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Abstract. The solution of boundary value problems described by partial differ-
ential equations on networks of radial basis functions is considered. An analysis
of gradient learning algorithms for radial basis functions networks showed that
the widely used first-order method, the gradient descent method, does not pro-
vide a high learning speed and solution accuracy. The fastest method of the
second order - the trust region method is very complex. A learning algorithm
based on the Levenberg-Marquardt method is proposed. The proposed algo-
rithm, with a simpler implementation, showed comparable results in compari-
son with the trust region method.
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1 Introduction

In the modern industry, Digital Twin is widely used [1-2]. A digital twin is a dynamic
virtual model of a system, process or service. A digital double is constantly learning
and updating its parameters, receiving information from many sensors, correctly rep-
resents the state of a physical object. During learning, it uses current data from sen-
sors, from control devices, from the external environment. Digital twins allows real-
time monitoring of systems and processes and timely analysis of data to prevent prob-
lems before they occur, schedule preventative maintenance, reduce downtime, open
up new business opportunities and plan future updates and new developments.

Digital doubles of objects with distributed parameters are mathematically boundary
value problems for partial differential equations (PDE) [3]. In most cases, boundary
value problems are solved by numerical methods, since analytical solutions exist only
for a very limited range of problems. For the numerical solution of boundary value
problems for PDE, the methods of finite differences and finite elements are widely
used [4]. These methods require the construction of computational grids. Generating
meshes for two and three-dimensional areas of complex configuration is a complex
and time-consuming task. The complexity of grid formation for real problems often
exceeds the complexity of solving a system of difference equations [5]. Large compu-
tational costs lead to the use of low-order approximations, which provide continuous
approximation of the solution on the network, but not its partial derivatives. Modeling
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of objects with distributed parameters by the methods of finite differences and finite
elements is reduced to solving sparse systems of algebraic equations of very large
dimension. These systems are characterized by poor conditioning, which requires
high costs for their solution. Reconstructing a solution from its discrete approximation
is a separate rather time-consuming task.

When modeling complex technical objects, software packages based on the finite
element or finite difference method are usually used. However, modeling a real object
with their help encounters a number of fundamental difficulties [6]. First, accurate
information about differential equations describing the behavior of an object is usual-
ly absent due to the complexity of the description of the processes occurring in it.
Secondly, to apply the methods of finite elements and finite differences, one needs to
know the initial and boundary conditions, information about which is usually incom-
plete and inaccurate. Thirdly, during the operation of a real object, its properties and
characteristics, parameters of the processes occurring in it can change. This requires
appropriate adaptation of the model, which is difficult to carry out with models built
on the basis of finite element methods and finite differences.

An alternative to finite difference methods and finite elements are meshless meth-
ods [7], most of which are projection methods. These methods give an approximate
analytical solution in the form of a sum of basis functions multiplied by weights. As
basis functions, radial basis functions (RBF) are popular [8-9]. Methods using RBF
allow one to obtain a differentiable solution at an arbitrary point in the solution do-
main in the form of a function satisfying the required smoothness conditions, they are
universal, allow working with complex geometry of computational domains, and are
applicable for solving problems of any dimension. RBF-based methods require, for
the selected parameters of the radial basis functions, to find the vector of weights, so
that the resulting approximate solution ensures that the equation and boundary condi-
tions are satisfied with an acceptable error on a certain set of sampling points. For
example, the sum of the squared residuals at the sampling points should be small. The
main disadvantage of using RBF is the need for unformalized selection of parameters
of basis functions.

Promising is the implementation of meshless methods on neural networks. The so-
lution of boundary value problems for PDE is possible on multilayer perceptrons [9—
10]. But the most promising is the use of radial basis function networks (RBFN) [11],
since RBFNs contain only two layers, one of which is linear, and the solution for-
mation is local in nature, which simplifies the learning of such networks. The use of
RBFN allows you to configure both weights and RBF parameters during learning
networks. Applications of RBNF for solving boundary value problems are considered
in the works of Jianyu L., Siwei L., Yingjian Q., Yaping H., Mai-Duy N., Tran-Cong
T., Sarra S., Chen H., Kong L., Leng W., Kumar M., Yadav N., Vasilieva A.N., Tar-
khova D.A., Gorbachenko V.I. [12-15].

To build digital models of twins, it is promising to use the ideas of machine learn-
ing and neural networks to build models of real objects. This approach allows you to
build adaptive models that are refined and rebuilt in accordance with the observations
of the object. Therefore, the urgent task is the development of neural network model-
ing technologies, a more complete account of historical and newly arriving data, im-



proving methods for automatically adjusting architecture and model parameters, clas-
sification and prediction methods [6]. Using neural network models allows us to de-
velop a unified approach to solving various modeling problems. For example, in [16]
a unified approach to solving direct and inverse boundary value problems described
by partial differential equations was proposed.

The solution to the problem is formed in the learning process RBFN. Therefore, it
is important to reduce network learning time. But at present, for learning RBFN in
solving boundary value problems, mainly the simplest gradient methods of the first
order based on gradient descent are used [10]. Second-order fast methods are practi-
cally not used in solving boundary value problems on RBFN. An exception is the
confidence area method proposed in [15]. But the method is very complicated, since it
requires at each iteration the solution of the minimization problem to solve the condi-
tional minimization problem.

The aim of this work is to improve the algorithms for learning networks of radial
basis functions in solving boundary value problems, which reduce the time of solving
the problem.

2 Related works

RBF [8] are the functions of the distance of a space point from a function parame-
ter called the center of the function: ¢(||x—c||, p), where x— the space point, p—

the vector of function parameters, ¢ — the center of the radial basis function, ||x—c|

— the Euclidean norm (distance) between the point and center. Various RBFs are
applied. In this paper, we use the Gauss function (Gaussian)

[ x—clP
o(lx—cll.a) exp( 7 j .
where ¢ —the position of the function center, a — the shape parameter, often called the widith.

When using RBF for solving boundary value problems, the type and parameters of
RBF are selected before solving the problem. This procedure is informal, requires
experimental verification and does not have unambiguous recommendations. Only
some recommendations on choosing RBF and their parameters are known [17].

The solution of boundary value problems using RBF is based on the approxima-
tion of functions. Since when solving boundary value problems, an approximation of
an unknown solution is performed, minimization of the residual at the sampling points
is used. E. J. Kansa proposed a method for solving boundary value problems using
RBF [18-19], which became the basis for other methods using RBF. We consider the
boundary value problem in operator form

Lu(x) = f (x), xeQ, Bu(x)=p(x), xeoQ, e
where u— the solution to the problem; L — the differential operator; the operator
B — the boundary condition operator; Q — the solution domain; 6Q — the bounda-
ry of the region; f and p are known functions.

Inside the solution domain and at the boundary, many sampling points are defined
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where N — the number of sampling points in the inner region of QQ, K — the num-
ber of sampling points on the border of Q.
The solution to the problem is in the form of a weighted sum of basis functions

M f—
Ugee () =D W,0,(X), XeQ=QuUdQ &)
j=1

where ¢; —RBF; w, — weights, M — the number of RBF.

In (3), the number of RBFs is taken equal to the number of sampling points:
M = N + K . RBF parameters are set. The unknown coefficients in (3) are found as a
solution to a system of linear algebraic equations, which is obtained from the residu-
als of problem (1) at sampling points after substituting (3) in (1). For this, the RBF

must be differentiable as many times as necessary. The result is a system of linear
algebraic equations
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System (4) has a square matrix and its solution is a weight vector W . The Kansa
method generates an asymmetric matrix, which makes it difficult to solve the system
with a large number of sampling points. With a large number of sampling points, the
A matrix is poorly conditioned. When using RBF with a global domain of definition,
the matrix is dense, which also worsens conditioning. A serious drawback is the un-
formalized selection of the best RBF parameters

Known works do not consider the relationship between the number of RBF and
the number of sampling points. Usually take the number of sampling points equal to
the number of RBF. However, the ratio between the number of RBF M and the num-

1
ber of sampling points N+ K : M oc (N +K)3 , where oc means proportionality [20], is

known for approximation problems. Since the number of sampling points in this case
significantly exceeds the number of RBFs, system (4) is overridden. To solve such
systems, the Singular Value Decomposition method is convenient [21].



When solving non-stationary problems, one can use RBF to approximate the dif-
ferential operator with respect to spatial variables, preserving the differential opera-
tors with respect to time (direct method). The result is an ordinary differential equa-
tion containing a differential operator approximable by RBF. BoJiee mpocTbiM siBisieT-
Ci IpUEM, IpU KOTOPOM HNPOU3BOAHAA IO BPEMCHU 3aMCHSCTCA KOEUYHOM Pa3HOCTBIO
1 Ha KaXKJ10M BPEMCHHOM CJIO€ C ITIOMOLIBIO RBF peuracTCa CTallMOHapHad 3aaayva. A
simpler method is when the time derivative is replaced by a bed difference and a sta-
tionary problem is solved on each time layer using RBF. For example, the equation

k k-1
g—l:: LU after approximating the time derivative takes the formu:Luk,
T

where t— the step of sampling time, k — the time layer number. Then, on the tem-

porary k layer, the stationary tLu* —u* = —u*"* problem is solved.

Thus, the use of RBF allows you to implement meshless methods and obtain a so-
lution in an approximate analytical form. The resulting solution makes it possible to
calculate the solution and its derivatives at arbitrary points in the region. But methods
using RBF require solving poorly conditioned systems of linear algebraic equations
with dense rectangular matrices. There are no formalized methods for determining the
position and parameters of the RFB form. Networks of radial basis functions are free
from most of these shortcomings, all parameters of which are determined during the
networks learning.

RBFN includes two layers [11]. The first layer consists of RBFs that perform

nonlinear transformation of the input vector X =[x,X,,...,X, |— the coordinates of

the point at which the approximation to the solution is calculated ( d — the dimension
of space). The second RBFN layer is a linear weighted adder

() = D W0y (6P,). ©)

where M — the number of RBF, w, — RBF weight ¢,,, p,, — parameter vector.

The process of solving boundary value problems using RBFN was considerd using

the example of problem (1) defined in the operator form. In the simplest case, it con-
sists of 3 stages:
1. From the setsQ and oQ choose N internal and K boundary sampling points (2)
(points at which the error of the solution is controlled). When there is no a priori in-
formation about the solution, it is advisable to use random uniform distribution of
sampling points in the region and on the boundary of the solution. If there is a priori
information about the solution of the problem, you can increase the number of sam-
pling points in those areas in which it is necessary to obtain increased accuracy of the
solution. For example, it is advisable to increase the number of sampling points in
areas in which a change in the characteristics of the solution is expected.

Since the properties of the solution to the problem are a priori difficult to evaluate,
you can first find a rough solution to the problem using the minimum number of sam-
pling points, and then, having determined the areas in which the error functional takes
on the greatest value, decide on the number of sampling points and their location. As
already noted, the ratio between the number of RBF M and the number of sampling
points N + K is known. However, when approximating the solutions of boundary val-
ue problems using RBFN, this dependence gives an excessive number of sampling



points; therefore, it is necessary to select the number of sampling points. An increase
in the number of sampling points leads to an increase in the computational complexity
of the problem. Periodic random regeneration of a limited number of sampling points,
used to prevent network retraining, reduces the number of sampling points.

2. Define the RBFN structure: network type, number of RBF, type RBF, set initial
values for the vector of weights and parameter vectors of RBF. There are no definite
recommendations for choosing the type of RBF. When solving a second-order PDE, it
is necessary to calculate the second derivatives of the network output. Therefore, it is
advisable to use the Gaussian function, the domain of definition of which is compara-
ble with the domain of definition of its derivatives, which cannot be said of multi-
quads, for which there is a large spread of values. Unlimited values of multiquadrics
also complicate their use in the uneven distribution of RBF centers. When choosing
preliminary values, it is necessary to set the RBF parameters and the weight vector.
The methods for choosing the location of the RBF centers are very similar to the
methods for selecting sampling points. Centers can be arranged in nodes of a uniform
grid or randomly. You can increase the density of RBF in areas where a change in the
nature of the solution is expected. You can start the solution with a minimum amount
of RBF and add RBF in areas with large error values during learning [12]. When plac-
ing RBF centers in the nodes of a uniform grid, it is advisable to set the same prelimi-
nary width values for all RBFs. The width values in this case are selected depending
on the step size. With a random distribution of the centers, the width can be chosen
randomly from a certain interval. The boundaries of the interval can be the same for
all RBFs, or depend on the distance between the center of the RBF and the centers of
its neighbors. Weights are usually triggered by small random numbers.

3. Perform network learning, ie select such values of weights and RBF parameters so
that the error functional at the sampling points takes a minimum value. The solution
of the boundary value problem (1) on RBFN is an approximation of an unknown solu-
tion on the set of sampling points (2). Since the solution at the sampling points is
unknown, only minimization of the residuals on the set of sampling points is possible.
To construct the functional error, the least squares method is used. The functional
error for searching for w weights and p RBF parameters minimizing discrepancies at

sampling points has the form

J(w,p)= Z[LURBF(Xi:W, p)— f ()] +2 Z [BUges (;; W, p) — p(x,)] — min , (6)

i=N+1
where x, — sampling points (2), A — matched penalty factor, u.,. — approximate

solution obtained at RBFN (3).

The penalty factor A ensures the fulfillment of boundary conditions, since in mesh-
less methods the conditions at the boundary are not fixed. As can be seen from (6),
the use of RBFN allows us to optimize not only the weights, but also the RBF param-
eters (in the case of the Gauss function, the coordinates of cents and the width). The
functional error (6) may include terms with penalty factors that are also responsible
for other conditions for the formulation of the problem, for example, relations at me-
dia interfaces.

Learning RBFN networks differs from solving the problem of unconditional opti-
mization of the functional (6). Functional (6) is minimized on a limited set of sam-
pling points. A trained network should have the generalization property, that is, pro-



vide a solution with a given accuracy indicator not only at sampling points, but also at
arbitrary points in the solution domain. When learning the network, relearning is pos-
sible: at sampling points, the accuracy indicator can be small, and at other points it
can be large. The possibility of relearning is reduced by using a large number of sam-
pling points. But this approach increases the solution time. The way out is periodic
random regeneration of a set of sampling points [14]. From the modern point of view
on the learning of neural networks, this technique is the implementation of mini-batch
(stochastic) learning [22]. When using sampling point regeneration, the RBFN learn-
ing process is organized as a process of minimizing a set of functionals error, each of
which is obtained by a specific choice of sampling points. Each functional error is not
minimized to the end. Between the regeneration of sampling points, only a few steps
are taken of the selected method of minimizing the functional error. This approach
circumvents the problem of getting into a local extremum, which is typical for most
methods of global nonlinear optimization.

The vast majority of RBFN learning algorithms are based on gradient optimization
methods [23]. All gradient methods are local optimization methods, which in general
does not guarantee the achievement of a global minimum of the functional error. At
the same time, the search for the global minimum of the functional error, generally
speaking, is not necessary; it is enough to find the local minimum with some given
accuracy. There are known applications of genetic algorithms for learning RBFN
networks in solving classification problems [24], which are much simpler than PDE
solutions. Three classes are distinguished among gradient methods: zero-order meth-
ods that use only the values of the optimized function and not the values of its deriva-
tives during optimization, first-order methods that use the first derivatives of the op-
timized function (function gradient), and second-order methods that use the second
derivatives (Hessian matrix).

Methods to minimize the functional error can be divided into two groups. The first
group includes methods for sequentially adjusting weights and RBF parameters. The
weights that have the greatest impact on the functionality error are tuned first, then the
RBF parameters are tuned. Since the weights enter linearly into the formula for out-
putting the network (5), optimization methods other than those used for learning RBF
parameters that are nonlinear in (5) can be used for their learning.

In the well-known works devoted to solving PDE on RBFN [9-10, 12-14], the
simplest first-order method is used — the gradient descent method. Let us consider
the implementation of the fastest descent method using the example of the two-
dimensional problem (1) and the use of Gaussian as RBF. Consider a single parameter
vector RBFN

.

Bz[wl,Wz,...,WnRBF,cu,c21,...,cnml,012,022,...,CHRBF2,al,az,...,anRBF] .
where w;, — RBF weights, j=1,2,3, ..., Ngg , Ngge — number of RBF, ¢, and
¢;, — coordinates of the centers, a; — width.

Correction of vector (7) at the iteration k in the gradient descent method is carried
out according to the formula

0k = o) 1 Ap ®



where A" = _nvJ (e(k)) — vector of parameter correction,  — learning speed,
selected hyperparameter, VJ (B(k)) — the gradient vector of functional (6) over the

components of the vector 8 (7) at the iteration k .

Calculations by (8) end with a small value of functional (6). The gradient descent
method has a low convergence rate, which does not allow solving problems with high
accuracy.

Second-order methods are based on a quadratic approximation of the functional

error. In the vicinity of the next approximation of the parameter vector 8" of the net-
work, the functional error (6) is approximated by the Taylor formula

3(0%+20%)~ 3 (e“){w (e“)}T AQ"Y +%[A9(k*l) ]T H(J (e“’))Ae(k”) .9
where VJ (B(k)) — functional gradient, H(J (G(k) )) — the Hessian matrix (the ma-

trix of the second derivatives of the functional) calculated with 8™ .

From the minimum condition for functional (9), the network parameter correction
vector A@" ™ can be obtained, which ensures a decrease in the functional error. Due to
the complexity of calculating the Hessian matrix for multilayer perceptron, various
approximations of the Hessian matrix are used. For example, the conjugate gradient
method uses the Fletcher-Reeves formulas (Fletcher R., Reeves C. M.) [25] and Po-
lak-Ribier (Polak E., Ribiere G.) [26]. In quasi-Newtonian methods, the Hessian ap-
proximation matrix is calculated at each training step, for example, according to the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula [27]. In the Levenberg-
Marquardt method [23], the Hessian matrix is approximated using the product of the
Jacobian matrices of the network error vector.

Second-order methods are not widely used in RBFN learning. Although the pres-
ence of only one layer with nonlinear functions and the differentiability of most RBFs
provide the possibility of applying second-order optimization methods for learning
RBFN. In [28], when solving the approximation problem, the nonlinear layer was
studied by the conjugate gradient method, and the weights were studied by the meth-
od of orthogonal least squares. In [29], an algorithm was proposed for the conjugate
gradient adjustment method for RBFN weights, which differs from the known ones
taking into account the specifics of solving boundary value problems. RBF parame-
ters were learned by gradient descent method. The algorithm takes into account the
differentiability of RBF and is based on the matrix-vector representation of the func-
tional error (6).

In [15], it was proposed, and in [30-31], a fast RBFN learning algorithm was
learned, based on an effective optimization method, the trust region method (TRM)
[32]. The method allows to simultaneously optimize a large number of parameters,
has a high convergence rate even for poorly conditioned tasks, and allows to over-
come local minima.

The TRM algorithm is quite complicated, since at least it is found in limited areas,
which requires at each step of the optimization process to solve the conditional opti-
mization problem. Therefore, it is advisable to investigate the possibility of adaptation
for learning RBFN of modern fast first-order methods and the Levenberg-Marquardt



method. Of particular interest is the Levenberg-Marquardt method, which is simpler
to implement than TRM and, as shown in [33], is equivalent to TRM.

3 Development of Levenberg-Marquardt algorithm for
learning of radial basis functions networks for solving
PDE

The implementation of the Levenberg-Marquardt RBFN learning method for PDE
solution will be considered on the example of the model problem described by the
Laplace equation with Dirichlet boundary condition

ou  du
T EoTx), (x)e@, U=p(x,%), (%.%)edQ, (10
X 0%

The functional error for the model problem is the sum of the squared residuals

along the internal and boundary sampling points

I={i(Aui—fi)2+x.z}<:(uj—pj)2}, (11)
i=1 j=1
where Au; — Laplacian at the point i, r =Au, —f —residual of thei -th internal
sampling point, r; =u; — p; — residual at the j -th boundary sampling point.
In the Levenberg-Marquardt method, the correction A8") of the parameter vector
(7) is found from the solution of a system of linear algebraic equations
(J:-l‘Jk-l + p,kE)AB(k) =81 (12)
where J; ,J, , +w E— an approximation of the Hessian matrix, E — identity ma-
trix, p, — regularization parameter that changes at each step of learning, g=J"r —
gradient vector of functional (11) according to the vector of 0 parameters,
r= [rl r,..r, ]T — residual vector at internal and boundary sampling points, J, , —

Jacobi matrix calculated in k —1iteration.

Let’s represent the Jacobi matrix in block form J =[J IV N Ja] , Where

w
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a . . a . .
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where n=N + K — total number of sampling points.
The elements of the Jacobi matrix are easy to calculate analytically. Elements of
the J , matrix for internal sampling points are calculated by the formula

e, 2,2
oe _o(Av, - 1) —e Za% _"X_CJ" — 28,
ow; ow; aj
For boundary sampling points, calculations are performed using the
2
o8 _ ”X_CJ’" . . . .
—— =exp| ————— |formula. The J. matrix elements for internal sampling points
ow, 2a;
are of the form
e} 2 2
o' W oa (- ).w
T L4 j1 2 '
oc, @ a;
e ey
For boundary points, matrix elements are written asa—i =w,-e 2 —2‘1
C. a’
1 ]

Similarly, the elements of the J, matrix are calculated.
The elements of the J, matrix for internal sampling points are of the form

2
ta]

2
I ] iy ) oy 1)

5 2 ’
(?3aj a; a;

e ||x—c "2
. . . €, _ 2a} i
For boundary points, matrix elements are written as . w;-e —.
a. a;
J ]
The condition for completing the learning process by the Levenberg-Marquardt
method is a small value of the functional error (11).

The matrix J; ,J, , +w, E of system (12) is dense symmetric and positive definite.
Therefore, to solve system (12), one can use the Cholesky method [21]. A drawback
of the Cholesky method is the use of a lengthy square root extraction operation when
performing matrix decomposition. The LDLT decomposition method [21] is free from
this drawback, which represents the matrix in the form A =LDL", where L — the
lower triangular matrix with the unit main diagonal, D — the diagonal matrix, and T
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— the matrix transpose operation. When decomposing, the square root extraction
operation is not applied.

In the Levenberg-Marquardt method, the regularization parameter u must change
during the learning of the network. The learning process begins with a relatively large
value of the parameter u. This means that at the beginning of the learning process,

Hessian in (12) is close to the approximate value H ~ uE, and the correction vector is

determined by the gradient descent method with a small step A6®) = —g, , /i, . As the
functional error decreases, the parameter p decreases and the method approaches the

Newton method with the Hessian approximation H ~ J'J . This ensures a high con-
vergence rate, since the Newton method near the minimum of the functional error has
good convergence. In [33], it is recommended to start with some value of ., and coef-

ficientv >1. The current value of pis divided by v if the functional error is reduced,

or multiplied by v if the functional error is increased.
It was shown in [33] that the Levenberg — Marquardt method is equivalent to
TRM, and the radius of the trust region is controlled by the parameter . But unlike

the well-known TRM implementations, the Levenberg-Marquardt method does not
require solving a rather complicated conditional optimization problem at each learn-
ing iteration. That is, the Levenberg-Marquardt method, while maintaining the posi-
tive properties of the trust region method, is simpler.

The disadvantage of the Levenberg-Marquardt method is the poor conditionality
of system (12), which depends on the RBF width and increases with increasing accu-
racy of calculations. It is known [34] that the matrix whose elements are RBF is poor-
ly conditioned and the conditionality of the matrix depends on the width of the RBF.
As the RBF width increases, the elements of the matrix J,, tend to unity, and the ele-

ments of the matrices J_and J, tend to zero. The condition number of the matrix J"J
is increasing. The regularization parameter pimproves the conditionality of system
(12), but a decrease in the parameter p as the error decreases leads to a deterioration in
conditionality.

4 Experiments

An experimental study was carried out using the example of problem (10) with
f (%,%,)=sin(mx)-sin(nx,), p(x,%,)=0. The problem was solved in a single

square. The number of internal and boundary sampling points isN =100, K =40.
The penalty factor isA =10 . The RBF centers were regularly located on a square grid
with the number of centers at each coordinate equal to 8. Sampling points were ran-
domly located in the solution region and on the region boundary. Weights were initi-
ated by zero values. The initial width of all RBFs was constant, equal to 0.2. The
experiments were carried out in the MATLAB R2019a system. To solve system (12),
we used the MATLAB system solver. The RBFN learning by the Levenberg-
Marquardt method was compared with the gradient descent learning and the acceler-
ated Nesterov method [35] - the fastest first-order method.
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In fig. Fig. 1 shows the location of the centers, the symbol of the width (in the
form of circles with radii equal to the width) of RBF, and the weights using the
MATLAB color palette before learning the network (Fig. 1a) and after learning (Fig.
1b). Fig. 1 shows the importance of setting RBF parameters.

a) before learning the network b) after learning the network by the Leven-
berg-Marquardt method

Fig. 1. The centers and width of RB functions in solving PDE

The dependence of the mean square residual of various algorithms on the iteration
number is shown in Fig. 2.

---------- . =-=-- Gradient descent
= =+ Nesterov Accelerated Gradient
sl N . — Levenberg-Marquardt method

s
~..

Mean square error

10° 10 102 10°
Iteration number

Fig. 2. Dependences of the mean quadratic residual of various algorithms on the iteration num-
ber

The results of experiments to solve the boundary value problem on RBFN net-
works learned by various algorithms are presented in Table 1. The gradient descent
method made it possible to solve the model problem with little accuracy. To solve
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with high accuracy, the method is practically not applicable. The Nesterov method
provides somewhat greater accuracy. Only the Levenberg Marquardt method allowed
us to solve the problem with high accuracy in an acceptable time. The Levenberg-
Marquardt method showed practically the same results compared to the trust region
method [15], but the implementation of the Levenberg-Marquardt method is simpler.
The disadvantages of the Levenberg-Marquardt method are the poor conditionality of
the system that forms the correction of the parameters, and the non-smooth nature of
the convergence.

Thus, the algorithm of the Levenberg-Marquardt method showed a clear ad-
vantage over first-order algorithms and ensured accuracy at the level of known im-
plementations of the trust region algorithm, but is simpler than these algorithms.

5 Conclusions

Networks of radial basis functions are a promising means of solving boundary val-
ue problems described by partial differential equations. But the well-known methods
of learning networks of radial basis functions do not provide quick learning of net-
works of radial basis functions. As a way to eliminate this drawback, it is proposed to
improve the algorithms for learning networks.

For learning networks of radial basis functions intended for solving PDE, a learn-
ing algorithm based on the Levenberg-Marquardt method has been developed, which
differs by taking into account the specifics of the network architecture and analytical
calculation of parameters. The method made it possible to achieve the average quad-
ratic discrepancy, which is not achievable by the known first-order algorithms, on the
model problem. The proposed algorithm achieves a small error for the number of
iterations equal to the number of iterations of the algorithm based on the trust region
method, but is simpler than this algorithm, since it does not require solving the condi-
tional optimization problem at each iteration.
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