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Abstract

Srinivasa Ramanujan studied the function S1(x) =
∑

ρ
xρ−1

ρ·(1−ρ)
where ρ

runs over the nontrivial zeros of the Riemann ζ function. Under the Rie-
mann hypothesis, we know that |S1(x)| ≤ τ√

x
for τ = 2+ γ − log(4 ·

π) ≈ 0.04619. The Riemann hypothesis is a conjecture that the Rie-
mann zeta function has its zeros only at the negative even integers and
complex numbers with real part 1

2
. It is considered by many to be the

most important unsolved problem in pure mathematics. There are several
statements equivalent to the famous Riemann hypothesis. In 2011, Solé
and Planat stated that, the Riemann hypothesis is true if and only if the
inequality ζ(2)·

∏
p≤x(1+

1
p
) > eγ ·log θ(x) holds for all x ≥ 5, where

θ(x) is the Chebyshev function, γ ≈ 0.57721 is the Euler-Mascheroni
constant, ζ(x) is the Riemann zeta function and log is the natural loga-
rithm. In this note, using Solé and Planat criterion, we prove that, when
the Riemann hypothesis is false, then there are infinitely many natural
numbers x for which log x√

x
− 10√

x
+2 · log x+S1(x) ·

√
x · log x ≤ 2.062

could be satisfied. In addition, we show that the Riemann hypothesis
is true when S1(x) ≥ ε√

x
for ε ≥ −1.9999999 and large enough x.
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2 The Riemann hypothesis

1 Introduction

The hypothesis was proposed by Bernhard Riemann (1859). The Riemann
hypothesis belongs to the Hilbert’s eighth problem on David Hilbert’s list of
twenty-three unsolved problems. Leonhard Euler discovered a particular value
of the Riemann zeta function (1734).

Proposition 1 It is known that[1, (1) p. 1070]:

ζ(2) =

∞∏
i=1

p2i
p2i − 1

=
π2

6
.

Proposition 2 [2]. For x ≥ 108:∑
p>x

log

(
p2

p2 − 1

)
≥

∑
p≥y

(
1

p2

)
≥ 1

y · log y − 1

y · log2 y
+

2

y · log3 y
− 9

y · log4 y

≥ 1

x · log x − 10

x · log2 x
where y = x+ 1 and log is the natural logarithm.

In mathematics, the Chebyshev function θ(x) is given by

θ(x) =
∑
p≤x

log p

with the sum extending over all prime numbers p that are less than or equal
to x. For x ≥ 2, we say that Dedekind(x) holds provided that

ζ(2) ·
∏
p≤x

(
1 +

1

p

)
> eγ · log θ(x)

where γ ≈ 0.57721 is the Euler-Mascheroni constant. Next, we have Solé and
Planat Theorem:

Proposition 3 Dedekind(x) holds for all natural numbers x ≥ 5 if and only if the
Riemann hypothesis is true [3, Theorem 4.2 p. 5].

This is the main insight.

Lemma 1 If the Riemann hypothesis is false, then there are infinitely many natural
numbers x ≥ 5 for which Dedekind(x) fails (i.e. Dedekind(x) does not hold).
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Srinivasa Ramanujan studied the function S1(x) =
∑

ρ
xρ−1

ρ·(1−ρ) where ρ runs

over the nontrivial zeros of the Riemann ζ function [4, Section 65]. Thus, we
have a Theorem about this function:

Proposition 4 [5, (2.16)]. For x ≥ 109:∑
p≤x

log

(
1− 1

p

)
+ γ + log log θ(x) +

2√
x · log x

+
S1(x)

log x
≤ 2.062

√
x · log2 x

This is the main theorem.

Theorem 1 If the Riemann hypothesis is false, then there are infinitely many natural
numbers x for which

log x√
x

− 10√
x
+ 2 · log x+ S1(x) ·

√
x · log x ≤ 2.062

could be satisfied.

The following is a key Corollary.

Corollary 1 The Riemann hypothesis is true, when S1(x) ≥ ε√
x
for ε ≥ −1.9999999

and large enough x.

2 Proof of the Lemma 1

Proof According to Proposition 3, the Riemann hypothesis is false, if there exists
some natural number x0 ≥ 5 such that g(x0) > 1 or equivalent log g(x0) > 0:

g(x) =
eγ

ζ(2)
· log θ(x) ·

∏
p≤x

(
1 +

1

p

)−1

.

We know the bound [3, Theorem 4.2 p. 5]:

log g(x) ≥ log f(x)− 2

x
where f was introduced in the Nicolas paper [6, Theorem 3 p. 376]:

f(x) = eγ · log θ(x) ·
∏
p≤x

(
1− 1

p

)
.

When the Riemann hypothesis is false, then there exists a real number b < 1
2 for

which there are infinitely many natural numbers x such that log f(x) = Ω+(x−b) [6,
Theorem 3 (c) p. 376]. According to the Hardy and Littlewood definition, this would
mean that

∃k > 0, ∀y0 ∈ N, ∃y ∈ N (y > y0) : log f(y) ≥ k · y−b.

That inequality is equivalent to log f(y) ≥
(
k · y−b · √y

)
· 1√

y , but we note that

lim
y→∞

(
k · y−b · √y

)
= ∞
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for every possible positive value of k when b < 1
2 . In this way, this implies that

∀y0 ∈ N,∃y ∈ N (y > y0) : log f(y) ≥ 1
√
y
.

Hence, if the Riemann hypothesis is false, then there are infinitely many natural
numbers x such that log f(x) ≥ 1√

x
. Since 2

x = o( 1√
x
), then it would be infinitely

many natural numbers x0 such that log g(x0) > 0. □

3 Proof of the Theorem 1

By Lemma 1, there are infinitely many natural numbers x ≥ 5 for which

γ + log log θ(x) ≥
∑
p≤x

log

(
1 +

1

p

)
+ log(ζ(2))

could be satisfied, when the Riemann hypothesis is false. This implies that
there are infinitely many natural numbers x ≥ 109 for which

∑
p≤x

log

(
1− 1

p

)
+
∑
p≤x

log

(
1 +

1

p

)
+log(ζ(2))+

2√
x · log x

+
S1(x)

log x
≤ 2.062

√
x · log2 x

could be also satisfied by Proposition 4. We can write(
1− 1

p

)
·
(
1 +

1

p

)
=

(
1− 1

p2

)
·

for every prime [3, p. 3]. Consequently, we obtain that

∑
p≤x

log

(
1− 1

p2

)
+ log(ζ(2)) +

2√
x · log x

+
S1(x)

log x
≤ 2.062

√
x · log2 x

by properties of logarithms. By Proposition 1, we know that

∑
p>x

log

(
p2

p2 − 1

)
+

2√
x · log x

+
S1(x)

log x
≤ 2.062

√
x · log2 x

.

Using the Proposition 2, we can see that

1

x · log x
− 10

x · log2 x
+

2√
x · log x

+
S1(x)

log x
≤ 2.062

√
x · log2 x

.

Let’s multiply both sides by
√
x · log2 x to show that

log x√
x

− 10√
x
+ 2 · log x+ S1(x) ·

√
x · log x ≤ 2.062
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could be satisfied, when the Riemann hypothesis is false. Note that, there are
not anomalies of signs after of multiplying by

√
x · log2 x since for x ≥ 109 we

obtain that log x > 20.7.

4 Proof of Corollary 1

Proof By Theorem 1, there are infinitely many natural numbers x for which

log x√
x

− 10√
x
+ 2 · log x+ ε · log x ≤ 2.062

could be satisfied, when the Riemann hypothesis is false and S1(x) ≥ ε√
x

for ε ≥
−1.9999999 and large enough x. However, we can always assure that

log x√
x

− 10√
x
+ 2 · log x+ ε · log x ≤ 2.062

never holds for every ε ≥ −1.9999999 and large enough x. Note that, the Theorem 1
was proved over the domain of the natural numbers, so that is the same to say that
there exists some y > 0 such that for all natural numbers x > y, then we can always
confirm that the inequality never holds for every ε ≥ −1.9999999. In conclusion, the
Riemann hypothesis is true by principle of non-contradiction.

□
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