
EasyChair Preprint
№ 9718

Modeling Thermal Management of Battery
Energy Storage System with Machine Learning

Amir Mosavi and F. Kristina

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 15, 2023



Abstract

Battery energy storage systems (BESS) are nowadays essential parts of microgrids. A thermal management system (TMS)
belongs to substantial control components ensuring optimal operation and long lifespan of batteries. Advanced control strategies
implemented in TMS require accurate thermal models to keep battery temperature within predefined bounds while minimizing
operating costs. This paper proposes machine learning-based models to predict temperature inside real industrial BESS.
Challenges represent partially continuous and partially discrete input signals. Furthermore, inner fans located inside modules
affect the temperature in this particular BESS. Unfortunately, the information on fans’ operations is not available. This study
also provides an accuracy analysis of bagged classification and regression trees (CART), multi-layer perceptron (MLP), and
averaged neural network (avNNet). The results report high prediction accuracy, over 95%, for all models, even the ones with
a more straightforward structure.
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1 Introduction

Renewable energy sources (RESs), especially solar pan-
els and wind turbines, have become integral to daily
life. They are not only operated as a complement to the
global grid or in large structures in the industry but also
as small-rate systems in households, smart buildings, or
public infrastructure. RESs have gained much popular-
ity due to their potential to reduce greenhouse gas emis-
sions, as mentioned in [17]. Since the European Union is
committed to decarbonizing its power sector, the study
[30] prepared for the European Parliament’s Committee
on Economic and Industry, Research and Energy (ITRE)
suggested that RES, in combination with nuclear plants,
should become the primary power sources. Despite the
positive impact of RES on the decarbonizing grid, the
authors of [6] have pointed out that RESs are accompa-
nied by the problem of the fluctuating amount of pro-
duced energy. It results in an insufficient economic op-
eration with a negligible impact on improving the envi-
ronmental situation.

To overcome these negative aspects and stabilize the op-
eration of the whole grid, energy storage has to be in-
stalled in the system. Energy storage is essential to the
smooth, economical, and optimal operation of grids and
microgrids, as stated in [6]. There are different types
of energy storage: thermal, mechanical, electromagnetic,
electrochemical (described in more detail in [21]), hydro

or compressed air energy storage, and many more sum-
marized by the authors in [6]. The most practical and
commonly used energy storage system is a battery en-
ergy storage system (BESS). Lithium-based BESS has
been proved to be the most effective due to its high effi-
ciency, high energy density, and long lifetime, as stated
and graphically illustrated in the work of [23].

To ensure the safe and smooth operation of BESS, the
energy management system (EMS) and thermal man-
agement system (TMS) must be properly configured.
EMS has been studied with meticulous care over the past
decade, and a lot of approaches can be found in the liter-
ature from different perspectives like [10], [20], [11], [22]
just to name a few. The TMS development lags behind
that of EMS due to the low importance in grid operation
(compared to EMS). However, TMS is closely related to
the economic view of grid/microgrid operation. It has
been proven in [19] that if the battery temperature in-
creases by 1◦C in the range 30− 40◦C, the battery lifes-
pan is reduced by two months. Furthermore, high bat-
tery temperature can lead to accelerated capacity fade,
aging, and damnification following environmental prob-
lems as studied by the authors in [26]. On the other
hand, the work of [12] shows that low battery tempera-
ture reduces power capability or performance failure. It
implies that unsuitable thermal management of BESS
affects the operation of EMS. The optimal range for bat-
tery temperature deviates from one study to another. In
[8], the acceptable range is between -20 − 60◦C, in [18]
the optimal temperature range for lithium-based batter-
ies is 15 − 35◦C. Generally, in industry, the acceptable
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range is defined by the manufacturer.

Although TMS is inconspicuous, it is crucial for opti-
mal BESS performance. Different control strategies have
been employed to ensure an adequate temperature in
BESS. The PID controller for regulating the thermal bal-
ance of the stack in hybrid vehicles was proposed in [29].
It was shown that the PID controller could stabilize the
stack’s temperature even with low cooling water flow at
the cost of a higher fan and pumping power. The authors
of [16] introduced a novel fuzzy control strategy to main-
tain a suitable battery temperature range in electric ve-
hicles. It has been verified that this strategy can extend
the battery lifetime. However, the specific influence on
the battery pack has not been investigated further. PID
and fuzzy controllers are practical due to straightfor-
ward design, implementation, and tuning. Nevertheless,
it isn’t easy to achieve BESS’s economic operation, con-
sidering the environmental impact of these two types of
control strategies.

Therefore, the model predictive control (MPC) strategy
plays a crucial role in the energy sector, including bat-
tery thermal management. The authors of [13] proposed
a nonlinear model predictive controller (NMPC) method
to optimize the cooling process of batteries in electric
vehicles. The study reports performance comparisons of
NMPC and PID controllers, concluding that NMPC is
preferable due to reduced coolant consumption, reduced
inconsistency of the battery module temperature, and
precise reference tracking. On the other hand, the com-
putational time of NMPC is 50-times higher than for
PID. However, it is still sufficient. Another implementa-
tion of MPC can be found in [15], [25], [28], and many
more. Even though these strategies were mostly applied
in electric vehicle research, they can be modified and im-
plemented in BESS thermal control management.

As the name suggests, the model of the controlled pro-
cess is essential for the MPC strategy. The control per-
formance of MPC depends on the precision of the model.
In the process control perspective, the state-space mod-
els are preferred over nonlinear or complicated models.
Identification of the state-space battery thermal model
can be found in [5], where the authors constructed the
state-space model using step response obtained from the
computational fluid dynamics (CFD) model. A state-
space-based multi-nodes thermal model can be found
in [27], where the model is derived from battery heat
transfer process equations. Both methods require de-
tailed knowledge about the thermal behavior of partic-
ular BESS. Furthermore, CDF analysis can be costly.
The heat transfer process equations models require per-
fect knowledge about the system and thermodynamic
laws. Therefore, the identification from real-time data
can represent an appropriate alternative. However, the
drawback is the demand for a considerable amount of
data.

The studies mentioned above operate with analytical
mathematical models of battery thermal behavior. An-
other approach is to estimate battery temperature using
recurrent neural networks as presented in [9]. However,
this model was identified for monitoring purposes and
was trained and validated on a dataset acquired from
NASA’s Prognostics Center of Excellence (PCoE). The
authors illustrated a similar idea in [7] using artificial
neural networks. The data used for training and valida-
tion were extracted from [14], where they were obtained
from an experimental laboratory device.

This paper presents several machine learning modeling
techniques used to approximate the thermal behavior
of industrial battery energy storage based on real-time
data. Compared with previous work, we analyze tem-
perature evolution in a rack containing multiple battery
modules, where each performs differently. Moreover, the
models presented in this paper handle combination of
continuous and discrete input variables. Additionally,
the BESS has been designed with features such as inner
fans influencing the battery temperatures, but the infor-
mation about the fans’ operation is unavailable. Never-
theless, despite the mentioned obstacles, we can obtain
a BESS thermal model that precisely predicts tempera-
ture evolution inside the rack.

2 Materials

This section introduces our studied system, its current
implementation, and particular features influencing out-
put variables.

2.1 Studied System

The industrial BESS studied in this paper is located in
Liptovský Hrádok, Slovakia, and installed as a part of
the microgrid. It is adapted to store the spare energy
from solar panels or the grid during low-price periods.
In addition, the BESS energy is used for peak-shaving
or to prevent deviations from the reported day-ahead di-
agram. The microgrid structure is illustrated in Fig. 1.
The BESS is composed of 3 parts: the battery part, heat-
ing, ventilation, and cooling (HVAC) part, and inverter
part. The first section contains ten lithium-ion battery
modules with NMC (nickel-mangan-cobalt) cathode. Al-
together, they create BESS with a battery capacity of
around 150 kWh. During the charging or discharging
process, the modules emit a certain amount of heat,
which can vary between modules. The battery part also
disposes of a ventilation fan situated at the top of the
rack. The fan provides air exchange between BESS and
its surroundings and operates in a continuous regime.
The air is drawn in from below the BESS and is vented
out at the top. The HVAC module contains an air con-
ditioning (AC) unit, which can operate in two modes:
cooling or heating. Adjusted air enters the bottom of



Fig. 1. The illustration of microgrid structure. The BESS
can be charged by power from solar panels or a grid. On
the other hand, battery power is used to fulfill consumer
requirements while minimizing deviations and costs.

the battery part and returns to the HVAC part through
the circulation fan at the top. All HVAC features can
be only in active or inactive mode introducing discrete
variables to our system. The inverter part is essential for
the energy management system. However, it is isolated
from the rest of BESS. Therefore its thermal impact on
the battery temperature is negligible. The BESS struc-
ture and air flows are illustrated in Fig. 2. Note that bat-
tery modules have build-in fans whose operation cannot
be monitored. Furthermore, no thermal model has been
found yet.

2.2 Current Implementation

Since the BESS is currently operational, it is already ac-
companied by the thermal management system. It repre-
sents a rule-based controller, which collects ambient and
BESS temperature measurements to produce commands
for HVAC and fans based on a set of rules as portrayed
in Fig. 6. It is an effortless but acceptable control. Gen-
erally, the rule-based and PID controllers are primarily
used in the TMS of industrial batteries. The problem is
not the implementation of advanced control strategies
but the complexity of obtaining the appropriate thermal
model. However, HVAC operation is not optimized to
achieve economic goals. Moreover, if the BESS is in the
process of charging or discharging, it is detected by TMS
when temperature measurements are collected. There-
fore, it results in delayed cooling, which leads to a vi-
olation of the optimal temperature range. The thermal
range for this particular BESS is shown in Fig. 3 with
temperature impact on maximal battery power rate. The
gray area represents the suitable range defined by the
manufacturer when the battery power output is maxi-
mized. However, the interval is shrunken (green area) for
safety and stable operation. Last but not least, using a
rule-based controller generates a maximum difference of

Fig. 2. The structure of BESS: the left dotted part represents
HVAC, the middle part is the battery part composed of
battery modules, and the right dashed part contains the
inverter. The blue arrow illustrates air flow through BESS
generated by the battery ventilation fan. The purple arrows
represent air circulation between batteries and HVAC.

Fig. 3. The dependence of maximum power rate on temper-
ature. The optimal operation conditions are between Tmin

and Tmax (gray area), because that is when we work with
maximum battery power. The green area represents the in-
terval considered by the controller for safety and stability.

9.8◦C between a minimum and maximum temperatures
in BESS, which is undesirable.



Fig. 4. Evolution of temperatures in battery part of BESS.
The enormous temperature changes are caused by inten-
tional step tests, where the impact of HVAC features was in-
vestigated in detail. The ambient temperature increased its
value on March 4th at 16:00 due to a colossal heat exchange
between BESS and its surroundings.

2.3 Dataset

Our dataset for identification and validation is created
from data measured in the battery energy storage sys-
tem, which are collected in real-time. Measurements are
stored in the database with 1 minute sampling time.
Since our industrial partner does not wish to share exact
values of variables, we applied so-called min-max nor-
malization to overcome this issue. The general formula
is defined as

x =
xorg − xmin

xmax − xmin
, (1)

where xorg is original measured value of variable, xmin

and xmax are normalization limits and x ∈ [0, 1] is nor-
malized value.

As we already know, the temperature of BESS modules
is influenced by the operation of HVAC, ambient tem-
perature, and the amount of charged/discharged energy
to/from the module since charging and discharging the
battery emits heat. The temperatures considered as our
system’s outputs are the average TBAT

avg , minimal TBAT
min ,

and maximal TBAT
max temperatures of modules in bat-

tery part. These signals describe the thermal behavior of
BESS because they directly influence the length of bat-
tery lifespan and value of maximal charged/discharged
power, therefore the economic aspect of BESS operation.
Furthermore, these signals are essential for controller de-
sign. The first four BESS inputs represent the cooling uC

and heating uH of modules using the HVAC system, cir-
culation fan uCF used for distribution of cooled/heated
air from HVAC part to battery part, and ventilation fan
uF used for passive cooling. These signals are controlled
by a thermal management system (TMS). Other input
signals are charging and discharging battery power al-

Fig. 5. Evolution of control inputs in battery part of BESS.
When the controller status is equal to 1, the TMS is running,
meaning that the rule-based controller produces appropriate
control actions. If controller status is 0, the actuators are
manually controlled, representing step tests.

together PS and ambient temperature Tamb. TMS can-
not control them, considering the ambient temperature
depends on the location of BESS as much as the con-
ditions near BESS, and the amount of charged or dis-
charged power is defined by the energy management sys-
tem (EMS). The EMS is prioritized over TMS since it
ensures the safe and smooth operation of the whole mi-
crogrid. Therefore PS and Tamb are considered as distur-
bances. However, we can model their impact on the mod-
ules’ temperatures. Fig. 4 illustrates measured output
and ambient temperatures over 1.5 days period. The be-
longing control actions are portrayed in Fig. 5 to clarify
the impact of HVAC and fans operation on BESS tem-
peratures. Since the BESS is already operational with
active TMS, the dataset is partially composed of tem-
perature data, measured when the controller was active,
and data without any temperature control representing
our step tests. Parameter Caut in Fig. 5 represents the
information about status of controller. If Caut = 1, the
controller was active (on), if Caut = 0, thermal control
was off.



Fig. 6. The closed-loop system: rule-based controller pro-
duces control actions (command for HVAC and fans) based
on ambient temperature and temperature measurements
from BESS. The thermal conditions in BESS are not only
influenced by mentioned controlled actions but also by the
demand on battery power, which the controller has no knowl-
edge about.

3 Methods

This section describes three machine learning strategies
that have reported the best results in modeling BESS
temperature.

3.1 Bagged Classification and Regression Trees

The classification and regression trees (CART), histor-
ically called decision trees, are a statistical and predic-
tive modeling method introduced by Breiman et al. in
[3]. The classification tree algorithm decides which of the
predefined classes the target value most likely belongs.
The regression tree refers to an algorithm that predicts
the value of a continuous target variable. The data set
in the CART method is partitioned into multiple sub-
sets, each representing one branch. Then, the model is
obtained by applying the recursive segmentation tech-
nology within each partition. Gained set of rules is used
to predict the target variable. The advantages of this
modeling approach are the model’s simplicity and negat-
ing the need for linearity assumptions. Furthermore, the
CART model can operate with both discrete and contin-
uous variables. On the other hand, using CART models
can create a problem such as overfitting, high variance,
and low bias.

Fig. 7. Visualization of algorithm generating bagged CART
model. Each circle represents the input instance. After find-
ing the bagged CART model, the testing data are inserted
in each decision tree inside the model and obtained outputs
are averaged, creating a target value.

Fig. 8. Visualization of avNNet model. Like bagged CART,
several randomized subsets of the original dataset are used
to train multiple ANNs. The value of the target variable is
obtained as an average of all ANNs outputs.

Since the CART is considered sensitive to the trained
data, it reports high prediction variance for other input
data. Bootstrap Aggregation (Bagging) is an ensemble
method used to increase the prediction accuracy of the
CART model. The bagged CART method is the proce-
dure where multiple CART models are trained using ran-
dom subsets of our original dataset. The target value is
calculated as an average of the models’ outputs. Bagged
Cart has been proved to be an efficient strategy to im-
prove accuracy as stated in [2].

3.2 Multi-Layer Perceptron

The multi-layer perceptron (MLP) is a classic fully
connected feed-forward artificial neural network (ANN)
consisting of one input, multiple hidden, and one output
layer. The layers contain several nodes called neurons.
The number of neurons in the input and output layer
equals the number of inputs and outputs in the dataset.
The number of hidden layers and nodes within it can
be chosen. All neurons are connected in a feed-forward
fashion, and their inputs are weighted. These inputs are
summed up inside each neuron, and subsequently, a bias
parameter specific for each neuron is added to the re-
sult. The outcome is converted to node output using the
selected activation function. The MLP uses the back-
propagation algorithm to adjust the weights and biases
to minimize the difference between outputs from the
dataset and predicted values from the MLP model. The



Fig. 9. Visualization of MLP model. The input variables are
modified multiple times as they are transported through the
network in a feed-forward fashion. They are weighted, added
up, and transformed using the activation function in neurons
to produce the final output. The results are compared to
the expected value, and based on the deviation size, the
backpropagation algorithm takes charge.

authors of [1] declare that the presented method applies
to complex nonlinear systems even with extensive input
data and gains high accuracy ratio if adequately set.

3.3 Averaged Neural Network

The averaged neural network (avNNet) model represents
a combination of bagged CART and MLP features. It
is created by training multiple artificial neural networks
with the same structure on random seeds of data from
the original dataset. The target values are obtained by
averaging the outputs from all neural networks in the
avNNet. Since the ANNs are trained using different sub-
sets, they can differ in values of parameters. The benefits
of using the avNNet are that the network ensemble can
be far less fallible than one network, as discussed and
experimentally shown in [4]. Furthermore, avNNet re-
ports a high possibility of over-fitting and over-training
avoidance as stated in [24].

3.4 Model Quality

To compare the presented models, we have chosen four
quality parameters. The first one is Root Mean Squared
Error (RMSE). This criterion aggregates the squared
magnitudes of errors between measured output y and

predicted value ŷ. The mathematical formula of RMSE
is defined as

RMSE =

√∑N
k=1(ŷk − yk)2

N
. (2)

The second criterion is Mean Absolute Error (MAE),
which operates with an absolute difference between y
and ŷ. It is formulated as follows

MAE =

∑N
k=1 |ŷk − yk|

N
. (3)

Both RMSE and MAE are parameters describing the ac-
curacy of modeling. However, the RMSE parameter is
more helpful in considering undesirable large errors be-
cause it squared the errors before averaging. The coeffi-
cient of determination, denoted as R2, is the third qual-
ity parameter representing the closeness of data to the
fitted regression line. It is evaluated as

R2 = 1−
∑N

k=1(ŷk − yk)2∑N
k=1(yk − y)2

, (4)

where y is the mean of measured outputs y. From the
definition R2 ∈ [0, 1], where R2 = 0 represents no rela-
tionship between y and ŷ, while R2 = 1 correspond to
ideal situation where y = ŷ. Therefore, higher R2 sym-
bolizes high prediction accuracy.

4 Results

For this paper, we focused on modeling average BESS
temperature. Dynamical models produced by bagged
CART, MLP, and avNNet methods consider cooling,
heating, circulation fan, ventilation fan, battery power,
and ambient temperature as input signals. The dataset
in the training phase was constructed from 49,705 sam-
ples corresponding to approximately 35 days of data.
The models were validated and tested on 21,295 data
samples, which is almost 15 days of measurements. The
testing phase results are summarized in Tab. 1. As we can
see, each model reports high accuracy. However, avNNet
declares the lowest RMSE and MAE combined with the
highest d and R2. Fig. 10 illustrates temperature profiles
generated from original data and from each model over
600 minutes showing that MLP and the avNNet are very
precise in predictions. The operation of inner fans can
affect the accuracy of trained models. The ventilators
work independently of the TMS, they affect the temper-
ature, but we do not dispose of information about their
activity.



Table 1
Summary of quality parameters for bagged CART, MLP,
and avNNet models.

Method RMSE MAE d R2

Bagged CART 0.011 0.008 0.989 0.958

MLP 0.008 0.007 0.995 0.979

avNNet 0.007 0.006 0.996 0.985

Even though bagged CART reports worse results than
the rest, it still provides a model with an accuracy of
over 95%. Moreover, the bagged CART model possesses
a simple structure, which is exceptionally beneficial in
the control design field. The results portrayed in Fig.
11 reports that even though the MLP model produces
the lowest value of maximum absolute error, the average
difference is the highest compared to other methods.

5 Conclusions

The proposed paper analyzes three machine learning-
based models’ accuracy, namely bagged CART, MLP,
and avNNet, to predict temperature inside BESS. The
results show that avNNet declares higher quality perfor-
mance, even though the accuracy of every model is over
95%. However, under some particular operational con-
ditions, the worst model (bagged CART) has deviated
from the original dataset by an immense 3◦C. The rea-
son is the BESS containing fans, the operation of which
cannot be monitored. They affect the temperature, but
we do not dispose of the associated signal. The solu-
tion could be the implementation of non-intrusive load
monitoring. Another issue represents undetected mea-
surement failures when HVAC features and fans are run-
ning, but information about temperature is not logged
in the database. After communication is restored, data
between these two instances are approximated using in-
terpolation. This problem could be solved by including
an anomaly detection algorithm in our system. However,
the thermal profiles of presented models report high ac-
curacy. They can be used in advanced control strategies
or as a base for deriving linear models. The machine
learning models with declared precision are frequently
used for monitoring purposes or as digital twins for sim-
ulations.
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