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ABSTRACT

Effective personalized incentives can improve user experience and

increase platform revenue, resulting in a win-win situation between

users and e-commerce companies. Previous studies have used uplift

modeling methods to estimate the conditional average treatment

effects of users’ incentives, and then placed the incentives by max-

imizing the sum of estimated treatment effects under a limited

budget. However, some users will always buy whether incentives

are given or not, and they will actively collect and use incentives

if provided, named "Always Buyers". Identifying and predicting

these "Always Buyers" and reducing incentive delivery to them

can lead to a more rational incentive allocation. In this paper, we

first divide users into five strata from an individual counterfactual

perspective, and reveal the failure of previous uplift modeling meth-

ods to identify and predict the "Always Buyers". Then, we propose

principled counterfactual identification and estimation methods

and prove their unbiasedness. We further propose a counterfactual

entire-space multi-task learning approach to accurately perform

personalized incentive policy learning with a limited budget. We

also theoretically derive a lower bound on the reward of the learned

policy. Extensive experiments are conducted on three real-world

datasets with two common incentive scenarios, and the results

demonstrate the effectiveness of the proposed approaches.

CCS CONCEPTS

• Information systems → Recommender systems.
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1 INTRODUCTION

Conversion feedback reflects a strong signal of user preference and

is directly linked to Gross Commodity Volume (GMV) [42, 49, 68].

To attract user interest and increase platform revenue, many e-

commerce companies offer personalized incentives to users (e.g.,

sending coupons, or giving cash bonuses) to increase conversions,

which are widely adopted in many application scenarios, such as

e-commerce transactions and music websites [8, 16]. Effective in-

centive regimes for specific consumers can increase user stickiness

and achieve user growth, resulting in a win-win situation between

users and e-commerce companies.

In general, personalized incentive policies give incentives to

specific subgroups using observed user and item features. As a

result, some users will accept the incentive and others will ignore it,

and eventually these incentives would contribute to the conversions,

as shown in the causal diagram in Figure 1. In order to effectively

identify users who need to be incentivized, an important question

to be answered is, "If an incentive is given to a specific user, will

the user purchase the item?". However, in real-world scenarios, we

can never simultaneously observe the conversion outcomes with

and without incentives for the same user, which is also known as

the fundamental problem of causal inference [21].

To tackle the above issues, recent studies have proposed mod-

eling conditional average causal effects (CATEs, also known as

uplift modeling) to identify individuals who should be given incen-

tives [50–52, 77]. Specifically, as shown in Table 1, the CATE-based

methods are able to identify "Coupon Buyers", i.e., users who would

actively collect incentives and convert when incentives are given,

but would not result in conversion when incentives are not given.

Given the features of users and items, the personalized incentive

algorithms first estimate the CATEs as the probability that each

user belongs to "Coupon Buyers", and then place incentives by

maximizing the sum of the CATEs with a limited budget.

However, in this paper, as shown in Table 2, we argue that these

CATE-based methods cannot further identify "Always Buyers" from
the remaining users, i.e., these users will buy with or without incen-

tives, but they will actively collect incentives if given, which leads

to unnecessary incentives. Another category of users that cannot

be identified is the "Coupon Takers", i.e., they actively receive incen-

tives without converting, which also results in wasted incentives
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Figure 1: The causal diagram of Coupon Releasing→Coupon
Collecting→Item Purchasing in e-commerce.

Table 1: The user-item pairs are divided into five strata from a

counterfactual perspective, i.e., (𝐶 (0),𝐶 (1), 𝑌 (0), 𝑌 (1)), named

"never buyer", "never taker", "coupon taker", "coupon buyer",

and "always buyer", respectively.

Strata Description C(0) C(1) Y(0) Y(1) Reward

𝑌0000 Never Buyer 0 0 0 0 0

𝑌0011 Never Taker 0 0 1 1 0

𝑌0100 Coupon Taker 0 1 0 0 0 or −𝑐 (𝑥)
𝑌0101 Coupon Buyer 0 1 0 1 𝑠 (𝑥)
𝑌0111 Always Buyer 0 1 1 1 −𝑐 (𝑥)
Note: The "Coupon Takers" has different rewards for different forms of incentives:

0 if the incentive is a coupon that is only available when purchasing, and −𝑐 (𝑥 ) if
the incentive is a cash bonus. 𝑠 (𝑥 ) is the net profit from the incentive placement.

when the incentives are cash bonuses. In contrast to these two

groups, "Never Buyers" never actively collect incentives and never

convert, while "Never Takers" always convert, but never actively

collect incentives. It can be summarized that both "Always Buyers"

and "Coupon Takers" may cause unnecessary waste of incentives,

while "Never Buyers" and "Never Takers" do not actively collect

incentives (note that the causal effects of all these four subgroups

of incentives on conversion are zero). Therefore, in addition to

incentivizing "Coupon Buyers" using causal effects, identifying and
reducing incentives for "Always Buyers" and "Coupon Takers" can
also help reduce costs and increase platform revenue.

Towards this end, we first formalize the personalized incentive

scenarios using the widely adopted potential outcome framework

in causal inference, and then divide the population into five strata

from a counterfactual perspective, i.e., based on the joint potential

outcomes of the same individuals. Next, we formally reveal the lim-

itations of the previous CATE-based methods that can only identify

and consider "Coupon Buyers". Then, we propose CounterFactual-

Outcome Regression/Inverse Propensity Scoring/Doubly Robust

estimators, namedCF-OR,CF-IPS, andCF-DR, respectively, which

can further identify and estimate all five strata. Through theoretical

analysis, we demonstrate the double robustness property of the

proposed CF-DR estimator, i.e., it is unbiased when either of the

imputed outcomes or learned propensities are accurate.

Based on the proposed counterfactual identification methods, we

further propose aCounterFactual entire-spaceMulti-TaskLearning

approach with a limited budget, named CF-MTL, in which propen-

sity model and counterfactual strata prediction models of individu-

als are jointly trained. Compared with training multiple regression

and propensity models independently for policy learning, CF-MTL

can alleviate the data sparsity and bias amplification problems,

Table 2: Comparison of the identifiability of the Naive meth-

ods, the conditional average treatment effect (CATE)-based

methods, and the proposed counterfactual methods.

Method Identifiable Unidentifiable

Naive N/A 𝑌0000, 𝑌0011, 𝑌0100, 𝑌0101, 𝑌0111
CATE 𝑌0101 𝑌0000, 𝑌0011, 𝑌0100, 𝑌0111
Ours 𝑌0000, 𝑌0011, 𝑌0100, 𝑌0101, 𝑌0111 N/A

which leads to more accurate strata prediction. We also theoreti-

cally derive lower bounds for the reward of learned personalized

incentive policy. Extensive experiments are conducted on three

real-world datasets with two common incentive scenarios, and the

results demonstrate that the proposed learning approach can accu-

rately achieve individual counterfactual predictions, thus leads to

significantly more profitable incentive policies.

The main contributions of this paper are summarized as follows.

• We reformulate the personalized incentive policy learning

problem from an individualized counterfactual perspective,

reveal the limitations of previous uplift modeling methods,

and propose principled counterfactual estimators to identify

and estimate the probability that an individual belongs to a

specific counterfactual strata.

• Based on the proposed counterfactual identificationmethods,

we further propose a counterfactual entire-space multi-task

learning approach to accurately perform individualized in-

centive policy learning. We also theoretically derive a lower

bound on the reward of the learned policy.

• We conduct experiments on three real-world datasets with

two common personalized incentive scenarios, and the re-

sults show the effectiveness of our approaches for counterfac-

tual prediction and personalized incentive policy learning.

2 PRELIMINARIES AND DISCUSSIONS

2.1 Problem Setup

Let U = {𝑢1, 𝑢2, . . . , 𝑢𝑚} be the set of𝑚 users, I = {𝑖1, 𝑖2, . . . , 𝑖𝑛}
be the set of 𝑛 items, andD = U×I be the set of all user-item pairs.

Denote the observed features and binary treatments of user 𝑢 and

item 𝑖 as 𝑋𝑢,𝑖 and 𝑇𝑢,𝑖 , respectively, where 𝑇𝑢,𝑖 is the indicator of

whether the personalized policy released incentives (e.g., coupons

or cash bonuses) to user 𝑢 about item 𝑖 or not. To study individuals’

subsequent incentive collection and conversion behavior from a

counterfactual perspective, we adopt the potential outcome frame-

work in causal inference [21, 23]. Specifically, let𝐶𝑢,𝑖 (0) and𝐶𝑢,𝑖 (1)
be the outcomes of whether the user actively collects incentives

about items (e.g., actively collected coupons, or actively withdraws

cash bonuses) had the platform does not release incentives 𝑇𝑢,𝑖 = 0

and release incentives 𝑇𝑢,𝑖 = 1, respectively. Similarly, let 𝑌𝑢,𝑖 (0)
and 𝑌𝑢,𝑖 (1) be the outcomes of whether the user converts to the

item had 𝑇𝑢,𝑖 = 0 and 𝑇𝑢,𝑖 = 1, respectively. Since each user-item

pair can only be assigned one treatment, we always observe ei-

ther of the corresponding outcomes 𝐶𝑢,𝑖 (0) or 𝐶𝑢,𝑖 (1), but never
both, and similar conclusions hold for 𝑌𝑢,𝑖 (0) or 𝑌𝑢,𝑖 (1). This is also
known as the fundamental problem of causal inference [21].

We assume that the observations for user 𝑢 and item 𝑖 are𝐶𝑢,𝑖 =

(1−𝑇𝑢,𝑖 )𝐶𝑢,𝑖 (0)+𝑇𝑢,𝑖𝐶𝑢,𝑖 (1) and𝑌𝑢,𝑖 = (1−𝑇𝑢,𝑖 )𝑌𝑢,𝑖 (0)+𝑇𝑢,𝑖𝑌𝑢,𝑖 (1).
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In other words, the observed outcomes are the potential outcomes

corresponding to the assigned treatment, which also known as the

consistency assumption in the causal literature. We assume that the

stable unit treatment value assumption (STUVA) holds, i.e., there

should not be alternative forms of the treatment (i.e., incentives)

and interference between units. In addition, we follow previous

studies to assume that the unconfoundedness assumption holds, i.e.,

(𝐶𝑢,𝑖 (0),𝐶𝑢,𝑖 (1), 𝑌𝑢,𝑖 (0), 𝑌𝑢,𝑖 (1)) ⊥⊥ 𝑇𝑢,𝑖 |𝑋𝑢,𝑖 and let 𝜂 < P(𝑇𝑢,𝑖 =

1|𝑋𝑢,𝑖 = 𝑥) < 1−𝜂, where⊥⊥means independent and 𝜂 is a constant

between 0 and 1/2. In the personalized incentive scenarios, the

rationality of the unconfoundedness assumption is due to the fact

that the recommendation system gives incentives only based on the

observed user and item features. When no incentives are released, it

is obvious that users cannot actively collect incentives, i.e.,𝐶𝑢,𝑖 (0) =
0. Next, we assume that incentive collection𝐶𝑢,𝑖 has a non-negative

effect on conversion 𝑌𝑢,𝑖 , i.e., there is no individual with (𝐶𝑢,𝑖 (0) =
0,𝐶𝑢,𝑖 (1) = 1, 𝑌𝑢,𝑖 (0) = 1, 𝑌𝑢,𝑖 (1) = 0), who does not convert when

the incentive is actively collected, but converts when there is no

incentive. In addition, because of the limitations of the collected

information, some unmeasured confounders (e.g., user’s income,

etc.) may also affect coupon collecting and item purchasing, which

poses additional challenges. In Figure 1, we summarize the causal

diagram of Coupon Releasing→Coupon Collecting→Item Purchasing
in e-commerce.

From a counterfactual perspective, as shown in Table 1, we divide

all user-item pairs into five strata based on the joint potential out-

comes (𝐶 (0),𝐶 (1), 𝑌 (0), 𝑌 (1)) of individuals, and named as "never

buyer", "never taker", "coupon taker", "coupon buyer", and " always

buyer", respectively. For simplification, we denote the labels of the

five groups as 𝑌0000, 𝑌0011, 𝑌0100, 𝑌0101, and 𝑌0111, correspondingly.

Previous studies have modeled the conditional average treatment

effect (CATE, also known as uplift modeling) to determine which

users should be given incentives. Formally, CATE is defined as

𝜏 (𝑥𝑢,𝑖 ) = E(𝑌 (1) − 𝑌 (0) | 𝑋 = 𝑥𝑢,𝑖 ) = E(𝑌0101 | 𝑋 = 𝑥𝑢,𝑖 ),

which is equivalent to the probability that a unit with feature 𝑥𝑢,𝑖
belongs to "Coupon Buyer".

2.2 Uplift Modeling

Many methods were developed for the estimation of CATEs. Let

𝜇0 (𝑥) = E[𝑌 | 𝑇 = 0, 𝑋 = 𝑥] and 𝜇1 (𝑥) = E[𝑌 | 𝑇 = 1, 𝑋 = 𝑥], the
outcome regression (OR) estimator builds regression models for

𝑌 (0) and 𝑌 (1) respectively to fill in the missing potential outcomes

𝑝𝑂𝑅 (𝑥𝑢,𝑖 ) = 𝜇1 (𝑥𝑢,𝑖 ) − 𝜇0 (𝑥𝑢,𝑖 ),

where 𝜇0 (𝑥𝑢,𝑖 ) and 𝜇1 (𝑥𝑢,𝑖 ) are estimates of 𝜇0 (𝑥𝑢,𝑖 ) and 𝜇1 (𝑥𝑢,𝑖 ),
respectively. The OR estimator is unbiased when the imputed out-

comes 𝜇0 (𝑥𝑢,𝑖 ) and 𝜇1 (𝑥𝑢,𝑖 ) are accurate, i.e., 𝜇0 (𝑥𝑢,𝑖 ) = 𝜇0 (𝑥𝑢,𝑖 )
and 𝜇1 (𝑥𝑢,𝑖 ) = 𝜇1 (𝑥𝑢,𝑖 ).

The alternative methods of estimating CATE are weighting-

based estimators. Let 𝑒 (𝑥) = P(𝑇 = 1 | 𝑋 = 𝑥) be the probability
that the personalized incentive policy of the recommender sys-

tem places an incentive on a user-item pair with feature 𝑥 , called

propensity. The inverse propensity scoring (IPS) estimator uses

the inverse of the treatment probability to weight the observed

potential outcomes

𝑝𝐼𝑃𝑆 (𝑥𝑢,𝑖 ) =
𝑇𝑢,𝑖𝑌𝑢,𝑖 (1)

𝑒𝑢,𝑖
−

(1 −𝑇𝑢,𝑖 )𝑌𝑢,𝑖 (0)
1 − 𝑒𝑢,𝑖

,

where 𝑒𝑢,𝑖 is an estimate of 𝑒 (𝑥𝑢,𝑖 ). The IPS estimator is unbiased

when the learned propensities 𝑒𝑢,𝑖 are accurate, i.e., 𝑒𝑢,𝑖 = 𝑒 (𝑥𝑢,𝑖 ).
The doubly robust (DR) estimator uses both the outcome regres-

sion models and the propensity model to relax the conditions for

unbiasedness

𝑝𝐷𝑅 (𝑥𝑢,𝑖 ) = 𝜇1 (𝑥𝑢,𝑖 ) − 𝜇0 (𝑥𝑢,𝑖 )

+
𝑇𝑢,𝑖 (𝑌𝑢,𝑖 (1) − 𝜇1 (𝑥𝑢,𝑖 ))

𝑒𝑢,𝑖
−

(1 −𝑇𝑢,𝑖 ) (𝑌𝑢,𝑖 (0) − 𝜇0 (𝑥𝑢,𝑖 ))
1 − 𝑒𝑢,𝑖

,

which has double robustness, i.e., it is unbiased if either the imputed

outcomes or learned propensities are accurate.

2.3 Personalized Incentive Policy Learning

Let 𝜋 : {𝑥𝑢,𝑖 | (𝑢, 𝑖) ∈ D} → [0, 1] be a policy that maps from the

individual context 𝑋 = 𝑥 to the probability of the incentives 𝑇 = 1

to be placed. Suppose the net profit from the incentive placement

to "Coupon Buyer" is 𝑠 (𝑥𝑢,𝑖 ). For symbolic simplicity, we consider

the case 𝑠 (𝑥𝑢,𝑖 ) = 1 hereafter. Similar results hold for the case of

heterogeneous net profits, provided 𝑠 (𝑥𝑢,𝑖 ) are bounded. Given the

CATEs, the personalized incentive policy is trained to maximize the

weighted sum of CATEs within a finite budget 𝜖 to place incentives

max

𝜋∈Π
𝑅(𝜋) = 1

|D|
∑︁

(𝑢,𝑖 ) ∈D
𝜋 (𝑥𝑢,𝑖 )𝑟𝑢,𝑖

s.t. 𝐵(𝜋) = 1

|D|
∑︁

(𝑢,𝑖 ) ∈D
𝜋 (𝑥𝑢,𝑖 ) ≤ 𝜖,

where 𝑟𝑢,𝑖 = P(𝑌0101 | 𝑥𝑢,𝑖 ). The optimal policy 𝜋∗ (𝑥𝑢,𝑖 ) is

𝜋∗ (𝑥𝑢,𝑖 ) =


1, P(𝑌0101 | 𝑥𝑢,𝑖 ) > 𝛾 (𝜖)
𝑑, P(𝑌0101 | 𝑥𝑢,𝑖 ) = 𝛾 (𝜖),
0, P(𝑌0101 | 𝑥𝑢,𝑖 ) < 𝛾 (𝜖)

where 𝑑 is a value between 0 and 1, and 𝛾 (𝜖) ≥ 0 decreases mono-

tonically as the budget 𝜖 increases. It can be seen that the optimal

policy for uplift modeling with finite budget 𝜖 selects units with

CATEs above a threshold 𝛾 (𝜖) to give incentives. Empirically, we

use estimates of CATEs, e.g., 𝑝𝑂𝑅 (𝑥𝑢,𝑖 ), 𝑝𝐼𝑃𝑆 (𝑥𝑢,𝑖 ), and 𝑝𝐷𝑅 (𝑥𝑢,𝑖 ),
to replace 𝑟𝑢,𝑖 to perform personalized incentive policy learning.

3 PROPOSED METHODS

3.1 Limitations of Uplift Modeling

Despite the CATE-based incentive policy learning can effectively

identify and estimate "Coupon Buyers", as shown in Table 2, it fails

to identify and estimate users in other strata. In fact, identifying

"Always Buyer" and "Coupon Taker" is meaningful for e-commerce

platforms, and by reducing the incentive allocation to these two

strata, personalized incentives can be more rationally allocated.

Specifically, from Table 1, "Always Buyer" always buys regardless

of the coupon given, i.e., the causal effect of the coupon on the

purchase is always zero, but they would actively use the coupon if

it was offered. In addition, if the incentive is a cash bonus, then both

the "Always Buyer" and "Coupon Taker" will actively collect and
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obtain the cash bonus, even if the latter will never purchase. This

can result in unnecessary placement of incentives and additional

costs. In contrast, "Never Buyer" and "Never Taker" never collect the

incentive, so incentive placement for them leads to no additional

incentive costs and zero rewards. Therefore, when the cost of

the incentive is 𝑐 (𝑥), incentive placement for "Always Buyer" will

have −𝒄 (𝒙) reward due to the zero causal effect on purchases and
the additional incentive cost of 𝑐 (𝑥). Last, incentive placement for

"Coupon Taker" has different rewards for various incentives: zero

reward if the incentive is a coupon that is only available when

purchasing, and −𝒄 (𝒙) reward if the incentive is a cash bonus.

3.2 Counterfactual Identification Methods

In order to accurately identify and estimate the probability of a unit

belonging to the counterfactual strata 𝑌0000, 𝑌0011, 𝑌0100, 𝑌0101, and

𝑌0111 based on the observed features 𝑥𝑢,𝑖 , we propose the following

counterfactual identification method. For units in the observed data

that receive an incentive 𝑇 = 1, from the 𝐶 (1) and 𝑌 (1) columns

of Table 1, it can be found that only the 𝑌0000 stratum results in

the observed outcomes (𝑇 = 1,𝐶 = 0, 𝑌 = 0). Similarly, only 𝑌0011
stratum results in the observed outcomes (𝑇 = 1,𝐶 = 0, 𝑌 = 1), and
only 𝑌0100 stratum results in the observed outcomes (𝑇 = 1,𝐶 =

1, 𝑌 = 0). However, both 𝑌0101 and 𝑌0111 strata can lead to the

observed outcomes (𝑇 = 1,𝐶 = 1, 𝑌 = 1). Formally, we have

P(𝐶 = 0, 𝑌 = 0 | 𝑇 = 1, 𝑋 ) = P(𝑌0000 | 𝑋 ),
P(𝐶 = 0, 𝑌 = 1 | 𝑇 = 1, 𝑋 ) = P(𝑌0011 | 𝑋 ),
P(𝐶 = 1, 𝑌 = 0 | 𝑇 = 1, 𝑋 ) = P(𝑌0100 | 𝑋 ),
P(𝐶 = 1, 𝑌 = 1 | 𝑇 = 1, 𝑋 ) = P(𝑌0101 | 𝑋 ) + P(𝑌0111 | 𝑋 ) .

The above formulas cannot identify 𝑌0101 as a "Coupon Buyer" and

𝑌0111 as an "Always Buyer". Fortunately, by an similar argument for

the units that are not released with incentive 𝑇 = 0 in the observed

data, the following formulas hold

P(𝐶 = 1, 𝑌 = 1 | 𝑇 = 0, 𝑋 ) = 0,

P(𝐶 = 1, 𝑌 = 0 | 𝑇 = 0, 𝑋 ) = 0,

P(𝐶 = 0, 𝑌 = 1 | 𝑇 = 0, 𝑋 ) = P(𝑌0011 | 𝑋 ) + P(𝑌0111 | 𝑋 ),
P(𝐶 = 0, 𝑌 = 0 | 𝑇 = 0, 𝑋 ) = P(𝑌0000 | 𝑋 ) + P(𝑌0100 | 𝑋 ) + P(𝑌0101 | 𝑋 ) .
Now, associating the above eight formulas, it is sufficient to identify

the probability that a unit with feature𝑋 belong to each counterfac-

tual strata. Solving these equations for P(𝑌0000 | 𝑋 ), P(𝑌0011 | 𝑋 ),
P(𝑌0100 | 𝑋 ), P(𝑌0101 | 𝑋 ), and P(𝑌0111 | 𝑋 ) gives
P(𝑌0000 | 𝑋 ) = P(𝐶 = 0, 𝑌 = 0 | 𝑇 = 1, 𝑋 ),
P(𝑌0011 | 𝑋 ) = P(𝐶 = 0, 𝑌 = 1 | 𝑇 = 1, 𝑋 ),
P(𝑌0100 | 𝑋 ) = P(𝐶 = 1, 𝑌 = 0 | 𝑇 = 1, 𝑋 ),
P(𝑌0101 | 𝑋 ) = P(𝑌 = 1 | 𝑇 = 1, 𝑋 ) − P(𝑌 = 1 | 𝑇 = 0, 𝑋 ),
P(𝑌0111 | 𝑋 ) = P(𝑌 = 1 | 𝑇 = 0, 𝑋 ) − P(𝐶 = 0, 𝑌 = 1 | 𝑇 = 1, 𝑋 ).

3.3 Counterfactual Estimation Methods

We extend the previous OR, IPS, and DR estimators from uplift

modeling to unbiasedly estimate the probability that the unit be-

longs to each counterfactual strata. Without loss of generality, we

next discuss the estimation methods for the probability that a unit

with feature 𝑋 belongs to "Always Buyer", i.e., P(𝑌0111 | 𝑋 ). Other

counterfactual strata probabilities can be derived from a similar

view. By noting that the second term on the right hand side of

P(𝑌0111 | 𝑋 ) in Section 3.2 is equivalent to

P(𝐶 = 0, 𝑌 = 1 | 𝑇 = 1, 𝑋 ) = P(𝐶 (1) = 0, 𝑌 (1) = 1 | 𝑇 = 1, 𝑋 )
= P(𝐶 (1) = 0, 𝑌 (1) = 1 | 𝑋 ),

where (𝐶 (1), 𝑌 (1)) can be viewed as a whole as the joint potential

outcomes under 𝑇 = 1. Let 𝜇
01 |1 (𝑥) = E[I(𝐶 = 0, 𝑌 = 1) | 𝑇 =

1, 𝑋 = 𝑥], by noting that

P(𝐶 (1) = 0, 𝑌 (1) = 1 | 𝑋 ) = 𝜇
01 |1 (𝑋 ),

the proposed counterfactual-outcome regression (CF-OR) estimator

for estimating P(𝑌0111 | 𝑋 ) is given as

𝑝𝑂𝑅
0111

(𝑥𝑢,𝑖 ) = 𝜇0 (𝑥𝑢,𝑖 ) − 𝜇
01 |1 (𝑥𝑢,𝑖 ),

where 𝜇0 (𝑥𝑢,𝑖 ) and 𝜇01 |1 (𝑥𝑢,𝑖 ) are estimates of 𝜇0 (𝑥𝑢,𝑖 ) and 𝜇01 |1 (𝑥𝑢,𝑖 ),
respectively. The proposed CF-OR estimator is unbiased when

the imputed outcomes 𝜇0 (𝑥𝑢,𝑖 ) and 𝜇
01 |1 (𝑥𝑢,𝑖 ) are accurate, i.e.,

𝜇0 (𝑥𝑢,𝑖 ) = 𝜇0 (𝑥𝑢,𝑖 ) and 𝜇
01 |1 (𝑥𝑢,𝑖 ) = 𝜇

01 |1 (𝑥𝑢,𝑖 ).
Next, recall that 𝑒 (𝑥) = P(𝑇 = 1 | 𝑋 = 𝑥), by noting that

P(𝐶 (1) = 0, 𝑌 (1) = 1 | 𝑋 ) = E
[ I(𝑇 = 1)I(𝐶 (1) = 0, 𝑌 (1) = 1)

𝑒 (𝑋 ) | 𝑋
]
,

the proposed counterfactual-inverse propensity scoring (CF-IPS)

estimator for estimating P(𝑌0111 | 𝑋 ) is given as

𝑝𝐼𝑃𝑆
0111

(𝑥𝑢,𝑖 ) =
(1 −𝑇𝑢,𝑖 )𝑌𝑢,𝑖 (0)

1 − 𝑒𝑢,𝑖
−
𝑇𝑢,𝑖 (1 −𝐶𝑢,𝑖 (1))𝑌𝑢,𝑖 (1)

𝑒𝑢,𝑖
,

where 𝑒𝑢,𝑖 is an estimate of 𝑒 (𝑥𝑢,𝑖 ). The proposed CF-IPS estimator

is unbiased when the learned propensities 𝑒𝑢,𝑖 are accurate, i.e.,

𝑒𝑢,𝑖 = 𝑒 (𝑥𝑢,𝑖 ).
For estimators with doubly robust forms, by noting that

P(𝐶 (1) = 0, 𝑌 (1) = 1 | 𝑋 )

= E
[
𝜇
01 |1 (𝑋 ) +

I(𝑇 = 1) [I(𝐶 (1) = 0, 𝑌 (1) = 1) − 𝜇
01 |1 (𝑋 )]

𝑒 (𝑋 ) | 𝑋
]
,

the proposed counterfactual-doubly robust (CF-DR) estimator for

estimating P(𝑌0111 | 𝑋 ) is given as

𝑝𝐷𝑅
0111

(𝑥𝑢,𝑖 ) = 𝜇0 (𝑥𝑢,𝑖 ) +
(1 −𝑇𝑢,𝑖 ) (𝑌𝑢,𝑖 (0) − 𝜇0 (𝑥𝑢,𝑖 ))

1 − 𝑒𝑢,𝑖

− 𝜇
01 |1 (𝑥𝑢,𝑖 ) −

𝑇𝑢,𝑖 [(1 −𝐶𝑢,𝑖 (1))𝑌𝑢,𝑖 (1) − 𝜇
01 |1 (𝑥𝑢,𝑖 )]

𝑒𝑢,𝑖
.

Theorem 3.1 derives the bias of the proposed CF-DR estimator.

Theorem 3.1 (Bias of CF-DR Estimator). Given imputed out-
comes 𝜇0 (𝑥𝑢,𝑖 ), 𝜇01 |1 (𝑥𝑢,𝑖 ), and learned propensities 𝑒𝑢,𝑖 > 0 for all
user-item pairs, the bias of the CF-DR estimator is

Bias(𝑝𝐷𝑅
0111

(𝑥𝑢,𝑖 )) =
���� (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 ) (𝑌𝑢,𝑖 (0) − 𝜇0 (𝑥𝑢,𝑖 ))

1 − 𝑒𝑢,𝑖

+
(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 ) [(1 −𝐶𝑢,𝑖 (1))𝑌𝑢,𝑖 (1) − 𝜇

01 |1 (𝑥𝑢,𝑖 )]
𝑒𝑢,𝑖

���� .
From Theorem 3.1, the proposed CF-DR estimator effectively

takes advantage of the outcome regression models and the propen-

sity model to reduce the bias of the estimation.We formally describe

the double robustness property that CF-DR has as in Corollary 3.2.
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Corollary 3.2 (Double Robustness). The CF-DR estimator is
unbiased when either imputed outcomes 𝜇0 (𝑥𝑢,𝑖 ) and 𝜇

01 |1 (𝑥𝑢,𝑖 ) or
learned propensities 𝑒𝑢,𝑖 > 0 are accurate for all user-item pairs.

Next, we derive the variance of CF-DR estimator in Theorem 3.3.

Theorem 3.3 (Variance of CF-DR Estimator). Given imputed
outcomes 𝜇0 (𝑥𝑢,𝑖 ), 𝜇01 |1 (𝑥𝑢,𝑖 ), and learned propensities 𝑒𝑢,𝑖 > 0 for
all user-item pairs, the variance of the CF-DR estimator is

Var(𝑝𝐷𝑅
0111

(𝑥𝑢,𝑖 )) = 𝑒𝑢,𝑖 (1 − 𝑒𝑢,𝑖 )
[𝑌𝑢,𝑖 (0) − 𝜇0 (𝑥𝑢,𝑖 )

1 − 𝑒𝑢,𝑖

+
(1 −𝐶𝑢,𝑖 (1))𝑌𝑢,𝑖 (1) − 𝜇

01 |1 (𝑥𝑢,𝑖 )
𝑒𝑢,𝑖

]
2

.

Notably, when the imputed outcomes in the CF-DR estimator

are zero, i.e., 𝜇0 (𝑥𝑢,𝑖 ) = 0 and 𝜇
01 |1 (𝑥𝑢,𝑖 ) = 0, the CF-DR estimator

degenerates to the CF-IPS estimator, and therefore Theorem 3.3

degenerates to the variance of CF-IPS estimator. It can be seen that

when the outcome regression models are approximately accurate,

i.e., 𝜇0 (𝑥𝑢,𝑖 ) ≈ 𝑌𝑢,𝑖 (0) and 𝜇
01 |1 (𝑥𝑢,𝑖 ) ≈ (1 − 𝐶𝑢,𝑖 (1))𝑌𝑢,𝑖 (1), the

CF-DR estimator would have a lower variance than the CF-IPS.

Let 𝑝𝐷𝑅
0111

be the average predicted probability of "Always Buyers"

using CF-DR estimator over all user-item pairs

𝑝𝐷𝑅
0111

=
1

|D|
∑︁

(𝑢,𝑖 ) ∈D
𝑝𝐷𝑅
0111

(𝑥𝑢,𝑖 ),

we further show the tail bound of CF-DR estimator in Theorem 3.4.

Theorem 3.4 (Tail Bound of CF-DR Estimator). Given im-
puted outcomes 𝜇0 (𝑥𝑢,𝑖 ), 𝜇01 |1 (𝑥𝑢,𝑖 ), and learned propensities 𝑒𝑢,𝑖 >
0, with probability 1 − 𝜂, the deviation of the CF-DR estimator from
its expectation has the following tail bound

���𝑝𝐷𝑅
0111

− E𝑇 (𝑝𝐷𝑅
0111

)
��� ≤

√√√√√
log

(
2

𝜂

)
2|D|2

∑︁
(𝑢,𝑖 ) ∈D

{
�̃�0 (𝑥𝑢,𝑖 )
1 − 𝑒𝑢,𝑖

+
�̃�
01 |1 (𝑥𝑢,𝑖 )
𝑒𝑢,𝑖

}2
,

where �̃�0 = 𝑌 (0) − 𝜇0 and �̃�
01 |1 = (1 −𝐶 (1))𝑌 (1) − 𝜇

01 |1.

From Corollary 3.2 and Theorem 3.4, when either imputed out-

comes or learned propensities are approximately accurate, the pre-

dicted amount of "Always Buyers" using the CF-DR estimator will

tend to the true amount as the sample size increases. This further

illustrates the effectiveness of the proposed CF-DR estimator for

identifying and estimating these "Always Buyers".

4 MULTI-TASK LEARNING APPROACH

In this section, based on the proposed counterfactual identification

method, we further propose a counterfactual entire-space multi-

task learning approach, named CF-MTL, to accurately predict the

probabilities of units belonging to different strata, which is then

used to perform individualized incentive policy learning. Different

from CF-OR, CF-IPS, and CF-DR estimators that first build outcome

regression models and propensity model to predict potential out-

comes and then estimate the probability of counterfactual strata

by a plug-in manner, the proposed CF-MTL simultaneously trains

a propensity model and a counterfactual strata prediction model,

and the overview of the architecture is shown in Figure 2.

Figure 2: Proposed counterfactual entire-space multi-task

learning architecture, which contains (i) a propensity model

and (ii) an individual counterfactual strata prediction model.

Recall that in Section 3.2, we proved the following formula

P(𝐶 = 0, 𝑌 = 0 | 𝑇 = 1, 𝑋 ) = P(𝑌0000 | 𝑋 ) .

By multiplying the propensity P(𝑇 = 1 | 𝑋 ) on both sides, we have

P(𝑇 = 1,𝐶 = 0, 𝑌 = 0 | 𝑋 ) = P(𝐶 = 0, 𝑌 = 0 | 𝑇 = 1, 𝑋 )P(𝑇 = 1 | 𝑋 )
= P(𝑌0000 | 𝑋 )P(𝑇 = 1 | 𝑋 ),

where the left hand side is the joint distribution of the samples with

observations (𝑇 = 1,𝐶 = 0, 𝑌 = 0) and the right hand side contains

the counterfactual strata probability P(𝑌0000 | 𝑋 ) and propensity

P(𝑇 = 1 | 𝑋 ). Let 𝑓0000 (𝑋 ) and 𝑔(𝑋 ) be the models for predicting

P(𝑌0000 | 𝑋 ) and the propensity model for predicting P(𝑇 = 1 | 𝑋 ),
respectively. Then both models can be trained jointly byminimizing

the following losses using all user-item pairs in the entire-space

𝐿 (𝑓0000 (𝑋 )𝑔(𝑋 ),𝑇 = 1&𝐶 = 0&𝑌 = 0) ,

where𝐿(·, ·) is the average of a pre-specified loss (e.g., cross-entropy)
over all user-item pair, and 𝑇 = 1&𝐶 = 0&𝑌 = 0 equals to 1 only

when the sample has observation (𝑇 = 1,𝐶 = 0, 𝑌 = 0), and equals

to 0 otherwise. By adopting a similar view to the remaining identi-

fication formulas in Section 3.2, both models are jointly trained by

minimizing the counterfactual stratification-task loss

L𝑠 (𝑓0000, 𝑓0011, 𝑓0100, 𝑓0101, 𝑓0111;𝑔)
= 𝐿 (𝑓0000 (𝑋 )𝑔(𝑋 ),𝑇 = 1&𝐶 = 0&𝑌 = 0)
+ 𝐿 (𝑓0011 (𝑋 )𝑔(𝑋 ),𝑇 = 1&𝐶 = 0&𝑌 = 1)
+ 𝐿 (𝑓0100 (𝑋 )𝑔(𝑋 ),𝑇 = 1&𝐶 = 1&𝑌 = 0)
+ 𝐿 ((𝑓0101 (𝑋 ) + 𝑓0111 (𝑋 ))𝑔(𝑋 ),𝑇 = 1&𝐶 = 1&𝑌 = 1)
+ 𝐿 ((𝑓0011 (𝑋 ) + 𝑓0111 (𝑋 )) (1 − 𝑔(𝑋 )),𝑇 = 0&𝐶 = 0&𝑌 = 1)
+ 𝐿 ((𝑓0000 (𝑋 ) + 𝑓0100 (𝑋 ) + 𝑓0101 (𝑋 )) (1 − 𝑔(𝑋 )),𝑇 = 0&𝐶 = 0&𝑌 = 0) .

In addition, to make the propensity model 𝑔(𝑋 ) accurately predict

the incentive delivery probability P(𝑇 = 1 | 𝑋 ), it is also trained by
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minimizing a binary classification loss

L𝑝 (𝑔) = 𝐿(𝑔(𝑋 ),𝑇 = 1) .
In summary, the proposed CF-MTL jointly trains 𝑓 (𝑋 ) and 𝑔(𝑋 )
by minimizing the following loss in the entire-space

L = L𝑝 (𝑔) + 𝜆 · L𝑠 (𝑓0000, 𝑓0011, 𝑓0100, 𝑓0101, 𝑓0111;𝑔),
which 𝜆 is a hyper-parameter, and the training loss has the same

training and inference space, results in more accurate and robust

counterfactual strata predictions. We also empirically demonstrate

the advantages of CF-MTL in Section 5 over the plug-in estimators

in Section 3.3.

Given the probabilities of user-item pairs (𝑢, 𝑖) belonging to each
counterfactual strata, a more reasonable reward 𝑟𝑢,𝑖 for incentive

policy learning in Section 3.2 should be 𝑟𝑢,𝑖 = P(𝑌0101 | 𝑥𝑢,𝑖 ) −
𝑐 (𝑥𝑢,𝑖 ) · (P(𝑌0100 | 𝑥𝑢,𝑖 ) + P(𝑌0111 | 𝑥𝑢,𝑖 )) when cash bonuses are

used as incentives, and 𝑟𝑢,𝑖 = P(𝑌0101 | 𝑥𝑢,𝑖 )−𝑐 (𝑥𝑢,𝑖 ) ·P(𝑌0111 | 𝑥𝑢,𝑖 )
when coupons are used as incentives. Take the coupon incentives

as an example, the optimal policy 𝜋∗ (𝑥𝑢,𝑖 ; 𝑐) is

𝜋∗ (𝑥𝑢,𝑖 ; 𝑐) =


1, P(𝑌0101 | 𝑥𝑢,𝑖 ) > 𝑐 (𝑥𝑢,𝑖 ) · P(𝑌0111 | 𝑥𝑢,𝑖 ) + 𝛾 (𝜖 ; 𝑐)
𝑑, P(𝑌0101 | 𝑥𝑢,𝑖 ) = 𝑐 (𝑥𝑢,𝑖 ) · P(𝑌0111 | 𝑥𝑢,𝑖 ) + 𝛾 (𝜖 ; 𝑐),
0, P(𝑌0101 | 𝑥𝑢,𝑖 ) < 𝑐 (𝑥𝑢,𝑖 ) · P(𝑌0111 | 𝑥𝑢,𝑖 ) + 𝛾 (𝜖 ; 𝑐)

where 𝑑 is a value between 0 and 1, and 𝛾 (𝜖; 𝑐) ≥ 0 decreases

monotonically as the budget 𝜖 increases.

Compared with the incentive placement policy learning based

on uplift modeling, the proposed counterfactual policy learning fur-

ther takes into account the additional incentive cost 𝑐 (𝑥𝑢,𝑖 ) arising
from "Always Buyers". Given the predicted probabilities 𝑓0101 (𝑥𝑢,𝑖 )
and 𝑓0111 (𝑥𝑢,𝑖 ) of the counterfactual strata, the estimated reward

is 𝑟𝑢,𝑖 = 𝑓0101 (𝑥𝑢,𝑖 ) − 𝑐 (𝑥𝑢,𝑖 ) · 𝑓0111 (𝑥𝑢,𝑖 ), then the counterfactual

personalized incentive policy 𝜋† is learned by maximizing the esti-

mated policy reward 𝑅(𝜋) with the budget 𝜖 as constraint

max

𝜋∈Π
𝑅(𝜋) = 1

|D|
∑︁

(𝑢,𝑖 ) ∈D
𝜋 (𝑥𝑢,𝑖 )𝑟𝑢,𝑖

s.t. 𝐵(𝜋) = 1

|D|
∑︁

(𝑢,𝑖 ) ∈D
𝜋 (𝑥𝑢,𝑖 ) ≤ 𝜖.

Theorem 4.1 (Policy Reward Lower Bound). Given coupon
costs 0 < 𝑐 (𝑥𝑢,𝑖 ) < 1 for all user-item pairs, when either imputed
outcomes or learned propensities are accurate, for any finite1 policy
hypothesis space Π, with probability 1 − 𝜂, the true reward of the
learned optimal policy using estimated strata probabilities has the
lower bound

𝑅(𝜋†) ≥ 𝑅(𝜋†) −

√√√√√
log

(
2 |Π |
𝜂

)
2|D|2

∑︁
(𝑢,𝑖 ) ∈D

{
𝜋§ (𝑥𝑢,𝑖 ) [1 + 𝑐 (𝑥𝑢,𝑖 )]

}
2

,

where 𝜋§ = argmax𝜋∈Π
∑

(𝑢,𝑖 ) ∈D
{
𝜋 (𝑥𝑢,𝑖 ) [1 + 𝑐 (𝑥𝑢,𝑖 )]

}
2.

Given the estimated reward 𝑅(𝜋†) for the learned policy 𝜋†, we
further derive a lower bound on the true reward 𝑅(𝜋†) in Theorem

4.1, and the result shows that the discrepancy between the estimated

and the true reward will decrease as the sample size increases.

1
For infinite hypothesis spaces, a similar policy reward lower bound can be derived

using Rademacher complexity or VC-dimension of the policy class.

Table 3: Summary of the datasets.

Yelp ML-1M KuaiRec

#Users 25,677 6,040 1,411

#Items 25,815 3,952 3,327

#Interactions 731,671 1,000,209 4,676,570

5 EXPERIMENTS

5.1 Experimental Setup

Dataset and Preprocessing. To evaluate the proposed counter-

factual estimation and policy learning methods
2
, we conducted

extensive experiments on three real-world datasets Yelp [2],ML-

1M
3
and KuaiRec

4
[11]. All of these datasets are publicly available

and vary in domain, size, and sparsity, with the statistics being sum-

marized in Table 3. Following the previous studies [38, 39, 70, 71],

for both Yelp andML-1M, we binarize the observed ratings to 1 for

ratings greater than three, otherwise to 0, as the outcome variable𝑌 ,

while the rating observation indicators are as the outcome variable

𝐶 . KuaiRec is a fully exposed dataset from a short video sharing

platform, we thus randomly select 20% as observations 𝐶 = 1 and

binarize to 1 for video watching ratio over 0.6, otherwise to 0.

Next we perform counterfactual strata labeling for each unit.

Notably, for all datasets, the units with (𝐶 = 1, 𝑌 = 0) observations
must be "Coupon Taker" from Table 1. To label the remaining units,

we pre-trained an Neural Collaborative Filtering (NCF) [19] model

to generate the predicted ratings. Specifically, for units with (𝐶 =

1, 𝑌 = 1) observations, we treat half of the units with the highest

predicted ratings as "Always Buyer" and the remaining half as

"Coupon Buyer". Since the former will always result in 𝑌 (0) =

𝑌 (1) = 1, which has a relatively higher observed rating on average.

By a similar argument, for the units with missing ratings, i.e.,𝐶 = 0,

we label the half with highest predicted ratings as "Never Taker"

and the remaining half as "Never Buyer".

Baselines and Experimental Details. We compare the proposed

methods to the association-based Naive method, which gives incen-

tives based on rating predictions, and also to the widely used uplift

modeling methods, which determine the incentive assignment us-

ing OR, IPS, and DR estimators. In our experiments, the Neural

Collaborative Filtering (NCF) are used as the base model for both

regression models and propensity model. The default values of both

user and item embedding size are set to 64. All the experiments

are implemented on Pytorch with Adam as the optimizer
5
. For all

three datasets, we tune the batch size in {2048, 4096, 8192}, the
learning rate in {0.001, 0.005, 0.01, 0.05}, and the weight decay in

{1𝑒−7, 1𝑒−6, 1𝑒−5, 1𝑒−4, 1𝑒−3}. To evaluate various personalized
incentive policy learning approaches, we conduct experiments in

two separate incentive scenarios using three datasets, i.e., coupons

as incentives and cash bonuses as incentives. Both scenarios yield a

reward of 1 for giving the "Coupon Buyer" incentive and a reward of

−𝑐 for giving the "Always Buyer" incentive. In addition, in the case

of cash bonuses as incentives, giving a "Coupon Taker" incentive

will also receive a reward of −𝑐 . Therefore, the learned policy with

larger total rewards should be considered more effective.

2
Code is available at https://github.com/haoxuanli-pku/KDD23-Counterfactual

3
https://grouplens.org/datasets/movielens/1M/

4
https://github.com/chongminggao/KuaiRec

5
For all experiments, we use the GeForce RTX 3090 as the computing resource.
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Table 4: Performance comparison of naive, uplift modeling, and proposed counterfactual learning methods, with coupon as

incentive and cash as incentive on Yelp, ML-1M, and KuaiRec. We bold the best results within OR, IPS, and DR methods.

Coupon Yelp ML-1M KuaiRec

Methods Positive Negative Neutral Reward RI Positive Negative Neutral Reward RI Positive Negative Neutral Reward RI

Naive 35,829 31,919 90,220 17,549 - 50,903 34,618 130,524 37,055 - 3,332 57,461 141,235 -19,652 -

OR 58,593 27,389 71,986 47,637 - 76,906 45,425 93,714 58,736 - 67,052 24,988 109,988 57,056 -

CF-OR 58,635 22,557 76,776 49,612 4.14% 78,674 40,673 96,698 62,404 6.24% 70,366 23,016 108,646 61,159 7.19%

IPS 56,549 26,282 75,137 46,036 - 80,035 42,770 93,240 62,927 - 82,398 17,775 101,855 75,288 -

CF-IPS 56,470 22,933 78,565 47,296 2.73% 80,782 36,054 99,209 66,360 5.45% 83,694 16,857 101,477 76,951 2.20%

DR 58,534 27,232 72,202 47,641 - 78,830 44,789 92,426 60,914 - 76,529 19,219 106,280 68,841 -

CF-DR 58,757 22,387 76,824 49,802 4.53% 80,621 39,002 96,422 65,020 6.74% 78,506 17,346 106,176 71,567 3.95%

CF-MTL 67,686 13,397 76,885 62,327 30.82% 85,653 30,069 100,323 73,625 17.00% 90,538 11,751 99,739 85,837 14.01%

Cash Yelp ML-1M KuaiRec

Methods Positive Negative Neutral Reward RI Positive Negative Neutral Reward RI Positive Negative Neutral Reward RI

Naive 35,829 68,173 53,966 8,559 - 50,903 90,130 75,012 14,851 - 3,332 108,762 89,934 -40,172 -

OR 58,593 51,611 47,764 37,948 - 76,906 106,324 32,815 34,376 - 67,052 45,011 89,965 49,047 -

CF-OR 56,797 40,950 60,221 40,417 6.50% 76,747 90,196 49,102 40,668 18.30% 67,171 44,917 89,940 49,204 0.32%

IPS 56,549 49,931 51,488 36,576 - 80,035 93,198 42,812 42,755 - 82,398 29,816 89,814 70,471 -

CF-IPS 57,050 39,374 61,544 41,300 12.91% 78,636 71,076 66,333 50,205 17.42% 82,451 29,723 89,854 70,561 0.12%

DR 58,534 51,162 48,272 38,069 - 78,830 100,835 36,380 38,496 - 76,529 35,650 89,849 62,269 -

CF-DR 56,963 39,120 61,885 41,315 8.52% 78,424 79,109 57,512 46,780 21.51% 76,626 35,499 89,903 62,426 0.25%

CF-MTL 67,686 25,549 64,733 57,466 50.95% 85,548 52,218 78,279 64,660 51.23% 90,187 21,608 89,813 81,963 16.30%

Note: (a) For coupons as incentives: "Positive" is # "Coupon Buyer" with incentives, "Negative" is # "Alwayer Buyer" with incentives, and "Neutral" is # ("Never Buyer"+"Never

Taker"+"Coupon Taker") with incentives; (b) For cash as incentives: "Positive" is #"Coupon Buyer" with incentives, "Negative" is # ("Alwayer Buyer"+"Coupon Taker") with

incentives, and "Neutral" is #("Never Buyer"+"Never Taker") with incentives. RI means the relative improvement.

5.2 Performance Comparison

Overall Performance. We compare the proposed counterfactual

estimators and multi-task learning approach using coupons as in-

centives and cash bonuses as incentives scenarios, respectively, and

the results are shown in Table 4. We have the following findings.

First, the association-based Naive method performs the worst under

all scenarios and datasets, while all the uplift modeling-based meth-

ods, i.e., OR, IPS, and DR, show significant improvement compared

to the Naive method. This validates the importance of estimat-

ing causal effects for personalized incentives allocation. Next, all

the proposed counterfactual estimators, i.e., CF-OR, CF-IPS, and

CF-DR, show significant improvement compared with the uplift

modeling-based methods. This is because the proposed counterfac-

tual estimators can identify and estimate the probability that an

individual belongs to each of the five counterfactual strata, whereas

uplift modeling can only identify and estimate the probability that

the individual belongs to the "Coupon Buyer" stratum. Then, the

proposed counterfactual multi-task learning approach, i.e., CF-MTL,

demonstrates the best performance on all scenarios and datasets.

Notably, CF-MTL has a total reward improvement of more than

50% over the optimal uplift model on both Yelp andML-1M. This is

attributed to the CF-MTL simultaneously learning probabilities of

individuals belonging to each counterfactual strata and propensities,

leading to higher estimation efficiency.

Effects of Varying Cost and Budget. We also study the effect of

cost on the performance of various methods as shown in Figure 3,

where the Naive method simply uses the ranking of predicted con-

version rates for personalized incentives allocation at the training

time, while the DR method uses the predicted probability of an indi-

vidual belonging to the uplift stratum (i.e., "Coupon Buyer") as the

reward, and the proposed CF-MTL uses the probability of an indi-

vidual belonging to the uplift stratum minus the cost corresponding

to the incentive scenario as the reward. For a fair comparison, all

methods are evaluated using the same reward function in Section

3.1. First, when the cost is zero, all methods perform similarly. As the

cost gradually increases, the identification and prediction of causal

effects and counterfactual strata are more emphasized and desired,

and the proposed CF-MTL demonstrates the optimal performance

compared with the Naive and DR methods for all scenarios and

datasets. Interestingly, the Naive method has negative total rewards

at a cost of 0.6 in the cash as an incentive scenario, which is ex-

plained by the gap between correlation and causal effect, and Naive

method incorrectly predicts relatively high probabilities for some

individuals with negative rewards. Figure 4 further shows the effect

of varying budgets on the rewards. As the budget increases, more

units with positive estimated rewards are given incentives. The pro-

posed CF-MTL demonstrates the optimal performance, while some

methods show a decrease in reward when the budget exceeded 0.4,

which is explained by the estimated rewards are positive from its

40th to 50th percentile, while the true rewards are negative.

5.3 Abalation Studies

We conduct ablation studies to validate the effectiveness of the

proposed CF-MTL with varying training losses, taking the last

two losses in L𝑠 with respect to the observations 𝑇 = 0&𝐶 =

0&𝑌 = 1 and 𝑇 = 0&𝐶 = 0&𝑌 = 0 in Section 4, denoted as 𝐿001
and 𝐿000, respectively. Tables 5 and 6 show the rewards in Yelp

andML-1M for the two incentive scenarios. Theoretically, CF-MTL

cannot identify "Coupon Buyers" and "Always Buyers" when both

𝐿000 and 𝐿001 are removed. As a result, such a method leads to the

significantly worst performance in all scenarios and datasets. When
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(a) Reward on Yelp with coupon incentives. (b) Reward on Yelp with cash incentives.

(c) Reward on ML-1M with coupon incentives. (d) Reward on ML-1M with cash incentives.

Figure 3: Effects of varying cost on Yelp and ML-1M.

(a) Reward on Yelp with coupon incentives. (b) Reward on Yelp with cash incentives.

(c) Reward on ML-1M with coupon incentives. (d) Reward on ML-1M with cash incentives.

Figure 4: Effects of varying budget on Yelp and ML-1M.

one of the losses is removed, despite the all counterfactual strata are

theoretically identifiable, the total rewards of the learned incentive

policies are lower than that of the CF-MTL trained with both losses.

5.4 In-depth Analysis

Now that it is clear that CF-MTL can lead to accurate counterfactual

strata predictions, we further investigate the effect of different

attributes of users and items on the counterfactual strata to which

they are subjected.We show the group-wise strata prediction results

Table 5: Ablation study of training loss on Yelp.

Yelp Training loss Incentive scenario

Methods 𝐿001 𝐿000 RewardCoupon Reward
Cash

CF-MTL w/o 𝐿001 𝐿000 × × 20,948 13,991

CF-MTL w/o 𝐿000 ✓ × 58,849 54,064

CF-MTL w/o 𝐿001 × ✓ 52,244 48,033

CF-MTL ✓ ✓ 62,327 57,466

Table 6: Ablation study of training loss on ML-1M.

ML-1M Training loss Incentive scenario

Methods 𝐿001 𝐿000 RewardCoupon Reward
Cash

CF-MTL w/o 𝐿001 𝐿000 × × 39,120 29,815

CF-MTL w/o 𝐿000 ✓ × 70,923 61,235

CF-MTL w/o 𝐿001 × ✓ 68,883 59,439

CF-MTL ✓ ✓ 73,625 64,660

of CF-MTL on Yelp and ML-1M in Figures 5 and 6, respectively.

We label a user as a "Frequent buyer" if he buys more items than

the median of all users, and as a "Non-frequent buyer" otherwise.

Similarly, we label an item as "Popular item" if it is sold above the

median, and "Non-popular item" otherwise. We find that users with

more frequent purchases and items with higher popularity tend to

be "Always buyers". This is consistent with our intuition that users

are more likely to buy highly popular items, regardless of whether

they are incentivized or not. In addition, high popularity items are

more likely to lead to "Coupon buyers", while low popularity items

are more likely to lead to "Never buyers" and "Never takers", which

is also explained by the presence of item popularity bias.

In addition, we present the confusion matrices of CF-MTL for

the five counterfactual strata in Yelp and ML-1M in Tables 7 and 8,

respectively. For each counterfactual stratum in the rows, we bold

the highest predicted probability and underline the second highest

predicted probability. On both datasets, CF-MTL predicted "Coupon

Buyer" with approximately 70% accuracy and predicted "Coupon

Taker" and "Always Buyer" both have a recall rate of more than

30%. The superior prediction performance of CF-MTL is further

demonstrated by the diagonals with high probabilities from the

two confusion matrices, which is attributed to the effectiveness of

CF-MTL’s joint training of the five counterfactual strata prediction

models and propensity model in the entire-space.

6 RELATEDWORK

In this section, we review the previous related works, including

uplift modeling methods and causal learning for recommendation.

Uplift Modeling. Uplift modeling estimates the conditional av-

erage treatment effect (CATE) for individuals with specific fea-

tures and is widely adopted in economics [3, 48, 58], precision

medicine [25], decision making [14], and advertising placement [12,

17]. Many methods have been proposed for estimating the CATE,

such as outcome regression (OR) [18, 24], inverse propensity scor-

ing (IPS) [20, 22, 46], and doubly robust (DR) [27, 47] methods.

Incorporating machine learning algorithms can further enhance

the estimation accuracy of CATE, such as tree-based methods, in-

cluding Bayesian Additive Regression Trees (BART) [7], Causal
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(a) Frequent buyers, popular items. (b) Frequent buyers, non-popular items.

(c) Non-frequent buyers, popular items. (d) Non-frequent buyers, non-popular items.

Figure 5: Group-wise strata prediction results on Yelp.

(a) Frequent buyers, popular items. (b) Frequent buyers, non-popular items.

(c) Non-frequent buyers, popular items. (d) Non-frequent buyers, non-popular items.

Figure 6: Group-wise strata prediction results on ML-1M.

Forest (CF) [59], and neural network-based methods, including Bal-

ancing Neural Network (BNN) [26], CounterFactual Regression

(CFR) [55], Perfect Match (PM) [54], X-learner [29], DragonNet

[56], and DESCN [77]. However, these uplift modeling methods

can only estimate CATEs on subgroups, instead of the individual

treatment effects [34]. In this paper, we extend the above methods

to identify and estimate the probability of an individual belonging

to each counterfactual stratum.

Causal Recommendation. Personalized incentives (e.g., send-

ing coupons, or giving cash rewards) to users can be effective in

increasing conversion rates [13] and Gross Commodity Volume

(GMV) [42, 49, 68]. Previous data-driven recommendation methods

use associations to predict conversion rates [4, 15, 61]. However,

they fail to combat various biases and confounding in the collected

data [63], such as popularity bias [76], selection bias [53], expo-

sure bias [28], conformity bias [40], and position bias [1]. To tackle

the above issues, many causal intervention-inspired methods have

been developed [6, 37, 66, 69], such as outcome regression meth-

ods [43, 57, 74], propensity-based weighting methods [33, 53, 73],

doubly robust learning methods [8, 16, 31, 35, 49, 64], and multi-

ple robust learning method [30]. The causal prediction accuracy

can be further improved by introducing a few unbiased ratings [3,

5, 32, 36, 65]. In addition, many entire-space multi-task learning

methods have the same training space and inference space, and

joint training of models empirically leads to better performance,

such as Entire Space Multi-Task Model (ESMM) [42], Multi-gate

Table 7: Confusion matrix of CF-MTL on Yelp.

Yelp Strata 𝑝0000 𝑝0011 𝑝0100 𝑝0101 𝑝0111

Never Buyer 𝑌0000 0.553 0.075 0.024 0.307 0.040

Never Taker 𝑌0011 0.058 0.596 0.195 0.029 0.122

Coupon Taker 𝑌0100 0.046 0.225 0.325 0.131 0.273

Coupon Buyer 𝑌0101 0.229 0.012 0.019 0.695 0.045

Always Buyer 𝑌0111 0.061 0.193 0.288 0.126 0.333

Table 8: Confusion matrix of CF-MTL on ML-1M.

ML-1M Strata 𝑝0000 𝑝0011 𝑝0100 𝑝0101 𝑝0111

Never Buyer 𝑌0000 0.644 0.070 0.058 0.163 0.064

Never Taker 𝑌0011 0.073 0.685 0.170 0.007 0.065

Coupon Taker 𝑌0100 0.069 0.151 0.405 0.136 0.239

Coupon Buyer 𝑌0101 0.200 0.003 0.028 0.707 0.061

Always Buyer 𝑌0111 0.092 0.093 0.327 0.170 0.319

Mixture-of-Experts (MMoE) [41], Multi_IPW [75], and ESCM
2
[60].

However, these methods are unable to make counterfactual pre-

dictions for individuals, which uses the observed outcomes of in-

dividuals in a more fine-grained way for counterfactual outcome

prediction [9]. Despite being rarely discussed, some recent coun-

terfactual learning studies have been devoted to making Top-N

recommendations [72], mitigating click-bait issues [62], estimating

post-click conversions [13, 44], eliminating the popularity bias [67],

and bursting filter bubbles [10]. In this paper, we explore novel

personalized incentive scenarios, and extend the above causal and

multi-task learning methods to perform individual counterfactual

strata predictions for more rational incentive allocation.

7 CONCLUSION

This paper studies the personalized incentive policy learning from

an individualized counterfactual perspective. First, we reformulate

the personalized incentive policy learning problem based on the

joint potential outcomes for individuals, and reveal the limitations

of previous uplift modeling methods. We formally discuss the extra

incentive costs incurred by "Always Buyers" and "Coupon Takers"

in two incentive scenarios, and uplift modeling fails to identify and

predict these two strata. Next, we propose counterfactual estimators,

i.e., CF-OR, CF-IPS, and CF-DR, to identify and estimate the proba-

bility that an individual belongs to various counterfactual strata.

By theoretical analysis, we prove the double robustness property

of the CF-DR estimator. Then, based on the proposed counterfac-

tual identification methods, we further propose a counterfactual

entire-space multi-task learning approach, named CF-MTL, to ac-

curately predict the counterfactual strata probabilities and perform

individualized incentive policy learning. We also theoretically de-

rive a lower bound on the reward of the learned policy. Extensive

experiments are conducted on three real-world datasets with two

common personalized incentive scenarios, and the results show

the effectiveness of the proposed approaches for counterfactual

prediction and personalized incentive policy learning.
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A PROOF

Lemma A.1 (Hoeffding’s ineqality). Let 𝑋1, . . . , 𝑋𝑚 be inde-
pendent random variables with 𝑋𝑖 taking values in [𝑎𝑖 , 𝑏𝑖 ] for all
𝑖 ∈ [𝑚]. Then, for any 𝜖 > 0, the following inequalities hold for
𝑆𝑚 =

∑𝑚
𝑖=1 𝑋𝑖 :

P [𝑆𝑚 − E [𝑆𝑚] ≥ 𝜖] ≤ 𝑒−2𝜖
2/∑𝑚

𝑖=1 (𝑏𝑖−𝑎𝑖 )2

P [𝑆𝑚 − E [𝑆𝑚] ≤ −𝜖] ≤ 𝑒−2𝜖
2/∑𝑚

𝑖=1 (𝑏𝑖−𝑎𝑖 )2

Proof. The proof can be found in Appendix D.1 of [45]. □

Theorem 3.1 (Bias of CF-DR Estimator). Given imputed out-
comes 𝜇0 (𝑥𝑢,𝑖 ), 𝜇01 |1 (𝑥𝑢,𝑖 ), and learned propensities 𝑒𝑢,𝑖 > 0 for all
user-item pairs, the bias of the CF-DR estimator is

Bias(𝑝𝐷𝑅
0111

(𝑥𝑢,𝑖 )) =
���� (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 ) (𝑌𝑢,𝑖 (0) − 𝜇0 (𝑥𝑢,𝑖 ))

1 − 𝑒𝑢,𝑖

+
(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 ) [(1 −𝐶𝑢,𝑖 (1))𝑌𝑢,𝑖 (1) − 𝜇

01 |1 (𝑥𝑢,𝑖 )]
𝑒𝑢,𝑖

���� .
Proof. The CF-DR estimator is given as

𝑝𝐷𝑅
0111

(𝑥𝑢,𝑖 ) = 𝜇0 (𝑥𝑢,𝑖 ) +
(1 −𝑇𝑢,𝑖 ) (𝑌𝑢,𝑖 (0) − 𝜇0 (𝑥𝑢,𝑖 ))

1 − 𝑒𝑢,𝑖

− 𝜇
01 |1 −

𝑇𝑢,𝑖 [(1 −𝐶𝑢,𝑖 (1))𝑌𝑢,𝑖 (1) − 𝜇
01 |1 (𝑥𝑢,𝑖 )]

𝑒𝑢,𝑖
.

By definition, the bias of the CF-DR estimator is

Bias(𝑝𝐷𝑅
0111

(𝑥𝑢,𝑖 )) =
���𝑌𝑢,𝑖 (0) − (1 −𝐶𝑢,𝑖 (1))𝑌𝑢,𝑖 (1) − E𝑇 [𝑝𝐷𝑅

0111
(𝑥𝑢,𝑖 )]

��� .
The second term on the right hand side can be expanded as

E𝑇 [𝑝𝐷𝑅
0111

(𝑥𝑢,𝑖 )] =𝜇0 (𝑥𝑢,𝑖 ) +
(1 − 𝑒𝑢,𝑖 ) (𝑌𝑢,𝑖 (0) − 𝜇0 (𝑥𝑢,𝑖 ))

1 − 𝑒𝑢,𝑖

− 𝜇
01 |1 −

𝑒𝑢,𝑖 [(1 −𝐶𝑢,𝑖 (1))𝑌𝑢,𝑖 (1) − 𝜇
01 |1 (𝑥𝑢,𝑖 )]

𝑒𝑢,𝑖
.

By substituting the above formula into the bias of CF-DR, we have

Bias(𝑝𝐷𝑅
0111

(𝑥𝑢,𝑖 )) =
����𝑌𝑢,𝑖 (0) − 𝜇0 (𝑥𝑢,𝑖 ) −

(1 − 𝑒𝑢,𝑖 ) (𝑌𝑢,𝑖 (0) − 𝜇0 (𝑥𝑢,𝑖 ))
1 − 𝑒𝑢,𝑖

−(1 −𝐶𝑢,𝑖 (1))𝑌𝑢,𝑖 (1) + 𝜇
01 |1 +

𝑒𝑢,𝑖 [(1 −𝐶𝑢,𝑖 (1))𝑌𝑢,𝑖 (1) − 𝜇
01 |1 (𝑥𝑢,𝑖 )]

𝑒𝑢,𝑖

����
=

���� (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 ) (𝑌𝑢,𝑖 (0) − 𝜇0 (𝑥𝑢,𝑖 ))
1 − 𝑒𝑢,𝑖

+
(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 ) [(1 −𝐶𝑢,𝑖 (1))𝑌𝑢,𝑖 (1) − 𝜇

01 |1 (𝑥𝑢,𝑖 )]
𝑒𝑢,𝑖

����
□

Corollary 3.2 (Double Robustness). The CF-DR estimator is
unbiased when either imputed outcomes 𝜇0 (𝑥𝑢,𝑖 ) and 𝜇

01 |1 (𝑥𝑢,𝑖 ) or
learned propensities 𝑒𝑢,𝑖 > 0 are accurate for all user-item pairs.

Proof. The bias of CF-DR estimator is equivalent to

Bias(𝑝𝐷𝑅
0111

(𝑥𝑢,𝑖 )) =
��𝑒𝑢,𝑖 − 𝑒𝑢,𝑖

�� ·����𝑌𝑢,𝑖 (0) − 𝜇0 (𝑥𝑢,𝑖 )
1 − 𝑒𝑢,𝑖

+
(1 −𝐶𝑢,𝑖 (1))𝑌𝑢,𝑖 (1) − 𝜇

01 |1 (𝑥𝑢,𝑖 )
𝑒𝑢,𝑖

���� ,

where the first term on the right hind side equals to 0, when the

learned propensities 𝑒𝑢,𝑖 > 0 are accurate for all user-item pairs,

i.e., 𝑒𝑢,𝑖 = 𝑒𝑢,𝑖 . The second term on the right hind side equals

to 0, when both of the imputed outcomes 𝜇0 (𝑥𝑢,𝑖 ) and 𝜇
01 |1 (𝑥𝑢,𝑖 )

are accurate for all user-item pairs, i.e., 𝜇0 (𝑥𝑢,𝑖 ) = 𝑌𝑢,𝑖 (0) and
𝜇
01 |1 (𝑥𝑢,𝑖 ) = I(𝐶𝑢,𝑖 (1) = 0, 𝑌𝑢,𝑖 (1) = 1). □

Theorem 3.3 (Variance of CF-DR Estimator). Given imputed
outcomes 𝜇0 (𝑥𝑢,𝑖 ), 𝜇01 |1 (𝑥𝑢,𝑖 ), and learned propensities 𝑒𝑢,𝑖 > 0 for
all user-item pairs, the variance of the CF-DR estimator is

Var(𝑝𝐷𝑅
0111

(𝑥𝑢,𝑖 )) =𝑒𝑢,𝑖 (1 − 𝑒𝑢,𝑖 )
[𝑌𝑢,𝑖 (0) − 𝜇0 (𝑥𝑢,𝑖 )

1 − 𝑒𝑢,𝑖

+
(1 −𝐶𝑢,𝑖 (1))𝑌𝑢,𝑖 (1) − 𝜇

01 |1 (𝑥𝑢,𝑖 )
𝑒𝑢,𝑖

]
2

.

Proof. The CF-DR estimator is given as

𝑝𝐷𝑅
0111

(𝑥𝑢,𝑖 ) = 𝜇0 (𝑥𝑢,𝑖 ) +
(1 −𝑇𝑢,𝑖 ) (𝑌𝑢,𝑖 (0) − 𝜇0 (𝑥𝑢,𝑖 ))

1 − 𝑒𝑢,𝑖

− 𝜇
01 |1 −

𝑇𝑢,𝑖 [(1 −𝐶𝑢,𝑖 (1))𝑌𝑢,𝑖 (1) − 𝜇
01 |1 (𝑥𝑢,𝑖 )]

𝑒𝑢,𝑖
.

The variance of the CF-DR estimator on the treatment assignment

𝑡𝑢,𝑖 is

Var(𝑝𝐷𝑅
0111

(𝑥𝑢,𝑖 )) = Var(𝑇𝑢,𝑖 )
[𝑌𝑢,𝑖 (0) − 𝜇0 (𝑥𝑢,𝑖 )

1 − 𝑒𝑢,𝑖

+
(1 −𝐶𝑢,𝑖 (1))𝑌𝑢,𝑖 (1) − 𝜇

01 |1 (𝑥𝑢,𝑖 )
𝑒𝑢,𝑖

]
2

=𝑒𝑢,𝑖 (1 − 𝑒𝑢,𝑖 )
[𝑌𝑢,𝑖 (0) − 𝜇0 (𝑥𝑢,𝑖 )

1 − 𝑒𝑢,𝑖
+
(1 −𝐶𝑢,𝑖 (1))𝑌𝑢,𝑖 (1) − 𝜇

01 |1 (𝑥𝑢,𝑖 )
𝑒𝑢,𝑖

]
2

.

□

Theorem 3.4 (Tail Bound of CF-DR Estimator). Given imputed
outcomes 𝜇0 (𝑥𝑢,𝑖 ), 𝜇01 |1 (𝑥𝑢,𝑖 ), and learned propensities 𝑒𝑢,𝑖 > 0,
with probability 1 − 𝜂, the deviation of the CF-DR estimator from its
expectation has the following tail bound���𝑝𝐷𝑅
0111

− E𝑇 (𝑝𝐷𝑅
0111

)
��� ≤

√√√√√
log

(
2

𝜂

)
2|D|2

∑︁
(𝑢,𝑖 ) ∈D

{
�̃�0 (𝑥𝑢,𝑖 )
1 − 𝑒𝑢,𝑖

+
�̃�
01 |1 (𝑥𝑢,𝑖 )
𝑒𝑢,𝑖

}2
,

where �̃�0 = 𝑌 (0) − 𝜇0 and �̃�
01 |1 = (1 −𝐶 (1))𝑌 (1) − 𝜇

01 |1.

Proof. Sincewe assume that each treatment𝑇𝑢,𝑖 follows a Bernoulli

distribution with probability 𝑒𝑢,𝑖 , we can rewrite the random vari-

able 𝑝𝐷𝑅
0111

(𝑥𝑢,𝑖 ) as follows
P

(
𝑝𝐷𝑅
0111

(𝑥𝑢,𝑖 ) = 𝜇0 (𝑥𝑢,𝑖 ) − 𝜇
01 |1 − �̃�

01 |1 (𝑥𝑢,𝑖 )/𝑒𝑢,𝑖
)
= 𝑒𝑢,𝑖 ,

P
(
𝑝𝐷𝑅
0111

(𝑥𝑢,𝑖 ) = 𝜇0 (𝑥𝑢,𝑖 ) − 𝜇
01 |1 + �̃�0 (𝑥𝑢,𝑖 )/(1 − 𝑒𝑢,𝑖 )

)
= 1 − 𝑒𝑢,𝑖 ,

where takes its value in[
𝜇0 (𝑥𝑢,𝑖 ) − 𝜇

01 |1 − �̃�
01 |1 (𝑥𝑢,𝑖 )/𝑒𝑢,𝑖 , 𝜇0 (𝑥𝑢,𝑖 ) − 𝜇

01 |1 + �̃�0 (𝑥𝑢,𝑖 )/1 − 𝑒𝑢,𝑖
]

of size �̃�
01 |1 (𝑥𝑢,𝑖 )/𝑒𝑢,𝑖 + �̃�0 (𝑥𝑢,𝑖 )/(1 − 𝑒𝑢,𝑖 ) with probability 1.
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The independence of

{
𝑝𝐷𝑅
0111

(𝑥𝑢,𝑖 ) | 𝑢, 𝑖 ∈ D
}
can be directly de-

duced from the independence of

{
𝑇𝑢,𝑖 | 𝑢, 𝑖 ∈ D

}
. Therefore, ac-

cording to the Hoeffding’s inequality in Lemma A.1, for any 𝜖 > 0,

we have the following inequality

P
©­«
������ 1

|D|
∑︁

(𝑢,𝑖 ) ∈D
𝑝𝐷𝑅
0111

(𝑥𝑢,𝑖 ) − E𝑇


1

|D|
∑︁

(𝑢,𝑖 ) ∈D
𝑝𝐷𝑅
0111

(𝑥𝑢,𝑖 )

������ ≥ 𝜖

ª®¬
≤ 2 exp

(
−2𝜖2 |D|2∑

(𝑢,𝑖 ) ∈D {�̃�
01 |1 (𝑥𝑢,𝑖 )/𝑒𝑢,𝑖 + �̃�0 (𝑥𝑢,𝑖 )/(1 − 𝑒𝑢,𝑖 )}2

)
.

Setting the right hand side of the inequality to 𝜂 and solving for 𝜖

complete the proof. □

Theorem 4.1 (Policy Reward Lower Bound). Given coupon
costs 0 < 𝑐 (𝑥𝑢,𝑖 ) < 1 for all user-item pairs, when either imputed
outcomes or learned propensities are accurate, for any finite policy
hypothesis space Π, with probability 1 − 𝜂, the true reward of the
learned optimal policy using estimated strata probabilities has the
lower bound

𝑅(𝜋†) ≥ 𝑅(𝜋†) −

√√√√√
log

(
2 |Π |
𝜂

)
2|D|2

∑︁
(𝑢,𝑖 ) ∈D

{
𝜋§ (𝑥𝑢,𝑖 ) [1 + 𝑐 (𝑥𝑢,𝑖 )]

}
2

,

where 𝜋§ = argmax𝜋∈Π
∑

(𝑢,𝑖 ) ∈D
{
𝜋 (𝑥𝑢,𝑖 ) [1 + 𝑐 (𝑥𝑢,𝑖 )]

}
2.

Proof. We first show that for any given policy 𝜋 ∈ Π, with
probability 1 − 𝜂, the deviation of the CF-DR estimator from its

expectation has the following tail bound

��𝑅(𝜋) − E𝑇 [
𝑅(𝜋)

] �� ≤
√√√√√

log

(
2

𝜂

)
2|D|2

∑︁
(𝑢,𝑖 ) ∈D

{
𝜋 (𝑥𝑢,𝑖 ) [1 + 𝑐 (𝑥𝑢,𝑖 )]

}
2

.

Note that 𝑟𝑢,𝑖 = 𝑝0101 (𝑥𝑢,𝑖 )−𝑐 (𝑥𝑢,𝑖 ) ·(𝑝0100 (𝑥𝑢,𝑖 )+𝑝0111 (𝑥𝑢,𝑖 )) takes
its value in [−𝑐 (𝑥𝑢,𝑖 ), 1] with probability 1, thus 𝜋 (𝑥𝑢,𝑖 )𝑟𝑢,𝑖 takes its
value in [−𝜋 (𝑥𝑢,𝑖 )𝑐 (𝑥𝑢,𝑖 ), 𝜋 (𝑥𝑢,𝑖 )] with probability 1. For a given

policy 𝜋 ∈ Π, the independence of
{
𝜋 (𝑥𝑢,𝑖 )𝑟𝑢,𝑖 | 𝑢, 𝑖 ∈ D

}
can be

directly deduced from the independence of

{
𝑝𝐷𝑅
0111

(𝑥𝑢,𝑖 ) | 𝑢, 𝑖 ∈ D
}

as shown in the proof of Theorem 4.1. Therefore, according to the

Hoeffding’s inequality in Lemma A.1, for any 𝜖 > 0, we have the

following inequality

P
©­«
������ 1

|D|
∑︁

(𝑢,𝑖 ) ∈D
𝜋 (𝑥𝑢,𝑖 )𝑟𝑢,𝑖 − E𝑇


1

|D|
∑︁

(𝑢,𝑖 ) ∈D
𝜋 (𝑥𝑢,𝑖 )𝑟𝑢,𝑖


������ ≥ 𝜖

ª®¬
≤ 2 exp

(
−2𝜖2 |D|2∑

(𝑢,𝑖 ) ∈D
{
𝜋 (𝑥𝑢,𝑖 ) [1 + 𝑐 (𝑥𝑢,𝑖 )]

}
2

)

Setting the right hand side of the inequality to 𝜂 and solving for 𝜖

complete the proof.

Let 𝜋† be the learned policy derived by optimizing the empirical

form that

max

𝜋∈Π
𝑅(𝜋) = 1

|D|
∑︁

(𝑢,𝑖 ) ∈D
𝜋 (𝑥𝑢,𝑖 )𝑟𝑢,𝑖

s.t.

1

|D|
∑︁

(𝑢,𝑖 ) ∈D
𝜋 (𝑥𝑢,𝑖 ) ≤ 𝜖,

where 𝑟𝑢,𝑖 = 𝑝0101 (𝑥𝑢,𝑖 ) − 𝑐 (𝑥𝑢,𝑖 ) · (𝑝0100 (𝑥𝑢,𝑖 ) + 𝑝0111 (𝑥𝑢,𝑖 )).
By making the arguments of uniform convergence and union

bound, for any 𝜖 > 0, we have

P
(���𝑅(𝜋†) − E𝑇 [

𝑅(𝜋†)
] ��� ≤ 𝜖

)
≥ 1 − 𝜂,

⇐ P
(
max

𝜋∈Π

��𝑅(𝜋) − E𝑇 [
𝑅(𝜋)

] �� ≤ 𝜖

)
≥ 1 − 𝜂,

⇔ P
(
∪

𝜋∈Π

��𝑅(𝜋) − E𝑇 [
𝑅(𝜋)

] �� ≥ 𝜖

)
< 𝜂,

⇐
∑︁
𝜋∈Π
P

(��𝑅(𝜋) − E𝑇 [
𝑅(𝜋)

] �� ≥ 𝜖

)
< 𝜂,

⇐
∑︁
𝜋∈Π

2 exp

(
−2𝜖2 |D|2∑

(𝑢,𝑖 ) ∈D
{
𝜋 (𝑥𝑢,𝑖 ) [1 + 𝑐 (𝑥𝑢,𝑖 )]

}
2

)
< 𝜂,

⇐ 2|Π | exp
(

−2𝜖2 |D|2∑
(𝑢,𝑖 ) ∈D

{
𝜋§ (𝑥𝑢,𝑖 ) [1 + 𝑐 (𝑥𝑢,𝑖 )]

}
2

)
< 𝜂,

where𝜋§ = argmax𝜋∈Π
∑

(𝑢,𝑖 ) ∈D
{
𝜋 (𝑥𝑢,𝑖 ) [1 + 𝑐 (𝑥𝑢,𝑖 )]

}
2

.We solve

the inequality in the last line for 𝜖 and obtain, with probability 1−𝜂,
the following inequality

𝑅(𝜋†) − E𝑇 [𝑅(𝜋†)] ≤

√√√√√
log

(
2 |Π |
𝜂

)
2|D|2

∑︁
(𝑢,𝑖 ) ∈D

{
𝜋§ (𝑥𝑢,𝑖 ) [1 + 𝑐 (𝑥𝑢,𝑖 )]

}
2

.

Then, when either imputed outcomes and or learned propensi-

ties 𝑒𝑢,𝑖 > 0 are accurate for all user-item pairs, the unbiased-

ness of 𝑅(𝜋†) directly follows from the unbiasedness of 𝑝𝐷𝑅
0000

(𝑥𝑢,𝑖 ),
𝑝𝐷𝑅
0011

(𝑥𝑢,𝑖 ), 𝑝𝐷𝑅
0100

(𝑥𝑢,𝑖 ), 𝑝𝐷𝑅
0101

(𝑥𝑢,𝑖 ), and 𝑝𝐷𝑅
0111

(𝑥𝑢,𝑖 ). Thuswith prob-
ability 1 − 𝜂, the true reward of the learned optimal policy using

estimated strata probabilities has the lower bound

𝑅(𝜋†) ≥ 𝑅(𝜋†) −

√√√√√
log

(
2 |Π |
𝜂

)
2|D|2

∑︁
(𝑢,𝑖 ) ∈D

{
𝜋§ (𝑥𝑢,𝑖 ) [1 + 𝑐 (𝑥𝑢,𝑖 )]

}
2

.

□
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