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Abstract

The tbuddy library enables the construction and manipulation of reduced, ordered
binary decision diagrams (BDDs). It extends the capabilities of the buddy BDD package
to support trusted BDDs, where the generated BDDs are accompanied by proofs of their
logical properties. These proofs are expressed in a standard clausal framework, for which
a variety of proof checkers are available. Building on tbuddy via its application-program
interface (API) enables developers to implement automated reasoning tools that generate
correctness proofs for their outcomes. In some cases, BDDs serve as the core reasoning
mechanism for the tool, while in other cases they provide a bridge from the core reasoner
to proof generation. A Boolean satisfiability (SAT) solver based on tbuddy achieves poly-
nomial scaling when generating unsatisfiability proofs for a number of problems that yield
exponentially-sized proofs with standard solvers. It performs particularly well for formulas
containing parity constraints, where it can employ Gaussian elimination to systematically
simplify the constraints.

1 Introduction
Proof generation has become a core requirement for Boolean satisfiability (SAT) solvers when
they encounter an unsatisfiable problem. The SAT solver generates a detailed proof in a stan-
dard proof format. An independent proof checker can then affirm that the problem is indeed
unsatisfiable, ruling out any false negative results due to a bug in the SAT solver’s algorithms
or implementation. Most modern solvers are based on conflict-driven clause-learning (CDCL)
algorithms, and these can readily be extended to generate proofs in the Deletion Resolution
Asymmetric Tautology (DRAT) proof framework [21, 44]. Like resolution proofs [34], a DRAT
proof is a clausal proof consisting of a sequence of clauses, each of which preserves the satisfi-
ability of the preceding clauses. An unsatisfiability proof starts with the clauses of the input
formula and ends with an empty clause, indicating logical falsehood. The fact that this clause
can be derived from the original formula proves that the original formula cannot be satisfied.

Although a number of SAT solvers based on Binary Decision Diagrams (BDDs) have been
implemented over the years [13,17,22,24,32], most of these predated the era when proof genera-
tion became a priority. In 2006, Biere, Jussila, and Sinz demonstrated that the underlying logic
behind standard BDD algorithms can be encoded as steps in an extended resolution frame-
work [25, 37]. Extended resolution [26, 40] augments standard resolution by allowing proofs
to introduce extension variables, serving as abbreviations for Boolean formulas over the input
and other extension variables. This can yield proofs that are exponentially more compact than
standard resolution proofs [12]. Biere, Jussila, and Sinz use this capability by introducing an
extension variable for each BDD node generated. The logic for each recursive step of standard
BDD operations, based on the Apply algorithm [5], can then be expressed with a short sequence
of proof steps. Tbuddy builds on this work.
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The DRAT framework also supports extension variables. Our solver pgbdd [7,8] (for “proof-
generating BDD”) demonstrated that a BDD-based SAT solver can generate DRAT proofs of
unsatisfiability by integrating proof generation into the BDD package. Our second solver pgpbs
(for “proof-generating pseudo-Boolean solver”) augments the SAT solver with a pseudo-Boolean
constraint solver, enabling it to generate DRAT proofs of unsatisfiability for problems where
the input formula, described in conjunctive normal form (CNF), encodes parity and cardinality
constraints [6]. Pgpbs relies on the constraint solver to detect that the formula is unsatisfiable.
BDDs serve only as a mechanism to prove that 1) each of the extracted constraints is implied
by the input formula, and 2) each step of the solver preserves satisfiability. These two solvers
achieved polynomial scaling while generating unsatisfiability proofs for a number of challenging
SAT problems.

The prototype solvers pgbdd and pgpbs demonstrated that BDDs can provide a useful
framework for proof-generating automated reasoning tools, but their performance, in terms
of both speed and capacity, was limited by their Python implementations. In this work, we
describe tbuddy, a high performance library for constructing and manipulating trusted BDDs.
Tbuddy builds on buddy, a BDD package written by Jørn Lind-Nielsen while he was a PhD
student at the Technical University of Denmark in the late 1990s [29]. It has subsequently been
used and modified by a number of others, although the current version (2.4) has been unchanged
on Sourceforge since 2014. Buddy is written in C but has a C++ interface that provides more
convenient memory management. These features were carried over to the implementation of
tbuddy.

Although there are a number of BDD packages available, we chose to implement our proof-
generating library by extending buddy for several reasons:

• Multiple studies have shown that buddy generally performs as well as other BDD pack-
ages [23,33,42].

• Buddy references nodes as integer indices into an array, rather than as pointers to a
node data structure. As a result, it can manage BDDs with up to two billion (231) nodes
using four-byte references, rather than the eight-byte pointers required for modern, 64-bit
machines.

• Buddy does not use complement pointers [4, 31] to denote Boolean negation. Although
these can reduce BDD sizes and enable constant-time complementation, they would
greatly complicate adding proof generation. Complement pointers rely on a symmetry
between True and False that is not present in clausal representations.

• The buddy code is clear and concise. The complete package, prior to our modifications,
consists of around 13,000 lines of code. By contrast, the core of the popular cudd pack-
age [38] has over 72,000 lines of code. Cudd includes many features that are not relevant
for this work but would requiring updating as the core data structures are changed.

• Buddy supports dynamic variable ordering [35]. We do not use that feature directly, since
it would be challenging to keep the proof information updated as variables are swapped
in the BDD. However, it enables maintaining a distinction between the numbering of
variables in the input file and the ordering of those variables within the BDD. We have
found this capability vital for achieving good performance on some benchmarks.

This paper describes the design and implementation of tbuddy, as well as tbsat, a proof-
generating SAT solver implemented using tbuddy. It presents experimental results for several
scalable benchmarks that are intractable for current CDCL solvers. A complete version of the
code is available at https://github.com/rebryant/tbuddy-artifact.
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2 Proof Generation with BDDs
Our immediate goal is to support the operations of a BDD-based SAT solver, generating one
or more solutions when the formula is satisfiable and an unsatisfiability proof when it is not.
Future uses of a proof-generating BDD package include a variety of automated reasoning tasks
that would benefit from the assurances provided by checkable proofs of correctness.

2.1 Notation
Formulas are defined over a set of Boolean variablesX = {x1, x2, . . . , xn}. The symbols u, v and
w also denote Boolean variables, possibly with subscripts. The notation u denotes complement
of variable u. A literal ` is either a variable or its complement. A clause C consists of a set
of literals, and a formula φ consists of a set of clauses. We denote a clause as a disjunction of
literals, enclosed in square brackets, e.g., [u ∨ v ∨ w]. A clause consisting of a single literal `,
denoted [`], is a unit clause.

An assignment α is a mapping from the input variablesX to the set {0, 1}, where 0 represents
false, and 1 represents true. Assignment α is said to satisfy clause C if there is some literal
` ∈ C such that ` = x and α(x) = 1, or ` = x and α(x) = 0. Assignment α satisfies formula
φ if it satisfies every clause in φ. A formula φ is said to be satisfiable if it has a satisfying
assignment and to be unsatisfiable if no satisfying assignment exists. A formula containing the
empty clause [ ] cannot be satisfied.

A clausal proof consists of a sequence of clauses C1, C2, . . . , Cm, Cm+1, . . . Ct where the first
m clauses are those of the input formula φ, while the subsequent clauses have the property that
they preserve the satisfiability of the preceding clauses. That is, for all m ≤ i < t, if the formula
consisting of clauses {C1, . . . , Ci} is satisfiable, then so is the formula {C1, . . . , Ci, Ci+1}. A
proof of unsatisfiability has an empty clause as its final clause. The fact that this clause
can be derived via a sequence of the steps from the input formula proves that the formula is
unsatisfiable.

2.2 BDD Extension Variables and Defining Clauses
The BDD package maintains a directed acyclic graph consisting of a set of nodes, where each
node u is either terminal or nonterminal. There are just two terminal nodes: T0, representing
false, and T1, representing true. Nonterminal node u has an associated variable Var(u) ∈ X
as well as child nodes Low(u) and High(u). Each BDD node u represents a Boolean function,
denoted JuK. Terminal nodes represent constant functions: JT0K = 0, and JT1K = 1. The
function for nonterminal node u is defined recursively using the ITE operator (short for “if-
then-else”), where ITE(u, v, w) = (u ∧ v) ∨ (¬u ∧ w):

JuK = ITE
(

Var(u), JHigh(u)K, JLow(u)K
)

(1)

The DRAT proof system supports an extension rule, similar to that of extended resolu-
tion [26, 40]. That is, the proof can define and reference extension variables serving as abbre-
viations for Boolean formulas over input variables and previous extension variables. Extension
variable u encoding Boolean formula F is introduced by including a set of defining clauses in
the proof encoding the formula u↔ F . This capability is key to proof generation with BDDs,
with an extension variable defined for every nonterminal node in the BDD.

An assignment α over the input variables can be uniquely extended to assign values to
the extension variables. Extension variable u is assigned the value resulting from applying its
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Table 1: Defining Clauses for Extension Variable u Representing BDD node u

Notation Formula Clausal Representation
Nonterminal child Child is 1 Child is 0

HD(u) x→ (u→ u1) [x ∨ u ∨ u1] 1 [x ∨ u]
LD(u) x→ (u→ u0) [x ∨ u ∨ u0] 1 [x ∨ u]
HU(u) x→ (u1 → u) [x ∨ u1 ∨ u] [x ∨ u] 1
LU(u) x→ (u0 → u) [x ∨ u0 ∨ u] [x ∨ u] 1

defining formula F to the values assigned to the input and previous extension variables. For
assignment α and extension variable u, we therefore have α(u) ∈ {1, 0}.

As with the approach of Biere, Sinz, and Jussila [25,37], each nonterminal BDD node has an
associated extension variable. Nodes are denoted by boldface letters, possibly with subscripts,
e.g., u, v, and v1, while their corresponding extension variables are denoted with a normal face,
e.g., u, v, and v1. The extension variables associated with the nonterminal nodes of the BDD
provide the proof with a semantic definition of how BDDs encode Boolean functions according
to Equation 1. More precisely, for nonterminal node v, let Ex(v) = v be the extension variable
associated with the node. For the two terminal nodes, define Ex(T0) = 0 and Ex(T1) = 1. For
nonterminal node u, let x = Var(u), u1 = Ex(High(u)), and u0 = Ex(Low(u)). Then the defining
clauses for u encode the formula u↔ ITE(x, u1, u0). These clauses are shown in Table 1. As can
be seen, when both children are nonterminal, there will be four clauses, each containing three
literals. When one or more children are terminal nodes, some of the formulas for the defining
clauses degenerate into tautologies (indicated by table entry 1.) These are not included among
the defining clauses. Others have just two literals. For BDD node u, we let Def(u) denote the
set of defining clauses for all nodes in the subgraph with root u.

Consider assignment α over the input variables extended to assign values to the extension
variables. We will say that assignment α satisfies BDD root u with associated extension variable
u if α(u) = 1. This will occur precisely for those assignments where JuK, the Boolean function
associated with u, evaluates to 1.

2.3 RUP Proof Steps

Each logical inference for the subset of the DRAT proof system we use is based on an application
of the reverse unit propagation (RUP) rule [18, 43]. RUP provides an easily checkable way to
combine a linear sequence of resolution steps with subsumption. Let C = [`1 ∨ `2 ∨ · · · ∨ `p]
be a clause to be proved and let clauses D1, D2, . . . , Dk be a sequence of supporting antecedent
clauses occurring earlier in the proof. The RUP step proves that

∧
1≤i≤kDi → C. It does so by

showing that the combination of the antecedents plus the negation of C leads to a contradiction.
The negation of C is the formula `1 ∧ `2 ∧ · · · ∧ `p having a CNF representation consisting of
the unit clauses {[`1], [`2], . . . , [`p]}. A RUP check processes the clauses of the antecedent in
sequence, inferring additional unit clauses. In processing clause Di, if all but one of the literals
in the clause is the negation of one of the accumulated unit clauses, then we can add this literal
to the accumulated set. The final step with clause Ck must cause a contradiction, i.e., all of its
literals are falsified by the accumulated unit clauses.
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/* Generate TBDD from input clause */
tbdd tbdd_from_clause_id(int i);

/* Form conjunction of two TBDDs */
tbdd tbdd_and(tbdd u, tbdd v);

/* Upgrade BDD v to TBDD based on implication from TBDD u */
tbdd tbdd_validate(bdd v, tbdd u);

/* Generate proof of clause based on TBDD u */
int tbdd_validate_clause(ilist literals, tbdd u);

Figure 1: Trusted BDD API Function Prototypes

2.4 The Trusted BDD API

The tbuddy package supports the generation of trusted BDDs (TBDDs). These are ones that
have been formally certified to be implied by the input formula. More precisely, for a trusted
BDD with root node u and associated extension variable u, any assignment α to the input
variables that satisfies the input formula must also assign 1 to u. This can be written as
φ,Def(u) |= u. This property is proved by generating a sequence of proof clauses leading to a
proof of the validating clause, consisting of unit clause [u]. We use the notation u̇ to indicate
that node u is trusted.

The tbuddy API provides several procedures that enable the generation of TBDDs. Their
prototypes are shown in Figure 1. In these, data types bdd and tbdd represent BDDs and
TBDDs, respectively, as is described in Section 3.1. Data type ilist is the API’s representation
of integer lists.

The tbdd_from_clause_id operation generates the BDD representation ui of input clause
Ci, as well as a proof of unit clause [ui]. The BDD representation of a clause is a linear chain.
The proof that Ci,Def(u) |= ui consists of a single RUP step, with Ci plus a subset of the
defining clauses for the nodes in the chain as antecedents [37].

Given trusted BDDs u̇ and v̇, the tbdd_and operation first generates the BDD representation
w of their conjunction. It also generates a proof that u∧v → w, given by the clause [u∨v∨w].
It then uses a RUP step with this clause plus unit clauses [u] and [v] to prove the unit clause [w],
upgrading node w to ẇ. As is described below, the BDD construction and the proof generation
are performed by a version of the BDD ApplyAnd operation that generates both a BDD node
and a sequence of proof steps [7, 8].

The standard version of the ApplyAnd procedure recursively traverses the nodes for the
two arguments and generates intermediate result nodes [5]. It maintains an operation table of
previously computed results to ensure polynomial complexity. Given arguments u and v, it
directly handles the cases where one argument is a terminal node. Failing this, it looks in the
table with key 〈u,v,And〉 and returns any stored result. Otherwise, a set of recursive calls is
required. The program chooses variable x as the least (in the BDD variable ordering) among
variables Var(u) and Var(v) and splits into two cases, given by nodes u1 and v1, and nodes u0

and v0. It recursively computes nodes w1 and w0 as the conjunctions of u1 and v1, and of u0

and v0, respectively. When w1 = w0, this becomes the returned result w. Otherwise node w
is created having Var(w) = x, High(w) = w1, and Low(w) = w0. Before returning, an entry
with key 〈u,v,And〉 and result w is added to the table.
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The modified version of ApplyAnd operation follows this recursive structure, such that a
recursive call generating node w as the conjunction for nodes u and v also generates a proof of
the clause [u ∨ v ∨ w], i.e., that u ∧ v → w. We refer to this proof step as the justifying clause
for the operation. The recursive calls will have generated proofs of the clauses [u1 ∨ v1 ∨ w1]
and [u0∨v0∨w0]. In general, the desired result can require two RUP steps. The first generates
a proof of the intermediate result x → (u ∧ v → w) given by clause [x ∨ u ∨ v ∨ w] using
as antecedents the defining clauses HD(u), HD(v), and HU(w), as well as the recursive result
[u1 ∨ v1 ∨ w1]. The second step proves the target clause using as antecedents the intermediate
result, defining clauses LD(u), LD(v), and LU(w), and the recursive result [u0 ∨ v0 ∨ w0]. For
special cases, such as when some of the arguments are terminal nodes, only a subset of these
antecedents is required. In some cases, the desired proof degenerates to a single proof step.
The proof generation code in tbuddy attempts to generate a single-step proof when one of
the recursive results is a tautology. When this fails, or for the more general case, it generates
a two-step proof. A built-in RUP checker determines which clauses to use as antecedents and
can detect whether the proof succeeds or fails. The intermediate clause generated in a two-step
proof can be deleted immediately after the second clause is added, and therefore there is a
single justifying clause associated with each recursive operation.

Observe that to reuse results from the operation table, the program needs to reference its
justifying clause. This requires augmenting the table entry with a field to hold an identifier for
the justifying clause, as is discussed in Section 3.1.

The tbdd_validate operation enables an ordinary BDD with root v to be upgraded to
trusted node v̇ based on trusted node u̇. When called, the program first generates a proof
of the implication u → v, given by the clause [u ∨ v]. It then uses a RUP step with this
clause plus unit clause [u] to prove the unit clause [v]. The implication proof is generated by
ProveImplication [7], an operation that traverses the BDD and generates proof steps without
adding any nodes. At each step on arguments u′ and v′, it generates a proof of the justifying
clause [u′ ∨ v′], i.e., that u′ → v′, using a simplified version of the proof structure used for the
conjunction operation.

Some applications of TBDDs combine BDD and clausal reasoning, alternating between the
two forms. The tbdd_validate_clause operation transfers the trust embodied in TBDD node
u̇ to a clause C, generating a proof of Def(u), u |= C: This function requires tbuddy to generate
a sequence of proof steps, concluding with a RUP step with the specified clause. In some cases,
the step can be performed directly by tracing a path in the BDD from u down to node T0 and
listing some of the defining clauses along the way as antecedents. In cases where the path is
not unique, the prover must first generate a BDD representation v of the clause, validate v,
and then trace the path from v to T0.

2.5 Proof File Format

There are several different file formats for encoding a DRAT proof, representing different trade-
offs between the level of detail that must be supplied by the proof generator, versus the effort
required to check the validity of the proof.

LRAT [20]: Each proof step must be accompanied by a hint. For a RUP step, the hint specifies
the sequence of antecedent clauses. These proofs can be checked efficiently by the program
lrat-check. There are also several formally verified checkers for LRAT proofs [20,39].

DRAT [44]: No hints are given. For each RUP step, the checker must identify a sequence
of prior clauses that can serve as the antecedent. This format is accepted by the widely
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used drat-trim checker. Internally, drat-trim operates by adding the hints and then
invoking an LRAT checker.

FRAT [2]: A format that spans the two extremes of hints versus no hints by making the hints
optional. It also operates by adding hints and invoking an LRAT checker.

Tbuddy can generate proofs in any of these formats. Here we describe properties of the LRAT
file format that influence how buddy encodes and stores proof information. Generating proofs
in other formats requires storing additional information. For long executions, the proofs can
range up to one billion clauses. These would be far too long for the drat-trim checker, due
to the high cost of generating hints. In practice, therefore, it is best to either generate LRAT
proofs or to generate FRAT proofs where the steps involving BDD operations include hints.

Following the conventions of the DIMACS format for encoding CNF formulas, the proof
clauses for a formula with n variables and m clauses are encoded using signed integers to
represent literals, where variable xi is represented as the value i, and its complement as −i.
Each clause in the proof is assigned a numeric clause ID, with the first m of these corresponding
to the input clauses (which are not included in the proof file). Clause IDs must be in ascending
order, but they need not be consecutive. Extension variables are represented by integers with
values greater than n. RUP proof steps are encoded by giving the clause ID, the literals of
the clause, and a list of the antecedent clause IDs. LRAT also supports clause deletion, where
a list of clause IDs is provided, indicating that the proof will no longer use these clauses as
antecedents. Deleting clauses whenever possible is critical for the proof checker, since it must
retain copies of all active clauses, i.e., those that have been added but not yet deleted.

3 Implementation

With this as background, we can now describe how the buddy BDD package was modified to
support proof generation. As we have seen, the key requirements are:

• Each time a new BDD node is created, it must be assigned an extension variable and its
defining clauses must be added to the proof.

• For each input clause Ci, its BDD representation ui must be generated, along with a
proof of validating clause [ui].

• Every recursive step of the ApplyAnd and ProveImplication operations must generate
one or two proof steps.

• The result nodes and proof steps generated by BDD operations must be stored for later
reuse.

• A RUP step is required to prove validating clause [u] when BDD root u is generated by
conjunction or implication testing.

• The defining clauses for the nodes and the clauses generated by RUP steps should be
deleted when they are no longer required for subsequent proof steps.

These capabilities can all be incorporated into the basic BDD operations, as well as the sup-
porting operations to manage the data structures.
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(A) Node data
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Figure 2: Data structures for nodes (A) cache entries (B), and TBDDs (C). Each rectangle
represents four bytes. Proof generation requires adding the fields shown in red.

3.1 Data Structures

Figure 2(A) and (B) show the fields in the two major data structures for buddy, with added
fields (shown in red) to support proof generation. It also shows the representation for a TBDD
(C). A BDD node in buddy is indicated by an integer, providing an index into an array of
node structures, each having the fields shown in (A). Nodes T0 and T1 are represented by
indices 0 and 1, respectively. Each rectangle in the figure represents four bytes. The node
array integrates the set of BDD nodes with the unique table, providing a mapping from the
children and variable for each node to the node itself. In the node data structure (A), the fields
indicated in gray encode the node. Three values are packed into the first four-byte word: level,
encoding the position of the node variable in the BDD variable ordering, rc, a reference count
used to track external references to the node, and mark, a single bit used to support mark-sweep
garbage collection. The indices for the two children low and high occupy the second and third
words. The fields shown in blue encode the unique table, with the next field forming a link in
the linked list implementing a hash table bucket, and the head field providing the head of the
linked list for all nodes that hash to this index.

As mentioned earlier, to support dynamic variable ordering, buddy distinguishes between
the level of a variable, giving its position in the BDD variable ordering, and the integer repre-
sentation of the variable, with permutation vectors providing the mapping between these two.
We use this feature to allow the BDD variable ordering to be independent of the numbering of
variables in the input file.

Supporting proof generation requires adding two fields to the node data structure. The xvar
field gives the associated extension variable, encoded as an integer having a value greater than
the number of input variables n. When a node is created, the next four clause IDs are assigned
to its defining clauses, even if only some subset of these is added to the proof. The dclause
field stores the first of these—the remaining three can be computed as offsets from this field. In
skipping some possible clause IDs, we add some sparseness to the ID space. Considering that
we can only encode around two billion (231 − 1) clause IDs, and proofs can routinely reach one
billion clauses, this might seem wasteful. However, only a small fraction of the nodes in large
BDDs will have terminal nodes as children, and so the vast majority of nodes will require the
full complement of four defining clauses.
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Like other BDD packages [4], buddy stores its table of previously computed results as a
direct-mapped cache indexed by a hash of the operation and arguments.1 Before performing
the recursive steps of an Apply operation, the table is first referenced to see if a suitable result
has already been generated. When a new result is added to the table, any previous result that
hashes to the same position is overwritten. The entries in the cache are shown in Figure 2(B).
The standard entries (shown in gray) encode the operation, arguments (up to three), and the
result node, each given as a four-byte integer. In the event the operation is either ApplyAnd
or ProveImplication, reusing the cached result also requires the ID of the justifying clause.
This is stored in the field jclause.

The added fields enable tbuddy to track the clause IDs of the defining clauses for the active
BDD nodes and the justifying clauses of the cache entries. Significantly, tbuddy need not keep
copies of the clauses themselves. When actual clauses are required to support proof generation,
they can be recreated based on other information stored with the node or the cache entry.

We can see that the node data structure expands from 20 bytes to 28 in order to support
proof generation. Cache entries require 24 bytes with or without proof generation, since an
eight-byte field is used to store results for operations that return floating-point numbers. We
configured the program to maintain a cache size that has 1/8 the number of entries as the node
array. Therefore, adding proof generation required growing these two data structures from
combined total of 23 bytes per node to 31 bytes per node, an increase of 1.35×. These are the
only two data structures that grow in proportion to the number of BDD nodes.

Figure 2(C) shows the representation of a TBDD. It consists of three integers. The first
identifies the root node and the second gives the clause identifier for the validating clause. The
third field, labeled rc_index, supports reference counting of TBDDs. This count is distinct
from the reference count for the root node, since there may be references to a BDD node that
are independent of its use in a TBDD. The reference count for a TBDD tracks references to
possible uses of the validating clause in proof generation. Once the count drops to zero, the
clause can be deleted. Since TBDD structures are passed by value, they cannot hold actual
reference counts. Instead, a separate table of reference counts is maintained, with the rc_index
field providing an index into this table. In typical applications, fewer than 1% of the BDD
nodes serve as TBDD roots, and so the space required by this table is negligible.

As can be seen, the modifications to support proof generation are fairly modest. In terms
of code, the original buddy package contains 13,186 lines of source code. The tbuddy package
expands this to 18,030, with 1,061 lines added to existing files, 2,715 lines in new files to
support proof generation and TBDDs, and 1,068 in new files to support parity reasoning. As
noted above, the memory used increases by around 1.35×. The impact on runtime is more
variable; we measured the time penalty for several large benchmark problems at between 3×
and 4×.

3.2 BDD Management
Buddy represents all of the nodes as a single array. This array starts with an initial allocation
and is expanded as more nodes are added. Each expansion requires allocating a larger array,
copying over existing nodes, and reconstructing the unique table and free list. Before expanding,
it attempts to free existing nodes by performing garbage collection, reclaiming nodes that cannot
be reached by any reference external to the data structure. Garbage collection is supported
by 1) having each node store a reference count indicating the number of external references

1The standard buddy package maintains seven separate caches to support different operations. We combined
these into a single, unified cache.
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to the node, and 2) performing mark-sweep garbage collection to determine which nodes are
unreachable. Nodes with nonzero reference counts provide the starting points of the marking
phase. Both resizing the node array and performing garbage collection cause the entire cache to
be flushed, with all entries marked as invalid. Garbage collection can occur at any point during
the program operation, including in the middle of a series of recursive calls. To support this
capability, a stack is maintained indicating intermediate nodes that may be required at future
points in the outstanding calls. These nodes are also incorporated into the marking phase.

Garbage collection and cache flushing provide the means to manage the active clauses in
a proof. That is, when a node is reclaimed during the sweep phase, its defining clauses are
deleted. When a cache entry is evicted, either because it is overwritten or the cache is flushed,
its justifying clause is deleted. To support the ability to perform garbage collection in the
middle of a sequence of recursive calls, the deletion steps are not added to the proof directly.
Rather, they are added to a list, which is cleared as the top-level of the recursion completes. As
mentioned earlier, the validating clauses for TBDDs are managed via a separate set of reference
counts. The C++ interfaces to the package automatically handle the reference counting for
both BDDs and TBDDs.

4 Capabilities Supported by Tbuddy

Building on the basic support for TBDDs, we have created several additional libraries and a
BDD-based SAT solver. We describe these capabilities here and present some experimental
results in Section 5.

4.1 Parity Reasoning

Parity constraints arise in a variety of contexts, but they are not well handled by current CDCL
solvers. A parity constraint is an equation of the form:

xi1 ⊕ xi2 ⊕ · · · ⊕ xik = p (2)

The variables in this constraint are a subset of the input variables, and the phase p is 1 for odd
parity and 0 for even. Adding two parity constraints creates a new parity constraint. Gaussian
or Gauss-Jordan elimination systematically adds constraints to yield a reduced set [27]. It can
determine when the set of constraints cannot be satisfied. When the constraints are satisfiable,
it can be used to derive a satisfying assignment.

Manipulating parity constraints is especially efficient for BDDs. The BDD representation of
a constraint with k variables contains 2k+1 nodes, independent of the BDD variable ordering.
As we have demonstrated [6], a set of parity constraints encoded in CNF can be automatically
extracted from an input formula, and BDD-based proofs of unsatisfiability can be generated
using Gaussian elimination. The tbuddy package provides the necessary support for the proof
generation portion of this task.

Our constraint library represents a parity constraint as a list of integer variable IDs, a
phase, and a TBDD giving the BDD representation of the constraint as well as the ID of a
validating clause justifying that this constraint is implied by the input formula. An input
constraint is converted into this representation by 1) forming the TBDD representations of the
input clauses that encode it, 2) conjuncting them, and 3) using this TBDD to validate a BDD
representation of the constraint. Each time constraints having TBDD representations u̇ and v̇
are summed to form a constraint with BDD representation t, we use the conjunction operation
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to generate TBDD ẇ representing the conjunction of the constraints and validate the sum by
calling tbdd_validate(t, ẇ).

Applying Gaussian elimination requires first running a preprocessor to identify how the
clauses encode parity constraints [6]. The program creates a schedule listing equations of the
form of Equation 2 and identifying which clauses encode each of these. It also provides a list
of the internal variables, i.e., those appearing only in parity constraints. Implicitly, all other
variables are external. Gaussian elimination reduces the set of constraints to a smaller set over
only the external variables. If the reduced set contains a constraint of the form 0 = 1, then the
original set cannot be satisfied. Otherwise, any solution of the reduced set can be expanded into
a solution of the original set. In either case, the reduced constraints have TBDD representations
and can therefore be used in proof generation.

Our Gaussian elimination routine attempts to preserve the sparseness found in typical par-
ity constraint problems, where the number of variables in most constraints is far less than the
total number of variables in the problem. As an example, the experimental results in Sec-
tion 5 show the performance of our solver on a scalable parity reasoning benchmark devised by
Urquhart [41]. Our solver was able to generate a proof of unsatisfiability by applying Gaussian
elimination for an instance with 2,093,184 variables, but where each of the 1,395,456 input con-
straints contains just three variables. That corresponds to a density of just 1.4×10−6. Over the
entire Gaussian elimination process, each constraint contains, on average, only 12.0 variables.

Maintaining sparseness requires a successful strategy for pivot selection. Consider a set of
parity constraints P1, P2, . . . , Pm, each of the form of Equation 2. Let the notation xj ∈ Pi

indicate that constraint Pi contains variable xj . Each elimination step requires selecting a
pivot constraint Ps and a pivot variable xt ∈ Ps. It then eliminates variable xt from all other
constraints Pi for which xt ∈ Pi by replacing Pi with the sum Pi ⊕ Ps. Our routine uses a
greedy pivot selection strategy attributed to Markowitz [15,30]: Let cs be the number of nonzero
variables in constraint Ps and rt be the number of constraints containing variable xt. Then a
constraint Ps and variable xt ∈ Ps are selected such that the cost function βs,t = (cs−1)·(rt−1)
is minimized. That cost is an upper bound on the net number of variables that will be added
to the constraints when generating the sums Pi ⊕ Ps.

Repeatedly finding this minimum would seem to be a costly computation, since the sparse
structure of the constraints keeps changing with each elimination step. Our implementation
maintains a record for each uneliminated variable xs identifying the constraint Pt that minimizes
βs,t. It stores these records in a priority queue to enable efficient selection of one with minimum
cost. These records can be incrementally updated, yielding an efficient implementation. We
also found that breaking the ties in the selection process randomly avoids inefficiencies due to
parity structures that can otherwise cause pathological behavior.

4.2 The Tbsat SAT Solver

The tbsat solver builds on the tbuddy library. It can generate multiple solutions for satisfiable
formulas and proofs of unsatisfiability for unsatisfiable formulas. It starts by reading the input
clauses and forming their TBDD representations. The overall control flow is determined by
the combination of an optional input schedule file and bucket elimination, expanding on the
capabilities implemented in our prototype solvers pgbdd [7] and pgpbs [6]. The schedule file
can serve two different roles. In one, it specifies a sequence of conjunction and existential
quantification operations using a stack-based notation. This mode can be effective when the
user has some problem-dependent strategy for solving a particular problem. In the other form,
it identifies sets of clauses forming parity constraints. These constraints are converted into
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TBDDs and simplified using Gaussian elimination. In some cases, a TBDD with root node T0

will be generated while processing the schedule file. That indicates the formula is unsatisfiable
and the proof of unsatisfiability will be complete. Otherwise, the TBDDs remaining, including
those of unused input clauses, are processed using bucket elimination. When no schedule file is
provided, all clauses are processed in this manner.

Bucket elimination [14,25,32] processes the TBDDs according to some ordering of the vari-
ables. Our implementation makes the simplifying assumption that buckets are ordered accord-
ing to the BDD variable ordering, with bucket i associated with input variable xi. Each TBDD
is stored in a list (the “bucket”) according to its root node variable. Buckets are processed from
the least to the greatest. For bucket i, a conjunction of the TBDDs in the bucket is computed to
yield TBDD u̇i. A new BDD is computed as vi = Low(ui)∨High(ui), existentially quantifying
xi from ui. This BDD is validated using TBDD u̇i, since any Boolean function f and variable
x satisfies f → ∃x f . The resulting TBDD v̇i is then placed in the bucket corresponding to
its root node variable. This process continues until either 1) the TBDD Ṫ0 is generated, or 2)
all buckets are processed with the final step yielding vn = T1. In the former case, the formula
is unsatisfiable and the unsatisfiability proof is complete. In the latter case, the formula is
satisfiable and the next task is to generate one or more solutions.

To generate a solution, the solver starts with an empty assignment and works in reverse
order, adding assignments to variables xn through x1. Let αn+1 = ∅. For bucket i, we can
assume that αi+1 satisfies vi, and we must assign a value to xi. Let u1 = High(ui) and
u0 = Low(ui). Assignment α must satisfy at least one of these. In the event that just u1 is
satisfied, assign 1 to xi. If just u0 is satisfied, then assign 0 to xi. Otherwise, xi can be assigned
an arbitrary value. A key point is that no further BDD generation is required to find a solution.

To generate a solution where some of the variables have been eliminated by Gaussian elim-
ination, the solver first continues the elimination process to simplify the intermediate parity
constraints via Gauss-Jordan elimination [27]. It uses BDD representations of these constraints
to generate assignments for the internal variables. To generate multiple solutions, a new clause
is created as the negation of the generated assignment, and the buckets are reprocessed in for-
ward order. If this processing yields BDD node T0, then no further solutions exist. Otherwise,
the bottom-up generation of an assignment will be guaranteed to find a new solution.

5 Experimental Evaluation

As a general purpose SAT solver, tbsat is no match for state-of-the-art CDCL solvers. Among
benchmarks used in recent SAT competitions, it succeeds only on the TseitinGrid parity
constraint problems [16]. On the other hand, it handles classes of problems for which CDCL
solvers fare poorly. BDD-based approaches can best complement CDCL, rather than compete
with it.

Table 2 shows the performance of proof-generating SAT solvers on several scalable, un-
satisfiable challenge problems. It compares different operating modes of tbsat to kissat, a
state-of-the-art CDCL solver [3]. It shows a progression of problem sizes, with the most difficult
benchmark for one approach becoming the starting point for the next. All experiments were
performed on a 3.2 GHz Apple M1 Max processor with 64 GB of memory and running the
OS X operating system. The proofs were checked using drat-trim for the proofs generated
by kissat and lrat-check for those generated by tbsat. For LRAT proofs over 500 million
clauses, we used a modified version of lrat-check that better exploits the sparseness in the
proof structure that arises when a large fraction of the clauses is deleted. The column labeled
“SAT Time” indicates the time (in seconds) taken by the solver, and the column labeled “Check
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Table 2: Performance of kissat and tbsat on Unsatisfiable Challenge Problems
Solver Method Problem Input Input SAT Proof Check

Size Variables Clauses Time Clauses Time

Mutilated Chessboard
kissat CDCL 16 476 1,592 358.7 12,621,694 618.5
kissat CDCL 18 608 2,044 1314.9 38,083,824 1295.8
tbsat Column scan 18 608 2,044 0.1 111,163 0.1
tbsat Column scan 368 270,108 943,544 898.2 568,261,363 568.8

Pigeonhole
kissat CDCL 13 351 508 1116.1 66,263,560 2041.8
kissat CDCL 14 406 589 6077.2 331,858,919 —
tbsat Column scan 14 406 589 0.1 92,687 0.1
tbsat Column scan 254 129,286 193,549 898.5 898,819,648 993.5

Chew-Heule parity formulas
kissat CDCL 40 114 304 334.3 29,133,644 594.2
kissat CDCL 44 126 336 3103.6 227,489,490 8254.9
tbsat Bucket elim. 44 126 336 0.1 24,492 0.1
tbsat Bucket elim. 8,666 25,992 69,312 894.7 505,637,209 523.4
tbsat Gauss. elim. 8,666 25,992 69,312 4.6 5,066,914 5.2
tbsat Gauss. elim. 699,051 2,097,147 5,592,392 645.3 575,600,179 656.1

Urquhart-Li parity formulas
kissat CDCL 3 153 408 — — —
tbsat Bucket elim. 3 153 408 0.1 38,598 0.1
tbsat Bucket elim. 35 25,305 67,480 784.6 349,400,890 230.8
tbsat Gauss. elim. 35 25,305 67,480 3.8 4,232,657 4.3
tbsat Gauss. elim. 316 2,093,184 5,581,824 529.3 484,548,938 346.9

Time” indicates the time taken by the checker. The column labeled “Proof Clauses” indicates
the number of clauses in the generated proof. Entries marked “—” indicate a failure by the
program to complete. The following benchmark problems were evaluated:

Mutilated chessboard: Tile an n × n chessboard with dominos. Two opposite corners are
removed from the chessboard, making the task impossible [1]. The problem size, in terms
of the number of variables and clauses, scales as O(n2).

Pigeonhole: Assign n + 1 pigeons to n holes such that no hole contains more than one pi-
geon [19]. We use Sinz’s method to encode the at-most-one constraints with auxiliary
variables [36]. The problem size scales as O(n2).

Chew-Heule: Enforce both odd and even parity constraints on the n input variables. Each
constraint is encoded linearly using n− 1 auxilliary variables, with the second constraint
using a random permutation of the variables [11]. The problem size scales as O(n).

Urquhart-Li: A parity constraint problem devised by Urquhart [41], defined over a bipartite
graph with 2m2 nodes. The problem size scales as O(m2). We use the benchmark
generator implemented by Li [28]. It generates more challenging formulas than the more
widely used ones from Simon’s generator [10].
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Our experiments evaluated the formulas for different values of the scaling parameter n or m.
We limited runs of tbsat to 900 seconds but allowed kissat to run for up to 7200 seconds.

The limitations of CDCL solvers for these problems are clearly indicated by the results for
kissat. It can only handle relatively small instances. We also found that allowing longer run
times does not have a significant effect, due to the exponential scaling. For example, kissat
completes the mutilated chessboard problem for n = 16 in 360 seconds, but once it reaches
n = 20, the solver runs for over two hours without completing. Similarly, kissat completes the
pigeonhole problem for n = 12 in just 42 seconds, but once it reaches n = 14, it requires nearly
1.7 hours and generates a proof that is too large for drat-trim to check. For the Chew-Heule
formulas, kissat can only complete n ≤ 44 within the 7200-second time limit. We ran kissat
for over 16 hours on the smallest instance of the Urquhart-Li benchmark, having m = 3, but
it did not complete. It is remarkable that a problem with just 153 variables and 408 clauses
could be so challenging for CDCL solvers.

By contrast, tbsat achieves polynomial scaling for all four benchmarks. In earlier work [7],
we presented column scanning to efficiently generate unsatisfiability proofs of the mutilated
chessboard and pigeonhole problems. This approach performs a sequence of conjunction and
quantification steps to effectively sweep through the columns of the chessboard or the pigeons
in the pigeonhole problem in a manner inspired by symbolic model checking. Tbsat can also
apply column scanning, easily handling the limiting instances for kissat. It can scale to n = 368
for the mutilated chessboard problem and to n = 254 for the pigeonhole problem within the
900-second time limit. Even though the generated proofs are very large, they can be verified
by the modified version of lrat-check. Unfortunately, column scanning seems to apply only
to problems that can be structured as a two-dimensional grid, and hence this method does not
generalize beyond a small set of problems.

Tbsat can apply bucket elimination to the two parity problems with good effect. It can
easily handle the limiting instances for kissat, and it scales to the Chew-Heule benchmark for
n ≤ 8666 and the Urquhart-Li benchmark for m ≤ 35 within a 900-second time limit.

Perhaps the most striking results are those using Gaussian elimination. By exploiting the
sparse structure of the formulas, tbsat can solve very large instances of the Chew-Heule and
Urquhart benchmarks quickly. The limiting factor for both of these problems is that buddy
allocates only 21 bits for the level field in each BDD node (Figure 2(A)), limiting it to to a
maximum of 221−1 (2,097,151) input variables. This prevents it from going beyond n = 699,051
for Chew-Heule and m = 316 for Urquhart, each having over two million input variables and
five million clauses. Considering that no CDCL solver could generate a proof for the Urquhart
benchmark with just 408 clauses, our result shows that the right combination of algorithm
and implementation can make a fundamental difference. Obtaining these results requires no
guidance for the user, and it is insensitive to the BDD variable ordering.

6 Conclusions and Acknowledgements
The tbuddy library provides a powerful framework for creating automated reasoning tools that
generate proofs of correctness. Building on an established BDD package, it can generate clausal
proofs justifying the correctness of each step in its recursive algorithms. The tbsat solver is
especially strong for handling problems with parity constraints. We have also incorporated its
proof-generation capability into a CDCL solver that uses Gauss-Jordan elimination for parity
reasoning [9]. We anticipate implementing other automated reasoning tools using tbuddy.

Thanks to Marijn Heule for his continued advice and for creating a high capacity version of
lrat-check.
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