the identity matrix, and

A =


−4 1 0
1 −4 1

. . . . . .
. . . . . .
1 −4 1

0 1 −4

 , ∈ R(Ny−1)×(Ny−1),

N =


1 0 0
0 0 0

. . . . . .
. . . . . .
0 0 0

0 0 1

 , ∈ R(Ny−1)×(Ny−1).

3.2.2 Numerical boundary conditions

According to (3), we can obtain the following numerical
boundary conditions,

u = δx±u = δy±u = 0 clamped, (18a)
u = δxxu == δyyu = 0 simply supported, (18b)

where the direction of difference operators is related to the
direction of the normal vector n.

The first part of these boundary conditions, u = 0, means
ul,m = 0 for (l,m) ∈ NBD. In another part of boundary
conditions with difference operators, the virtual boundary
should satisfy the following equations, respectively:

ul,m = 0 clamped, (19a)

u−1,m = −u1m,
u(Nx+1),m = −u(Nx−1),m,

ul,−1 = −ul,1,
ul,(Ny+1) = −ul,(Ny−1)

simply supported,

(19b)

for (l,m) ∈ V BD.

3.2.3 Numerical stability condition

Using von Neumann analysis [3], we can derive the stabil-
ity condition of scheme (14) as follows,

h ≥ 2

√
σ1k +

√
σ2
1k

2 + κ2k2. (20)

3.2.4 Numerical excitation and output

The discrete versions of the excitation (6) and output (7)
are defined as follows, respectively,

Xn(xi, yi) = Jp(xi, yi)F (nk), (21)

mn(xo, yo) = Ip(xo, yo)u
n, (22)

where Jp is a p-th order spreading function which could
be chosen from J0 and J1 defined in (12), and Ip is a p-th
order interpolation function which could be chosen from
I0 and I1 defined in (10) and (11), respectively. For ap-
plications, multiple excitations and outputs are allowed by
adding multipleXs to the scheme and reading out multiple
ms at proper time steps.

3.3 Implementation

In the real-time implementation in C/C++, all matrices and
vectors are using double-precision array data type, and ma-
trices are stored by flattening them by column. All code
should be compiled with at least -O3/-Ofast and -mavx2 4

-march=native flags.

3.3.1 Matrix-free temporal difference updates

Consider the numerical schemes (14) in Section 3.2, they
are all explicit schemes which means no linear systems
are required to be solved for the temporal difference up-
dates. We can either use a sparse-matrix form update (15)
for all grid points or use matrix-free updates (14) for each
grid point in loops. For sparse-matrix form update, the
loop unrolling or parallelization is used for sparse matrix-
vector multiplication which will be described later. Here
we choose matrix-free temporal difference updates for the
real-time implementation since updates in this form can
have the fastest speed among all methods we mentioned in
this paper, numerical results and comparison are presented
later. The general pseudo-code for matrix-free temporal
difference updates is shown in Algorithm 1. And the opti-
mization technique is to unroll 5 or parallelize using AVX
intrinsics 6 every for-loop in Algorithm 1, and use AVX’s
fused operations like fused multiply-add (fmadd) instead
of two separate operations if supported. Demonstration for
these optimization techniques is shown in Fig. 2.

4 For AVX2. Choose -mavx for AVX and -mavx512f for AVX512.
5 In our implementation, the number of iterations unrolled for a single

iteration is 8.
6 If double precision is used, num simd = 2 for AVX, 4 for AVX2, and

8 for AVX512. In my implementation, num simd is set to 4 and AVX2
with double precision is used.



  // Plain code
  for i = 1:n
       P(i)
  end

  // loop unrolling
  index = 1
  for i = 1:n%num_unroll
       P(x[index])
       index <-- index + 1
  end
  for i = 1:n//num_unroll
       P(x[index])
       P(x[index+1])
       ...
       P(x[index+num_simd-1])
       index <-- index + num_unroll
  end

  // SIMD parallelization (AVX)
  index = 1
  for i = 1:n%num_simd
       P(index)
       index <-- index + 1
  end
  for i = 1:n//num_simd
       x_avx = load_avx(&x[index])
       P_avx(x_avx)
       store_avx(&x[index], x_avx)
       index <-- index + num_simd
  end

plain

x[i]

SIMD (4)

x[i+3]
x[i+2]
x[i+1]

x[i]

P

Figure 2. Demonstration for loop unrolling and SIMD parallelization. P means the operation for each time step (including
all parameters and coefficients from some data), and x is the array-type data used for and updated by the operation. For the
operation using SIMD parallelization, several entries of the data need to be loaded to some consecutive memory addresses,
then the single instruction will be applied to these loaded entries simultaneously, and finally, store the result back to the
data. Here for AVX2, the number of these double-precision entries for each iteration (num simd) is 4.

The first for-loop in each box indicates the remainder of the total number to be unrolled which cannot be unrolled or
parallelized as a whole.

abbr. of platform machine operating system supported instruction sets

MBA
MacBook Air 2020
with 1.1 GHz 4-core Intel i5 MacOS 12 AVX, AVX2

MBP
MacBook Pro 2021
with 10-core M1 Max MacOS 12 N/A

PC Linux
AMD Ryzen 7 5800X
8-core 4.7 GHz Ubuntu 22.04 LTS AVX, AVX2

PC Win
AMD Ryzen 7 5800X
8-core 4.7 GHz Windows 11 AVX, AVX2

Table 1. Systems and hardware for numerical experiments

parameters (F)

parameters (C)

variables: 

coefficients in the
numerical schemes
values of grid points at
time step n, (n-1), (n-2):
u_0, u_1, u_2
multiple I/O positions  

misc.:
indicators,
indices, ...

Initialization

Operations 
in each block

change parameters
and update

coefficients and I/O

execute update
rules of FDTD

schemes

readout

excitations 
or 

input waveforms, 
input positions

output positions

Figure 3. A diagram for Pd externals with algorithms using FDTD schemes.



Algorithm 1 Matrix-free temporal difference updates
Input: All required parameters for coefficients Θ, values

on all grid points ∈ EGP for time step n and n− 1: ũ1,
ũ2

Output: values on all grid points ∈ EGP for time step
n + 1 and n: ũ (the current time step),ũ1 (the previous
time step)

function MFTEMPORALDIFFERENCEUP-
DATES(Θ, ũ1, ũ2)

Initialize a zero matrix ũ on all grid points in EGP
Update for all grid points in IGP
for (l,m) ∈ IGP in some order 7 do

ũl,m ← f(l,m),Θ(ũ
1, ũ2) ▷ f(l,m),Θ is some

linear functions of ũ1, ũ2 restricted on some grid points
centered in (l,m) with coefficients Θ are from (14)

end for
Set the boundary for ũ
for (l,m) ∈ V BD do ▷ Ignore NBD since all

values on grid points in NBD are 0
ũl,m ← some boundary conditions like (18, 19)

end for
return ũ, ũ1

end function

3.3.2 Alternative implementations

Here, we’ll briefly introduce the implementation methods
for matrix-form update rules derived in Section 3.2.1. Con-
sider formulas (16) of S and T in (15), the most computa-
tionally intensive part is L2[ut] and L[ut]. For these mul-
tiplications, the following implementation methods opti-
mized for the structure of L are proposed to achieve fast
speeds. The sparse-matrix format used here is adapted
from the Compressed Sparse Row (CSR) format, but we
don’t need to store all entries of the sparse matrices since
there are only a few constant values appeared in the matri-
ces, and the number of those constant values are indepen-
dent of the size of the matrices 8 . Notice that, L2 could be
regarded as a single matrix or a composition of two matri-
ces, which means we have two possible approaches for a
given implementation method.
Implementation for matrix-form update rules using sparse
block matrix-vector multiplication:

A direct way is to implement the standard sparse block
matrix-vector multiplication for L2[ut] and L[ut]. Here,
L2 is treated as a single matrix. Each non-zero block of
the matrix will be multiplied by the vector and accumu-
lated to the final result, and for the multiplication between
each block and the vector, the operations between each row
of the block and the vector are explicitly computed without
for-loops since the amount of non-zero entries is fixed. The
loop-unrolling or SIMD parallelization is applied to the it-
eration within each block by column. The abbreviation of
this implementation is mvmul.
Implementation for matrix-form update rules using con-
volutions:

8 For L, we only need to store 2 values [1,−4]; for L2, we only need
to store 6 values [−1,−2, 8,−20,−18,−19], where −18 and −19 are
for corners and edges, respectively.

Consider the difference operators δ∆⊞ and δ∆⊞,∆⊞ in
(13) or the structure of L and L2, the operations between
the difference operators/matrices and vector are similar to
convolutions. Thus, we can use operations like convolution
kernels to do the sparse block matrix-vector multiplication.
For L2 and L, sizes of the kernels KL2 , KL are 5× 5 and
3× 3, respectively, and the kernels are shown as follows,

KL =

 0 1 0
1 −4 1
0 1 0

 ,

KL2 =


0 0 −1 0 0
0 −2 8 −2 0
−1 8 −20 8 −1
0 −2 8 −2 0
0 0 −1 0 0

 .

(23)

We can also use a composition of two convolutions with
a kernel of KL for the convolution with a kernel of KL2

9 .
For implementation, all operations between the kernel and
the vector are explicitly computed without for-loops, and
the loop-unrolling or SIMD parallelization is applied to
the iteration of the kernel’s shifts by column. The abbre-
viations of the above implementations are conv K2

L and
conv KL, respectively.

3.4 Numerical results

In this paper, four platforms including three machines and
three operating systems listed in Table 1 are used for nu-
merical experiments. All numerical results listed below
are calculated for 1 second with simply supported bound-
ary condition, one raised-cosine excitation, and one fixed-
position output, a grid size of Nx = 28 and Ny = 19
which is enough to synthesize quality sound, and other pa-
rameters are chosen as described in Sec. 2.

Here we list time costs in seconds for the full plate al-
gorithm in (14, 15, 3.2.1) with different optimization tech-
niques for matrix-free temporal difference updates and sparse
matrix operations of matrix-form updates in Table 2. The
version of Matlab we used is R2022a, and plain code means
no optimization techniques are used. As we can see in
the numerical results, the best time costs of each platform
are much smaller than the duration of synthesized sound,
which means the optimized implementation has the capa-
bility to be executed in real time since the most computa-
tionally intensive part of the program is the matrix-vector
multiplication, allowing proper numbers of multiple (mov-
ing) inputs and outputs will not impose significant extra
time costs.

9 If we use a single 5×5 kernel KL2 , we need to manipulate the edges
and corners after the convolution according to the boundary condition; if
we use a composition of two convolutions with a 3 × 3 kernel KL, we
don’t need to do such manipulations under the simply supported boundary
conditions.



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
t

-5

-4

-3

-2

-1

0

1

2

3

4

5

u

10-5

Figure 4. The plot of a 2-second sound example generated
by Matlab. Sound examples could be found on this GitHub
repo: https://github.com/water45wzh/linear-plate-demo.

MBA MBP PC Linux PC Win
plain code 0.403 0.192 0.200 0.265
loop unrolling 0.326 0.185 0.202 0.252
AVX2 0.372 N/A 0.349 0.393
plain code (-O3) 0.122 0.031 0.026 0.040
loop unrolling (-O3) 0.117 0.054 0.052 0.065
AVX2 (-O3) 0.039 N/A 0.025 0.034
Matlab 0.394 0.239 0.191 0.187
mvmul unroll 0.873 0.825 0.742 0.813
mvmul AVX2 0.742 N/A 0.612 0.698
mvmul unroll (-O3) 0.267 0.124 0.168 0.176
mvmul AVX2 (-O3) 0.224 N/A 0.151 0.157
conv KL unroll 0.671 0.311 0.353 0.385
conv KL AVX2 0.609 N/A 0.414 0.432
conv KL unroll (-O3) 0.167 0.044 0.045 0.045
conv KL AVX2 (-O3) 0.163 N/A 0.054 0.058
conv KL2 unroll 0.807 0.374 0.401 0.440
conv KL2 AVX2 0.705 N/A 0.475 0.493
conv KL2 unroll (-O3) 0.191 0.068 0.067 0.061
conv KL2 AVX2 (-O3) 0.179 N/A 0.055 0.058

Table 2. Numerical results of the full plate algorithm with
matrix-free temporal difference updates and matrix-form
updates. We only test matrix-form updates in Matlab im-
plementation. The first three rows are compiled without
-O3 flag. Bold results are the best results for each column.

The plot of a 2-second sound example is shown in Fig. 4.

4. APPLICATION: PD EXTERNALS

In this section, I will briefly describe the methodology of
building Pd externals with algorithms using FDTD schemes.
The first thing is to classify all parameters into two cate-
gories: parameters in F that are fixed throughout the run-
time and parameters in C that may change throughout the
runtime, shown as follows,

F = {SR, k, h, hx, hy, L, ϵ},

C = {ρ,H,E, ν, T, σ0, σ1, in, out},

where in and out are all positions for excitations and out-
puts, respectively.

Pd externals will be loaded as objects in Pd patches. There
are two types of objects in Pd, control objects and tilde ob-
jects. The control objects carry out their function sporadi-
cally, as a result of one or more types of events [15]. The
tilde objects compute audio samples, which are continu-
ous streams of numbers. The audio portion of the patch
is always running, whether MIDI messages arrive or not.
The externals we build here are tilde objects. And tilde ob-
jects are processed block by block, where blocks serve as
audio buffers, and the number of samples in each block is
normally 64, 128, 256, or 512 according to Pd settings.

When a tilde object is loaded in Pd patches, its new mod-
ule and setup module will be called and the object will thus
be initialized with a class containing all variables and pa-
rameters (like F and C) required to be stored or changed
throughout the runtime. All updates from the numerical
schemes need to be executed block by block in a pointer
of the perform function, and it needs to be called in the
dsp method by dsp add which is a module for handling
the audio signal stream in this object and will be added to
the setup module. A diagram for demonstration is shown
in Fig. 3. Two Pd externals are built using the above
methodology, one is thinplate∼, a virtual plate instrument
with 8 excitation positions and 8 outputs and another is
platereverb∼, a plate reverb with 8 inputs and 8 outputs.
A diagram of Pd externals with algorithms using FDTD
schemes is shown in Fig. 3.

5. CONCLUSIONS

In this paper, the implementation of FDTD schemes for the
Kirchhoff thin plate equation with different optimization
techniques and the development of corresponding Pd ex-
ternals with multiple movable inputs and outputs has been
presented. Numerical comparisons between different im-
plementation approaches and optimization techniques are
performed on different platforms, showing that SIMD par-
allelization using AVX intrinsics for matrix-free tempo-
ral difference updates achieves the fastest speed which is
much smaller than the threshold of real-time execution.

Future work may involve using the proposed optimization
strategy for other synthesis algorithms with similar sparse-
matrix operations, like 2-D digital waveguide meshes [17],
and developing real-time implementations of models with
nonlinearity, such as the von Kármán plate model [3, 18],
which could synthesize more perceptually correct sound.
Another possible direction is to design more user-friendly
applications using FDTD schemes that can interact with
users through some hardware and software controllers, which
means a mapping between the models’ control parameters
and the controllers’ keys, buttons, knobs, and sliders need
to be carefully designed.
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