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To transform an imperative program into a logically constrained term rewrite system (LCTRS, for
short), previous work converts a statement list to rewrite rules in a stepwise manner, and proves
the correctness along such a conversion and the big-step semantics of the program. On the other
hand, the small-step semantics of a programming language comprises of inference rules that define
transition steps of configurations. Partial instances of such inference rules are almost the same as
rewrite rules in the transformed LCTRS. In this paper, we aim at establishing a framework for plain
definitions and correctness proofs of transformations from programs into LCTRSs. To this end, for
the transformation in previous work, we show an injective function from configurations to terms,
and reformulate the transformation by means of the injective function. The injective function maps a
transition step to a reduction step, and results in a plain correctness proof.

1 Introduction

Recently, approaches to program verification by means of logically constrained term rewrite systems
(LCTRSs, for short) [8] are well investigated [4, 12, 2, 9, 5, 6]. LCTRSs are known to be useful as com-
putation models of not only functional but also imperative programs. Especially, equivalence checking
by means of LCTRSs is useful to ensure correctness of terminating functions (cf. [4]). Here, equivalence
of two functions means that for every input, the functions return the same output or end with the same
projection of final configurations. Previous work [4, 5, 6] for sequential programs has been extended to
concurrent ones with semaphore-based exclusive control [7]. It is worth extending the transformation to
more practical classes of concurrent programs, and an ultimate goal is to apply LCTRSs to verification of
practical programs, e.g., automotive embedded systems. To ensure high-reliability of the verification, we
have to prove the correctness of transformations in a high reliable manner, e.g., by formalizing them in
an interactive theorem prover. On the other hand, plainer but more reliable definitions and pen-and-paper
proofs are useful in formalizing them in the theorem prover.

Previous work [5] extends the transformation in [4] to programs written in SIMP+, which is an
extension of SIMP [3] to global variables and function calls, and shows a pen-and-paper proof for the
correctness of the extended transformation under the big-step semantics of SIMP+. The correctness proof
is very complex compared with the simplicity of SIMP+. For the ultimate goal mentioned above, such
a complex framework of transformations and their correctness proofs is not desired because we would
like to verify more practical and complex programs such as automotive embedded systems by means of
LCTRSs. For this reason, a framework for plain definitions and correctness proofs of transformations
from imperative programs into LCTRSs would be useful in extending previous work to richer fragments
of programming languages.
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In this paper, we aim at establishing a framework for plain definitions and correctness proofs of
transformations from imperative programs into LCTRSs. To this end, for the transformation in previous
work [5], we show an injective function from configurations of SIMP+ to terms (Section 4.1), and refor-
mulate the transformation by means of the injective function (Section 4.2). The injective function maps
a transition step defined by the small-step semantics of SIMP+ to a reduction step of the transformed
LCTRS, and results in a plainer correctness proof (Section 4.3). Missing proofs can be seen in the ap-
pendix. This paper does not propose any new transformation, but reformulate the existing one and its
correctness proof, which must help us to extend the transformation to more practical programs.

2 Preliminaries

In this section, we briefly recall LCTRSs [8, 4]. Familiarity with term rewriting [1, 10] is assumed.
Let S be a set of sorts and V a (countably infinite) set of variables, each of which is equipped with a

sort. A signature Σ disjoint from V is a set of function symbols f , each of which is equipped with a sort
declaration ι1 × ·· ·× ιn ⇒ ι , written as f : ι1 × ·· ·× ιn ⇒ ι , where ι1, . . . , ιn, ι ∈ S . In the rest of this
section, we fix S, Σ, and V and use them without notice in the paper. We denote the set of well-sorted
terms over Σ and V by T (Σ,V). We may write s : ι if s has sort ι . The set of variables occurring in
s1, . . . ,sn is denoted by Var(s1, . . . ,sn). Given a term s and a position p of s, s|p denotes the subterm of s
at position p, and s[t]p denotes the term obtained from s by replacing the term at position p by t, where
the sorts of s|p and t coincide.

A substitution γ is a sort-preserving total mapping from V to T (Σ,V), and naturally extended for a
mapping from T (Σ,V) to T (Σ,V). The domain Dom(γ) of γ is the set of variables x with γ(x) ̸= x, and
the range of γ is denoted by Ran(γ). The application of γ to term s is denoted by sγ . The restriction of
γ w.r.t. a set X of variables is denoted by γ|X : γ|X(x) = γ(x) if x ∈ X , and otherwise γ|X(x) = x. For two
substitutions γ and θ , their composition γθ is given by x(γθ) = θ(γ(x)) for all variables x.

To define LCTRSs, we consider the following signatures, mappings, and constants: Two signatures
Σterm and Σtheory such that Σ = Σterm ∪Σtheory; a mapping I that assigns to each sort ι occurring in Σtheory
a set Valι , i.e., I(ι) = Valι ; a mapping J that assigns to each f : ι1 ×·· ·× ιn ⇒ ι ∈ Σtheory a function
in Valι1 × ·· ·×Valιn ⇒ Valι ; a set Σval,ι ⊆ Σtheory of value-constants a : ι for each sort ι occurring in
Σtheory such that J gives a bijection from Σval,ι to Valι . Note that for each sort, I specifies the universe,
and for each symbol, J specifies the interpretation. We define Val and Σval as

⋃
ι∈S Valι and

⋃
ι∈S Σval,ι ,

respectively. We require that Σterm ∩Σtheory ⊆ Σval. The sorts occurring in Σtheory are called theory sorts,
and the symbols theory symbols. The set of theory sorts is denoted by Stheory. Note that Stheory ⊆ S.
Symbols in Σtheory \Σval are calculation symbols. A term in T (Σtheory,V) is called a theory term. For
ground theory terms, we define the interpretation [[ · ]] as [[ f (s1, . . . ,sn) ]] = J ( f )([[s1 ]], . . . , [[sn ]]). Note
that for every ground theory term s, there is a unique value-constant c such that [[s ]] = [[c ]]. We may use
infix notation for calculation symbols.

We typically choose a theory signature with Σtheory ⊇ Σcore, where Stheory includes bool, a sort of
Booleans, with Σval,bool = {true, false} and I(bool) = {⊤,⊥}, Σcore = Σval,bool ∪ {∧,∨, =⇒ : bool×
bool ⇒ bool, ¬ : bool ⇒ bool}∪{=ι , ̸=ι : ι × ι ⇒ bool | ι ∈ Stheory}, and J interprets these symbols
as expected: J (true) =⊤ and J (false) =⊥. We omit the sort subscripts from = and ̸= when they are
clear from context. A constraint is a theory term ϕ : bool. A substitution γ is said to respect a constraint
ϕ if Ran(γ|Var(ϕ)) ⊆ Σval and [[ϕγ ]] = ⊤. A constraint ϕ is said to be valid if all substitutions γ with
γ|Var(ϕ) ⊆ Σval respect ϕ , and satisfiable if there exists a substitution that respects ϕ .

Let S ⊇ {int,bool}. The standard integer signature Σint is Σcore∪{+,−,×,exp,div,mod : int× int ⇒
int}∪{≥,>,≤,< : int× int ⇒ bool}∪Σval,int where Σval,int = {n : int | n∈Z}, I(int) =Z, and J (n) = n.
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Note that we use n (in sans-serif font) as the function symbol for n ∈ Z (in math font). We define J in
the natural way, while we set J (div)(n,0) = J (mod)(n,0) = J (exp)(n,k) = 0 for all n and all k < 0.

A constrained rewrite rule is a triple ℓ→ r [ϕ ] such that ℓ and r are terms of the same sort, ϕ is a
constraint, and ℓ has the form f (ℓ1, . . . , ℓn) and contains at least one symbol in Σterm \Σtheory (i.e., ℓ is
not a theory term). If ϕ = true, then we may write ℓ → r. We define LVar(ℓ → r [ϕ ]) as Var(ϕ)∪
(Var(r) \ Var(ℓ)). A substitution γ is said to respect ℓ → r [ϕ ] if Ran(γ|LVar(ℓ→r [ϕ ])) ⊆ Σval and
[[ϕγ ]] = ⊤. Note that it is allowed to have Var(r) ̸⊆ Var(ℓ), but fresh variables in the right-hand side
may only be instantiated with value-constants (see the definition of →R below). Note that we do not deal
with calculation rules [4] because for any rewrite rule in LCTRSs obtained from SIMP+ programs, no
calculation symbol appears in the left- or right- hand sides. The rewrite relation →R is a binary relation
on terms, defined as follows: s[ℓγ]p →R s[rγ]p if ℓ→ r [ϕ ] ∈R and γ respects ℓ→ r [ϕ ].

Now we define a logically constrained term rewrite system (LCTRS, for short) as the abstract re-
duction system (T (Σ,V),→R) where R is a set of constrained rewrite rules. LCTRS (T (Σ,V),→R) is
simply denoted by R. An LCTRS is usually given by supplying Σ, R, and an informal description of I
and J if these are not clear from context.

Example 2.1 Let Σ = Σterm ∪ Σint, where Σterm = { pow : int × int ⇒ int }. Then, both int and bool
are theory sorts. Examples of theory terms are 0 = 0+−1 and x + 3 ≥ y +−42 which are con-
straints. Term 5+ 9 is also a (ground) theory term, but not a constraint. Term pow(2,y) is not a
theory term. To implement an LCTRS calculating the factorial function over Z, we use the signature
Σ above and the LCTRS R1 = { fact(x) → subfact(x,1), subfact(x,y) → y [x ≤ 0 ], subfact(x,y) →
subfact(x′,y′) [¬(x ≤ 0)∧x′ = x−1∧y′ = x×y ] }. The term fact(3) is reduced by R1 to 6: fact(3)→R1

subfact(3,1)→R1 subfact(2,3)→R1 subfact(1,6)→R1 subfact(0,6)→R1 6.

3 Syntax and Semantics of SIMP+

In this section, we recall the syntax and semantics of SIMP+. We follow the syntax and semantics of
SIMP+ [5] which is a naive extension of a small imperative language SIMP [3], to global variables
and function calls. Note that SIMP+ can be considered as a restricted variant of SIMPLE, a non-trivial
imperative language, in [11].

Figure 1 defines the syntax of SIMP+ in BNF. For a nonterminal N, N∗ denotes an arbitrary sequence
of N: ε , N, N N, . . . , and N∗

⋄ with a separation symbol ⋄ denotes an arbitrary ⋄-separated sequence of
N: ε , N, N ⋄N, N ⋄N ⋄N, . . . We often omit brackets in the usual way. SIMP+ programs generated
from nonterminal Prgrm are sequences of declarations of global variables and functions. We assume
that programs are well-formed: For a program P, any variable in P are declared properly; a function
identifier f has a fixed arity, and the definition and call of f are consistent with the arity; each function
f is defined exactly once in P and any function called in P is defined in P. We also assume that function
main is declared in P as a nullary function. To simplify the semantics, we assume that local variables
in function declarations are different from global variables and parameters of functions. We consider a
local-variable declaration int x = v; as a statement.

Only assignment statements of the form x = f( . . .); are allowed to call functions—no function is
called in any expression—because we have to push a frame to a call stack in calling a function, and need
a special treatment for such a process. This is not a restriction because e.g., any function call can be
replaced by a fresh variable that is assigned the result of the function call. For brevity, x is assumed to be
a local variable. In addition, for return e;, we restrict e to a local variable x.



4 On Transforming Imperative Programs into LCTRSs via Injective Functions

Prgrm ::= VDecl∗ FDecl∗

VDecl ::= int x = v;
FDecl ::= int f(Param∗

,) {VDecl∗ Stmt∗}
Param ::= int x

A ::= v | x | (A + A) | (A - A)
B ::= true | false | (A Cmp A) | (!B) | (B && B) | (B || B)

Cmp ::= == | != | < | <= | > | >=
Stmt ::= {Stmt∗} | x = A; | x = f(A∗

,); | if(B)Stmt else Stmt | while(B)Stmt | return x;

where x is a variable identifier, f is a function identifiers, and v is an integer.

Figure 1: the syntax of SIMP+.

We consider integer and Boolean expressions of SIMP+ as the corresponding theory terms over the
standard integer signature Σint of LCTRSs by implicitly replacing e.g., <= by ≤, and vice versa. This
means that we do not distinguish expressions and theory terms, abusing them in both settings implicitly.
For this reason, to define the small-step semantics of SIMP+, we use the interpretation [[ · ]] of ground
theory terms to evaluate expressions under assignments.

We assume w.l.o.g. that SIMP+ programs are of the following form:

int gv1 = n1; . . . int gvk = nk; int f1( . . .) { . . . } . . . int fk′( . . .) { . . . } (1)

where gv1, . . . ,gvk, f1, . . . , fk′ are distinct identifiers and one of f1, . . . , fk′ is main. In the following, −→gv
denotes the sequence gv1, . . . ,gvk. In the rest of the paper, we use P as a SIMP+ program of the form (1)
without notice.

Example 3.1 Program 1 shows a SIMP+ program P1 which defines three kinds of summation functions.

An assignment is a partial mapping from variable identifiers to integers. We consider variable iden-
tifiers in programs as variables in LCTRSs. Thus, assignments can be considered substitutions whose
range is restricted to value constants of integers. We abuse assignments as substitutions for terms in the
setting of LCTRSs. The empty mapping—the mapping whose domain is empty—is denoted by ∅.

The update σ [x 7→ n] of an assignment σ w.r.t. x for an integer v is defined as follows: If x = y then
σ [x 7→ v](y) = v, and otherwise, σ [x 7→ v](y) = σ(y). Given pairwise distinct variables x1, . . . ,xn, we
abbreviate (σ [x1 7→ v1]) . . . [xn 7→ vn] to σ [x1 7→ v1, . . . ,xn 7→ vn]. Let θ be {x1 7→ v1, . . . ,xn 7→ vn} for the
update [x1 7→ v1, . . . ,xn 7→ vn]. Then, σ [x1 7→ v1, . . . ,xn 7→ vn] = θσ .

To simplify the representation of a configuration and the corresponding function symbol which is
introduced for the location indicated by the configuration, we assume that each statement in a program
has a unique label, and use the label to indicate the statement. For a configuration, to indicate a statement
to be executed, it is usual to use the statement itself as a component in the configuration, but the structure
of the statement is not necessary. In transforming a SIMP+ program into an LCTRS, for each location
the configuration indicates, we prepare a function symbol. In this paper, we use line numbers as such
labels. Note that each occurrence of a statement is given distinct labels. As an exception, we use
the function identifier f as a label of the head statement of the body of f : For a function declaration
int f( . . .) {stmts}, the label of the head statement of stmts is f . For a statement stmt with a label ρ ,
Stmt(ρ) denotes stmt. For a label ρ , Fun(ρ) denotes the function identifier, the body of which includes
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Program 1: a SIMP+ program P1 defining several summation functions with a global variable.

1 int n = 0;
2
3 int sum1(int x1) {

4 int i1 = 0;
5 int z1 = 0;
6 n = n + 1;
7 while ( i1 < x1 )

8 {

9 z1 = z1 + i1 + 1;
10 i1 = i1 + 1;
11 }

12 return z1;

13 }

14
15 int sum2(int x2) {

16 int z2 = 0;
17 n = n + 1;
18 z2 = x2 * (x2 + 1) / 2;
19 return z2;

20 }

21 int sum3(int x3) {

22 int z3 = 0;
23 n = n + 1;
24 if ( x3 <= 0 )

25 z3 = 0;
26 else

27 {

28 z3 = sum3(x3 - 1);
29 z3 = x3 + z3;

30 }

31 return z3;

32 }

33
34 int main() {

35 int ret = 0;
36 int z = 3;
37 z = sum1(z);
38 return ret;
39 }

40

the statement of ρ . Note that if Fun(ρ) = ρ , then ρ is some function identifier f which is the label of the
head statement of the body of f . The set of labels in P is denoted by Lab(P).

Example 3.2 For P1 in Program 1, Lab(P1) = {sum1,5,6,7,8,9,10,12,sum2,17,18,19,sum3,23,24,
25,27,28,29,31,main,36,37,38}, Fun(sum1) = Fun(5) = sum1, and Stmt(sum1) = (int i1 = 0;).

For each statement stmt other than return statements, we can statically determine which state-
ment follows after stmt: For a list stmt stmt′ stmts of statements, stmt′ follows after stmt; for a block
statement { . . . stmt} stmt′ stmts, stmt′ follows after both { . . . stmt} and stmt; for an if statement
if( . . .)stmt1 else stmt2 stmt′ stmts, stmt′ follows after both stmt1 and stmt2; for a while statement
while( . . .)stmt stmt′ stmts, stmt′ follows after stmt. For a statement stmt with a label ρ , Nxt(ρ) de-
notes the statement that follows after stmt.

Example 3.3 For P1 in Program 1, Nxt(sum1) = 4, Nxt(4) = 5, Nxt(7) = 12, Nxt(8) = 7, Nxt(10) = 7,
and Nxt(24) = Nxt(25) = Nxt(29) = 31.

For each statement stmt with a label ρ , we can statically determine which local variables are declared,
i.e., accessible in executing stmt. We denote the set of such variables by dvars(ρ). In addition, we assume
a fixed arbitrary order of local variables, and

−−−→
dvars(ρ) denotes the sequence of the variables in dvars(ρ)

under such a fixed order.

Example 3.4 For P1 in Program 1, dvars(4) = {x1}, dvars(5) = {x1, , i1}, and dvars(7) = dvars(8) =
· · ·= dvars(12) = {x1, i1,z1}. In addition,

−−−→
dvars(7) = x1, i1,z1.

Frames for function calls are tuples of the form (ρ,σ), where ρ is the label of a statement and σ is
an assignment for local variables such that Dom(σ) = dvars(ρ). Call stacks for SIMP+ programs are



6 On Transforming Imperative Programs into LCTRSs via Injective Functions

lists of frames, and we use a list constructor :: and [ ] for such lists. Configurations of SIMP+ programs
are of the form ⟨cstck,σ0⟩ such that cstck is a call stack and σ0 is an assignment for the global variables.

The initial configuration of P is ⟨[(main,∅)],{gvi 7→ ni | 1 ≤ i ≤ k}⟩.

Example 3.5 The initial configuration of P1 in Program 1 is ⟨[(main,∅)],{n 7→ 0}⟩.

Following [11], we define the small-step semantics for SIMP+. To make all inference rules for the
small-step semantics have a common form, we avoid the occurrence of ⊥ in any inference rules, using
[[ (¬ϕ)(σ ∪σ0) ]] = ⊤ instead of [[ϕ(σ ∪σ0) ]] = ⊥. The inference rules for the small-step semantics of
SIMP+, which define the transition step ⇀P over configurations of P, are illustrated in Figure 2. In the
rule (while⊤), ρ does not appear in the resulting configuration ⟨(ρ ′,σ) :: cstck,σ0⟩. One may think that
the body stmt is executed at most once during the iteration. In fact, the body stmt is executed as much as
needed: Let ρ ′ be one of the statements executed at the last step for stmt; then we have Nxt(ρ ′) = ρ; In
executing ρ ′, the resulting configuration is of the form ⟨(ρ,σ ′) :: cstck,σ ′

0⟩.
Some symbols in Figure 2—ρ , σ , σ0, cstck, and so on—are meta-variables to represent inference

rules, and thus, inference rules in Figure 2 can be considered schema defining the transition of config-
urations. For this reason, we consider partial configurations, configurations that may include variables
(see the appendix). Call stack and frame included in partial configurations are called partial ones (see
also the appendix). Partial configurations may include variables for assignments, and thus, may include
updates of the form σ [x1 7→ v1, . . . ,xm 7→ vm] such that σ is a variable. To distinguish configurations
without variables or updates from partial ones, we call such a configuration a full configuration. Note
that a full configuration is a partial one. Updates appear only in partial configurations that are not full
ones, and for any update of the form σ [x1 7→ v1, . . . ,xm 7→ vm], we consider v1, . . . ,vm variables.

In transitioning a full configuration, we use inference rules by instantiating meta-variables w.r.t. the
configuration. A label ρ in P instantiates the corresponding inference rule. For example, for rule (loc),
symbols x,v,Nxt(ρ) are determined by ρ . Further instantiating such an intermediately instantiated rule
by σ ,σ0,cstck, we transition a full configuration. Viewed in this light, we formulate intermediately
instantiated inference rules. For an inference rule (rule) and a label ρ in P, (rule)[ρ] denotes the inter-
mediately instantiated rule such that σ ,σ ′,σ0,cstck are considered variables. In addition, the transitions
defined by the rule (rule)[ρ] is denoted by (rule)[ρ](σ ,σ0,cstck), e.g., (loc)[ρ](σ ,σ0,cstck) is the tran-
sition ⟨(ρ,σ) :: cstck,σ0⟩⇀P ⟨(Nxt(ρ),{x 7→ v}σ) :: cstck,σ0⟩, where σ ,σ0,cstck are assignments and
a call stack, respectively. We define the set Rules(P) of the intermediately instantiated inference rules for
P as follows:

Rules(P) ={(loc)[ρ] | ρ ∈ Lab(P), Stmt(ρ) = (int x = v;)}
∪{(block)[ρ] | ρ ∈ Lab(P), Stmt(ρ) = ({stmts})}
∪{(g-assign)[ρ] | ρ ∈ Lab(P), Stmt(ρ) = (gvi = e;)}
∪{(l-assign)[ρ] | ρ ∈ Lab(P), Stmt(ρ) = (x = e;)}
∪{(call)[ρ], (return)[ρ] | ρ ∈ Lab(P), Stmt(ρ) = (x = g( . . .);)}
∪{(if⊤)[ρ], (if⊥)[ρ] | ρ ∈ Lab(P), Stmt(ρ) = (if(ϕ)stmt1 else stmt2)}
∪{(while⊤)[ρ], (while⊥)[ρ] | ρ ∈ Lab(P), Stmt(ρ) = (while(ϕ)stmt)}

Example 3.6 For P1 in Program 1, Rules(P1) = { (loc)[sum1], (loc)[5], (g-assign)[6], (while⊤)[y],
(while⊥)[y], . . . , (call)[37], (return)[37]}.

Rules(P) can be considered an LCTRS that uses assignments as values. The class of constraints of
such an LCTRS is more complex than that for LCTRSs generated in the previous work [5]. For this
reason, we transform SIMP+ programs into LCTRSs over the standard integer signature Σint.
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[[v0(σ ∪σ0) ]] = v
⟨(ρ,σ) :: cstck,σ0⟩⇀ ⟨(Nxt(ρ),σ [x 7→ v]) :: cstck,σ0⟩

(loc) where Stmt(ρ) = (int x = v0;)

⟨(ρ,σ) :: cstck,σ0⟩⇀ ⟨(Nxt(ρ),σ) :: cstck,σ0⟩
(block)

where Stmt(ρ) = ({stmt stmts}) and ρ ′ is the label of stmt

[[e(σ ∪σ0) ]] = v
⟨(ρ,σ) :: cstck,σ0⟩⇀ ⟨(Nxt(ρ),σ) :: cstck,σ0[gvi 7→ v]⟩

(g-assign) where Stmt(ρ) = (gvi = e;)

[[e(σ ∪σ0) ]] = v
⟨(ρ,σ) :: cstck,σ0⟩⇀ ⟨(Nxt(ρ),σ [x 7→ v]) :: cstck,σ0⟩

(l-assign) where Stmt(ρ) = (x = e;)

[[e1(σ ∪σ0) ]] = v1 . . . [[en′(σ ∪σ0) ]] = vn′

⟨(ρ,σ) :: cstck,σ0⟩⇀ ⟨(g,∅[y1 7→ v1, . . . ,yn′ 7→ vn′ ]) :: (ρ,σ) :: cstck,σ0⟩
(call)

where Stmt(ρ) = (x = g(e1, . . .,en′);) and g is declared in P as int g(int y1, . . .,int yn′) { . . . },

[[y(σ ′∪σ0) ]] = v
⟨(ρ ′,σ ′) :: (ρ,σ) :: cstck,σ0⟩⇀ ⟨(Nxt(ρ),σ [x 7→ v]) :: cstck,σ0⟩

(return)

where Stmt(ρ ′) = (return y;) and Stmt(ρ) = (x = g( . . .);),

[[ϕ(σ ∪σ0) ]] =⊤
⟨(ρ,σ) :: cstck,σ0⟩⇀ ⟨(ρ1,σ) :: cstck,σ0⟩

(if⊤)
[[ (¬ϕ)(σ ∪σ0) ]] =⊤

⟨(ρ,σ) :: cstck,σ0⟩⇀ ⟨(ρ2,σ) :: cstck,σ0⟩
(if⊥)

where Stmt(ρ) = (if(ϕ)stmt1 else stmt2) and ρi is the label of stmti

[[ϕ(σ ∪σ0) ]] =⊤
⟨(ρ,σ) :: cstck,σ0⟩⇀ ⟨(ρ ′,σ) :: cstck,σ0⟩

(while⊤)

where Stmt(ρ) = (while(ϕ)stmt) and ρ ′ is the label of stmt

[[ (¬ϕ)(σ ∪σ0) ]] =⊤
⟨(ρ,σ) :: cstck,σ0⟩⇀ ⟨(Nxt(ρ),σ) :: cstck,σ0⟩

(while⊥) where Stmt(ρ) = (while(ϕ)stmt)

Figure 2: Inference rules for the small-step semantics of SIMP+.

Implicitly adding the redundant premise [[ true(σ ∪σ0) ]] =⊤ to (loc), (block), (g-assign), (l-assign),
(call), and (return), all rules in Rules(P)—the inference rules in Figure 2— are of the following form:

[[ϕ(σ ∪σ0) ]] =⊤ [[e1(σ ∪σ0) ]] = v1 . . . [[em(σ ∪σ0) ]] = vm

cnfg ⇀ cnfg′
(2)

where cnfg is a partial configuration without any update, and cnfg′ is a partial configuration that may
include an update.

4 Transforming SIMP+ Programs into LCTRSs via Injective Functions

In this section, using an injective function, we first transform an intermediately instantiated rule in
Rules(P) into a constrained rewrite rule, generating an LCTRS T(P). Then, further using the injective



8 On Transforming Imperative Programs into LCTRSs via Injective Functions

function, we show a correctness proof of the transformation.
We introduce the following function symbols to Σterm:

• a (k+1)-ary function symbol cnfg : cstack× int×·· ·× int → config for configurations,

• a binary constructor stack : frame× cstack → cstack and a constant empty : cstack for call stacks,

• an n-ary constructor f : int×·· ·× int → frame for an n-ary function identifier f , and

• an n-ary constructor fρ : int × ·· · × int → frame for a frame (ρ, . . .) such that n = |dvars(ρ)|,
f = Fun(ρ), and ρ ̸= f .

In the following, fρ denotes f if Fun(ρ) = ρ (i.e., ρ = f ).1

4.1 Injective Functions from Configurations to Terms

An idea to simplify a formulation of the transformation is the use of an injective function ξ from config-
urations to terms so that

• we transform an intermediately instantiated inference rule of the form (2) into a constrained rewrite
rule ξ (cnfg)→ ξ (cnfg′) [ϕ ∧ v1 = e1 ∧·· ·∧ vn′ = en′ ], and

• for the correctness of the transformation, we show that for full configurations cnfg,cnfg′ and a
ground term t : config,

– if cnfg ⇀P cnfg′, then ξ (cnfg)→T(P) ξ (cnfg′), and

– if ξ (cnfg)→T(P) t, then cnfg ⇀P ξ−1(t).

To define ξ for partial configurations, we prepare two injective functions δconfig and ζconfig such that
ξ = ζ

−1
config ◦ δconfig; δconfig maps partial configurations to pairs of linear terms and substitutions; ζconfig

maps terms with sort config to such pairs.
In applying δconfig to a full configuration cnfg, a frame (ρ,σ) in the configuration is intermediately

transformed into ( fρ(
−−−→
dvars(ρ)),σ), where Fun(ρ) = f . When f is recursively called in cnfg, there may

exist two frames (ρ1,σ1) and (ρ2,σ2) such that Fun(ρ1) = Fun(ρ2) = f and {y1, . . . ,yn′} ⊆ Dom(σ1)∩
Dom(σ2), where f is declared in P as int f(int y1, . . .,int yn′) { . . . }. If we transform (ρ1,σ1)

and (ρ2,σ2) into ( fρ1(
−−−→
dvars(ρ1)),σ1) and ( fρ2(

−−−→
dvars(ρ2)),σ2), respectively, then the resulting term of

δconfig(cnfg) contains both fρ1(
−−−→
dvars(ρ1)) and fρ2(

−−−→
dvars(ρ2)) as subterms, and thus, the resulting term

cannot be linear. In addition, we cannot combine σ1 and σ2 as a substitution.
To make the resulting term linear, we rename variables in dvars(ρ) by means of the location of

frames in call stacks. Given a call stack (ρn,θn) :: (ρn−1,θn−1) :: · · · :: (ρ0,θ0) :: [ ] and a partial call
stack (ρn,θn) :: (ρn−1,θn−1) :: · · · :: (ρ0,θ0) :: s with s a variable, the height of the frame (ρh,θh) with
0 ≤ h ≤ n is h. For a frame (ρ,σ) with height h ≥ 0, a variable x in dvars(ρ) is renamed to xh; if
h = 0, then we abbreviate xh to x; dvarsh(ρ) denotes the set of the renamed variables for dvars(ρ),
and

−−−→
dvarsh(ρ) denotes the sequence of the renamed variables for

−−−→
dvars(ρ); σh denotes the substitution

obtained from σ by renaming the domain via h, i.e., σh = {xh 7→ xσ | x ∈ dvars(ρ)}.
Now we define injective functions ξ , δconfig, and ζconfig.

Definition 4.1 (ξ , δconfig) The mapping δframe,h from partial frames into pairs of linear terms and sub-
stitutions is defined as follows:

1In this case, ρ is the first statement of the body of the definition for f , and we use f instead of fρ because f is more natural
as the entry point of f than fρ .



N. Nishida, M. Kojima & T. Kato 9

• δframe,h((ρ,σ)) = ( fρ(
−−−→
dvarsh(ρ)),σh), where σ is an assignment with Dom(σ) = dvars(ρ),

• δframe,h((ρ,σ)) = ( fρ(
−−−→
dvarsh(ρ)),∅), where σ is a variable,

• δframe,h((ρ,σ [y 7→ v])) = ( fρ(
−−−→
dvarsh(ρ)),{yh 7→ v}), where Fun(ρ) ̸= ρ , both v,σ are variables,

and y ∈ dvars(ρ), and

• δframe,h((ρ,∅[y1 7→v1, . . . ,ym 7→vm])) = ( fρ(
−−−→
dvarsh(ρ)),{yh

1 7→v1, . . . ,yh
m 7→vm}), where Fun(ρ) =

ρ , all v1, . . . ,vm,σ are variables, and dvars(ρ) = {y1, . . . ,ym}.

The mapping δcstack from partial call stacks is inductively defined as follows:

• δcstack(s) = (s,∅), where s is a variable,

• δcstack([ ]) = (empty,∅), and

• δcstack(frm :: cstck) = (stack(t,s),θ ∪θ ′),2 where h is the length of cstck and δframe,h(frm) = (t,θ)
and δcstack(cstck) = (s,θ ′).

The mapping δconfig from partial configurations to pairs of linear terms and substitutions is defined as
follows:

• δconfig(⟨cstck,σ0⟩) = (cnfg(s,−→gv),θ ∪σ0),3 where σ0 is an assignment with Dom(σ0) = {−→gv},

• δconfig(⟨cstck,σ0⟩) = (cnfg(s,−→gv),θ), where σ0 is a variable, and

• δconfig(⟨cstck,σ0[gvi 7→ vi]⟩) = (cnfg(s,−→gv),θ ∪{gvi 7→ vi}),4 where vi,σ0 are variables,

where δcstack(cstck) = (s,θ). The mapping ξ from partial configurations into terms is defined as
ξ (cnfg) = uσ , where δconfig(cnfg) = (u,σ).

By definition, it is clear that all δconfig, δcstack, and δframe,h return pairs of linear terms and substitutions.

Proposition 4.2 All δconfig, δcstack, and δframe,h are injective.

The injectivity of ξ is not so trivial. For this reason, we define a mapping from terms with sort config
to pairs of linear terms and substitutions.

Definition 4.3 (ζconfig) The mapping ζframe,h from terms to pairs of linear terms and substitutions is
defined as follows:

• ζframe,h( fρ(v1, . . . ,vm)) = ( fρ(yh
1, . . . ,y

h
m),{yh

1 7→ v1, . . . , yh
m 7→ vm}), where v1, . . . ,vm are integers

and
−−−→
dvars(ρ) = y1, . . . ,ym,

• ζframe,h( fρ(
−−−→
dvarsh(ρ)) = ( fρ(

−−−→
dvarsh(ρ)),∅),

• ζframe,h( fρ(yh
1, . . . ,y

h
i−1,v,y

h
i+1, . . . ,y

h
m)) = ( fρ(

−−−→
dvarsh(ρ)),{yh

i 7→ v,}), where v is a variable and
−−−→
dvars(ρ) = y1, . . . ,ym, and

• ζframe,h( fρ(v1, . . . ,vm)) = ( fρ(yh
1, . . . ,y

h
m),{yh

1 7→ v1, . . . , yh
m 7→ vm}), where v1, . . . ,vm are pairwise

distinct variables and
−−−→
dvars(ρ) = y1, . . . ,ym.

The mapping ζcstack from terms to pairs of linear terms and substitutions is inductively defined as follows:

• ζcstack(s) = (s,∅), where s is a variable,

2Note that θ ∪θ ′ is a substitution because Dom(θ)∩Dom(θ ′) = /0.
3Note that θ ∪σ0 is a substitution because Dom(θ)∩Dom(σ0) = /0.
4Note that θ ∪{gvi 7→ v} is a substitution because gvi /∈Dom(θ).
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• ζcstack(empty) = (empty,∅), and

• ζcstack(stack(frm,s)) = (stack(t,s′),θ ∪ θ ′), where h is the number of occurrences of stack in s,
ζframe,h(frm) = (t,θ), and ζcstack(s) = (s′,θ ′).

The mapping ζconfig from terms with sort config to pairs of linear terms and substitutions is defined as
follows:

• ζconfig(cnfg(s,v1, . . . ,vk))=(cnfg(s′,−→gv),θ∪{gv1 7→v1, . . . ,gvk 7→vk}), where v1, . . . ,vk are integers,

• ζconfig(cnfg(s,−→gv)) = (cnfg(s′,−→gv),θ), and

• ζconfig(cnfg(s,gv1, . . . ,gvi−1,v,gvi+1, . . . ,gvk))=(cnfg(s′,−→gv),θ∪{gvi 7→v}), where v is a variable,

where ζcstack(s) = (s′,θ).

Proposition 4.4 All ζconfig,ζcstack,ζframe,h are injective.

The proof of Proposition 4.4 is analogous to Proposition 4.2. The following proposition is a direct
consequence of Propositions 4.2 and 4.4.

Proposition 4.5 ξ = ζ
−1
config ◦δconfig and ξ is injective.

4.2 Formulating a Transformation of SIMP+ programs into LCTRSs via ξ

In this section, using ξ , we formulate a transformation of SIMP+ programs into LCTRSs.

Definition 4.6 (transformation T) For a rule (rule)[ρ] of the form

[[ϕ(σ ∪σ0) ]] =⊤ [[e1(σ ∪σ0) ]] = v1 . . . [[em(σ ∪σ0) ]] = vm

cnfg ⇀ cnfg′

in Rules(P), Trule( (rule)[ρ] ) = ξ (cnfg)→ ξ (cnfg′) [ϕ ∧ v1 = e1 ∧ ·· · ∧ vn′ = en′ ]. For readability, we
use h instead of 1 in renaming variables.5 A transformation T that takes a SIMP+ program as input and
returns an LCTRS is defined as T(P) = { Trule( (rule)[ρ] ) | (rule)[ρ] ∈ Rules(P) }.

Example 4.7 P1 in Program 1 is transformed into the LCTRS in Figure 3 (see the appendix for detail).

4.3 A Correctness Proof for T via ξ

Finally, using ξ , we show a correctness proof for T.

Lemma 4.8 (soundness of →T(P)) For full configurations cnfg1,cnfg2 of P, if cnfg1 ⇀P cnfg2, then
ξ (cnfg1)→T(P) ξ (cnfg2).

Lemma 4.9 (completeness of →T(P)) For a full configuration cnfg1 of P and a ground term t with sort
config, if ξ (cnfg1)→T(P) t, then cnfg1 ⇀P ξ−1(t).

Thanks to the injectivity of ξ , the proof of Lemma 4.9 is analogous to Lemma 4.8.

5The maximum height of partial call stacks in rules is two and we need one symbol for superscripts to rename variables.
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

cnfg(stack(sum1(x1),s),n)→ cnfg(stack(sum15(x1,v),s),n) [ v = 0 ]
cnfg(stack(sum15(x1, i1),s),n)→ cnfg(stack(sum16(x1, i1,v),s),n) [ v = 0 ]

cnfg(stack(sum16(x1, i1,z1),s),n)→ cnfg(stack(sum17(x1, i1,z1),s),v) [ v = n+1 ]
cnfg(stack(sum17(x1, i1,z1),s),n)→ cnfg(stack(sum18(x1, i1,z1),s),n) [ i1 < x1 ]
cnfg(stack(sum17(x1, i1,z1),s),n)→ cnfg(stack(sum112(x1, i1,z1),s),n) [ ¬(i1 < x1) ]
cnfg(stack(sum18(x1, i1,z1),s),n)→ cnfg(stack(sum19(x1, i1,z1),s),n)
cnfg(stack(sum19(x1, i1,z1),s),n)→ cnfg(stack(sum110(x1, i1,v),s),n) [ v = z1 + i1 +1 ]
cnfg(stack(sum110(x1, i1,z1),s),n)→ cnfg(stack(sum17(x1,v,z1),s),n) [ v = i1 +1 ]

cnfg(stack(sum2(x2),s),n)→ cnfg(stack(sum217(x2,v),s),n) [ v = 0 ]
cnfg(stack(sum217(x2,z2),s),n)→ cnfg(stack(sum218(x2,z2),s),v) [ v = n+1 ]
cnfg(stack(sum218(x2,z2),s),n)→ cnfg(stack(sum219(x2,v),s),n) [ v = x2 × (x2 +1)/2 ]

cnfg(stack(sum3(x3),s),n)→ cnfg(stack(sum323(x3,v),s),n) [ v = 0 ]
cnfg(stack(sum323(x3,z3),s),n)→ cnfg(stack(sum324(x3,z3),s),v) [ v = n+1 ]
cnfg(stack(sum324(x3,z3),s),n)→ cnfg(stack(sum325(x3,z3),s),n) [ x3 ≤ 0 ]
cnfg(stack(sum324(x3,z3),s),n)→ cnfg(stack(sum327(x3,z3),s),n) [ ¬(x3 ≤ 0) ]
cnfg(stack(sum325(x3,z3),s),n)→ cnfg(stack(sum331(x3,v),s),n) [ v = 0 ]
cnfg(stack(sum327(x3,z3),s),n)→ cnfg(stack(sum328(x3,z3),s),n)
cnfg(stack(sum328(x3,z3),s),n)→

cnfg(stack(sum3(v1),stack(sum328(x3,z3),s)),n) [ v1 = x3 −1 ]
cnfg(stack(sum331(xh

3,z
h
3),stack(sum326(x3,z3),s)),n)

→ cnfg(stack(sum329(x3,v),s),n) [ v = zh
3 ]

cnfg(stack(sum329(x3,z3),s),n)→ cnfg(stack(sum331(x3,v),s),n) [ v = x3 + z3 ]

cnfg(stack(main,s),n)→ cnfg(stack(main36(v),s),n) [ v = 0 ]
cnfg(stack(main36(ret),s),n)→ cnfg(stack(main37(ret,v),s),n) [ v = 3 ]

cnfg(stack(main37(ret,z),s),n)→
cnfg(stack(sum1(v1),stack(main37(ret,z),s)),n) [ v1 = z ]

cnfg(stack(sum112(xh
1, i

h
1,z

h
1),stack(main37(ret,z),s)),n)

→ cnfg(stack(main38(ret,v),s),n) [ v = zh
1 ]


Figure 3: The LCTRS obtained from Program 1.

Theorem 4.10 (correctness of T) Let cnfg0 be the initial (full) configuration of P. Then, for any natural
number n, both of the following hold:

• For a full configuration cnfg, if cnfg0 ⇀
n
P cnfg, then ξ (cnfg0)→n

T(P) ξ (cnfg), and

• for a ground term t : config, if ξ (cnfg0)→n
T(P) t, then cnfg0 ⇀

n
P ξ−1(t).

Proof (Sketch). Using Lemmas 4.8 and 4.9, both claims can straightforwardly be proved by induction
on n. 2

5 Conclusion

In this paper, we showed an injective function from configurations of SIMP+ programs to terms, and then,
using the injective function, we reformulate the definition and correctness proof of the transformation
proposed in [5]. To show the usefulness of the proposed approach, we will compare the approach in this
paper with the definition and correctness proof in [5] from the viewpoint of how plainer the approach
is. Our future work is to extend this approach to SIMPLE [11], and then to concurrent programs with
semaphore-based exclusive control in [7].
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Definition A.1 (partial frames configurations) Partial frames are inductively defined as follows:

• If σ is either a variable or an assignment with Dom(σ) = dvars(ρ), then (ρ,σ) is a partial frame,

• if Fun(ρ) ̸= ρ , v is a variable, σ is a variable for assignments, and y∈Dom(σ), then (ρ,σ [y 7→ v])
is a partial frame, and

• if Fun(ρ) = ρ , all v1, . . . ,vm are variables, and dvars(ρ) = {y1, . . . ,ym}, then (ρ,∅[y1 7→ v1, . . . ,
vm 7→ vm]) is a partial frame.

Partial call stacks are inductively defined as follows:

• [ ] and a variable s for call stacks are partial call stacks, and

• if frm is a partial frame and s is a partial call stack, then frm :: s is a partial call stack.

Partial configurations are inductively defined as follows:

• If cstck is a partial call stack and σ0 is either a variable or an assignment with Dom(σ0) =
{gv1, . . . ,gvk}, then ⟨cstck,σ0⟩ is a partial configuration, and

• if cstck is a partial call stack, vi is a variable, σ0 is a variable for assignments, and 1 ≤ i ≤ k, then
⟨cstck,σ0[gvi 7→ vi]⟩ is a partial configuration.

B Missing Proofs

Proposition 4.2 All δconfig, δcstack, and δframe,h are injective.

Proof (Sketch). By definition, δframe,h is injective: The second case is distinguishable from the other
cases because of ∅; the first is distinguishable from the third and fourth because σh is an assignment
but {yh 7→ v} and {yh

1 7→ v1, . . . , yh
m 7→ vm} are mappings from variables to variables; the third and fourth

are distinguishable depending whether Fun(ρ) = ρ . It follows from the injectivity of δframe,h that δcstack
is injective. It follows from the injectivity of δcstack and the definition of δconfig that δconfig is injective:
The second case is distinguishable from the first and third because of Dom(θ); the first and third are
distinguishable because (θ ∪σ0)(gvi) is an integer and (θ ∪{gvi 7→ vi})(gvi) is a variable. 2

Lemma 4.8 Let P be a SIMP+ program of the form (1) and For full configurations cnfg1,cnfg2 of P, if
cnfg1 ⇀P cnfg2, then ξ (cnfg1)→T(P) ξ (cnfg2).

Proof. We make a case analysis depending on which rule in Rules(P) is applied to cnfg1.

• Consider the case where one of (loc)[ρ], (g-assign)[ρ], (l-assign)[ρ], and (if⊤)[ρ] is applied to
cnfg1. The rule can be represented as follows:

[[ϕ(σ ∪σ0) ]] =⊤ [[e(σ ∪σ0) ]] = v
⟨(ρ,σ) :: s,σ0⟩⇀ ⟨(ρ ′,σ ′) :: s,σ ′

0⟩

where

– a fresh variable v for integers is assigned to a variable y ∈ {−→gv,
−−−→
dvars(ρ ′)}, and

– if y = gvi, then σ ′ = σ and σ ′
0 = σ [gvi 7→ v], and otherwise, σ ′ = σ [y 7→ v] and σ ′

0 = σ0.
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We only show the more complex case where y ∈ dvars(ρ ′).
By the definition of Trule, we have that

δconfig(⟨(ρ,σ) :: s,σ0⟩) = (cnfg(stack( fρ(
−−−→
dvars(ρ)),s),−→gv),∅)

and
δconfig(⟨(ρ ′,σ [y 7→ v]) :: s,σ0⟩) = (cnfg(stack( fρ ′(

−−−→
dvars(ρ ′)),s),−→gv),{y 7→ v})

Thus, T(P) includes the following constrained rule:

cnfg(stack( fρ(
−−−→
dvars(ρ)),s),−→gv)→

cnfg(stack( fρ ′(
−−−→
dvars(ρ ′)),s),−→gv){y 7→ v} [ϕ ∧ v = e ]

Since the rule is applied to cnfg1, there exist assignments σ1,σ2, an integer v′, and a full call stack
cstck such that

– cnfg1 = ⟨(ρ,σ1) :: cstck,σ2⟩,
– cnfg2 = ⟨(ρ ′,σ1[y 7→ v′]) :: cstck,σ2⟩.
– [[ϕ(σ1 ∪σ2) ]] =⊤, and
– [[e(σ1 ∪σ2) ]] = v′.

We now show that ξ (cnfg1)→T(P) ξ (cnfg2). By the definition of ξ , we have that

ξ (cnfg1) = ξ (⟨(ρ,σ1) :: cstck,σ2⟩) = cnfg(stack( fρ(
−−−→
dvars(ρ)),cstck′),−→gv)(σ1 ∪σ2 ∪σ3)

and
ξ (cnfg2)= ξ (⟨(ρ ′,σ1[y 7→ v′]) :: cstck,σ2⟩)

= cnfg(stack( fρ ′(
−−−→
dvars(ρ ′)),cstck′),−→gv)(σ1[y 7→ v′]∪σ2 ∪σ3)

= cnfg(stack( fρ ′(
−−−→
dvars(ρ ′)),cstck′),−→gv){y 7→ v′}(σ1 ∪σ2 ∪σ3)

where ξ (cstk) = (cstk′,σ3). Let θ = σ1 ∪σ2 ∪σ3 ∪{s 7→ cstck′(σ1 ∪σ2 ∪σ3)}. Then, we have
that [[ϕθ ]] =⊤ and [[eθ ]] = v′, and thus, θ respects the above constrained rewrite rule. Therefore,
ξ (cnfg1)→T(P) ξ (cnfg2).

• Consider the case where one of (block)[ρ], (if⊤)[ρ], (if⊥)[ρ], (while⊤)[ρ], and (while⊥)[ρ] is
applied to cnfg1. The rule can be represented as follows:

[[ϕ(σ ∪σ0) ]] =⊤
⟨(ρ,σ) :: s,σ0⟩⇀ ⟨(ρ ′,σ) :: s,σ0⟩

This case is analogous to the previous one.

• Consider the case where (call)[ρ] is applied to cnfg1. The rule can be represented as follows:

[[e1(σ ∪σ0) ]] = v1 . . . [[en′(σ ∪σ0) ]] = vn′

⟨(ρ,σ) :: s,σ0⟩⇀ ⟨(g,∅[y1 7→ v1, . . . ,yn′ 7→ vn′ ]) :: (ρ,σ) :: s,σ0⟩
(call)

where Stmt(ρ) = (x = g(e1, . . .,en′);) and
−−−→
dvars(g) = y1, . . . ,yn′ .

By the definition of Trule, we have that

δconfig(⟨(ρ,σ) :: s,σ0⟩) = (cnfg(stack( fρ(
−−−→
dvars(ρ)),s),−→gv),∅)
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and

δconfig(⟨(g,∅[y1 7→ v1, . . . ,yn′ 7→ vn′ ]) :: (ρ,σ) :: s,σ0⟩)
= (cnfg(stack(g(yh

1, . . . ,y
h
n′),stack( fρ(

−−−→
dvars(ρ)),s)),−→gv),{yh

1 7→ v1, . . . , yh
n′ 7→ vn′})

Thus, T(P) includes the following constrained rule:

cnfg(stack( fρ(
−−−→
dvars(ρ)),s),−→gv)→

cnfg(stack(g(yh
1, . . . ,y

h
n′),stack( fρ(

−−−→
dvars(ρ)),s)),−→gv){yh

1 7→ v1, . . . , yh
n′ 7→ vn′}

[v1 = yh
1 ∧·· ·∧ vn′ = yh

n′ ]

Since the rule is applied to cnfg1, there exist assignments σ1,σ2, integers v′1, . . . ,v
′
n′ , and a full call

stack cstck such that
– cnfg1 = ⟨(ρ,σ1) :: cstck,σ2⟩,
– cnfg2 = ⟨(g,∅[y1 7→ v′1, . . . ,y

′
n′ 7→ vn′ ]) :: (ρ,σ1) :: cstck,σ2⟩, and

– [[ei(σ1 ∪σ2) ]] = v′i for all 1 ≤ i ≤ n′.
We now show that ξ (cnfg1)→T(P) ξ (cnfg2). By the definition of ξ , we have that

ξ (cnfg1) = ξ (⟨(ρ,σ1) :: cstck,σ2⟩) = cnfg(stack( fρ(
−−−→
dvars(ρ)),cstck′),−→gv)(σ1 ∪σ2 ∪σ3)

and

ξ (cnfg2) = ξ (⟨(g,∅[y1 7→ v′1, . . . ,y
′
n′ 7→ vn′ ]) :: (ρ,σ1) :: cstck,σ2⟩)

= cnfg(stack(g(yh
1, . . . ,y

h
n′),stack( fρ(

−−−→
dvars(ρ)),cstck′)),−→gv)(σ1[yh

1 7→v′1, . . . ,y
h
n′ 7→v′n′ ]∪σ2∪σ3)

= cnfg(stack(g(yh
1, . . . ,y

h
n′),stack( fρ(

−−−→
dvars(ρ)),cstck′)),−→gv){yh

1 7→v′1, . . . ,y
h
n′ 7→v′n′}(σ1∪σ2∪σ3)

where ξ (cstk) = (cstk′,σ3). Let θ = σ1∪σ2∪σ3∪{s 7→ cstck′(σ1∪σ2∪σ3)}. Then, we have that
[[eiθ ]] = v′i for all 1 ≤ i ≤ n′, and thus, θ respects the above constrained rewrite rule. Therefore,
ξ (cnfg1)→T(P) ξ (cnfg2).

• Consider the remaining case where (return)[ρ] is applied to cnfg1. This case is analogous to the
case where (call)[ρ] is applied to cnfg1. 2

C Detail of Example 4.7

For example, (loc)[sum1] in Rules(P1) is transformed as follows:

Trule( (loc)[sum1] )= Trule(
[[0(σ ∪σ0) ]] = v

⟨(sum1,σ) :: s,σ0⟩ →P1 ⟨(5,σ [i1 7→ v]) :: s,σ0⟩
)

= ξ (⟨(sum1,σ) :: s,σ0⟩)→ ξ (⟨(5,σ [i1 7→ v]) :: s,σ0⟩) [v = 0 ]
= cnfg(stack(sum1(x1),s),n)→ cnfg(stack(sum15(x1, i1),s),n){i1 7→ v} [v = 0 ]
= cnfg(stack(sum1(x1),s),n)→ cnfg(stack(sum15(x1,v),s),n) [v = 0 ]

where Stmt(sum1) = (int i1 = 0;), s,σ ,σ0,v are variables,

ξ (⟨(sum1,σ) :: s,σ0⟩) = (cnfg(stack(sum1(x3),s),n),∅)

by δcstack((sum1,σ) :: s) = (stack(sum1(x3),s),∅) and δframe,0((sum1,σ)) = (sum1(x3),∅), and

ξ (⟨(5,σ [i1 7→ v]) :: s,σ0⟩) = (cnfg(stack(sum15(x1, i1),s),n),{i1 7→ v})
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by δcstack((5,σ [i1 7→ v]) :: s) = (stack(sum15(x1, i1),s),{i1 7→ v}) and δcstack((5,σ [i1 7→ v])) =
(sum15(x1, i1),{i1 7→ v}).

In addition, (call)[28] in Rules(P1) is transformed as follows:

Trule( (call)[28] ) = Trule(
[[ (x3 −1)(σ ∪σ0) ]] = v1

⟨(28,σ) :: s,σ0⟩ →P1 ⟨(sum3,∅[x3 7→ v1]) :: (28,σ) :: s,σ0⟩
)

= ξ (⟨(28,σ) :: s,σ0⟩)→ ξ (⟨(sum3,∅[x3 7→ v1]) :: (28,σ) :: s,σ0⟩) [v1 = x3 −1 ]
= cnfg(stack(sum328(x3,z3),s),n)→ cnfg(stack(sum3(v1),stack(sum328(x3,z3),s)),n) [v1 = x3 −1 ]

where Stmt(28) = (z3 = sum3(x3-1);), all s,σ ,σ0,v1 are variables,

ξ (⟨(28,σ) :: s,σ0⟩) = (cnfg(stack(sum328(x3,z3),s),n),∅)

by δcstack((28,σ) :: s) = (stack(sum328(x3,z3),s),∅) and δframe,0((28,σ)) = (sum328(x3,z3),∅), and

ξ (⟨(sum3,∅[x3 7→ v1]) :: (28,σ) :: s,σ0⟩) =
(cnfg(stack(sum3(xh

3),stack(sum328(x3,z3),s),n),{xh
3 7→ v1})

by δcstack((sum3,∅[x3 7→ v1]) :: (28,σ) :: s) = (stack(sum3(xh
3),stack(sum328(x3,z3),s),{xh

3 7→ v1}),
δframe,0((28,σ)) = (sum328(x3,z3),∅), and δframe,h((sum3,∅[x3 7→ v1])) = (sum3(xh

3),{xh
3 7→ v1}). The

initial configuration ⟨[(main,∅)],{n 7→ 0}⟩ is represented by the term cnfg(stack(main,empty),0).
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