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Abstract. Renal cell carcinoma (RCC) is a common malignant tumor of the
adult kidney, with the papillary subtype (pRCC) as the second most frequent.
There is a need to improve evaluative criteria for pRCC due to overlapping
diagnostic characteristics in RCC subtypes. To create a better prognostic model
for pRCC, we proposed an integration of morphologic and genomic features.
Matched images and genomic data from The Cancer Genome Atlas were used.
Image features were extracted using CellProfiler, and prognostic image features
were selected using least absolute shrinkage and selection operator and support
vector machine algorithms. Eigengene modules were identified using weighted
gene co-expression network analysis. Risk groups based on prognostic features
were significantly distinct (p < 0.05) according to Kaplan-Meier analysis and
log-rank test results. We used two image features and nine eigengene modules
to construct a model with the Random Survival Forest method, measuring 11-,
16-, and 20-month areas under the curve (AUC) of a time-dependent receiver
operating curve. The integrative model (AUCs: 0.877, 0.769, and 0.811)
outperformed models trained with eigengenes alone (AUCs: 0.793, 0.748, and
0.772) and morphological features alone (AUCs: 0.547, 0.497, 0.483). This
suggests that an integrative prognostic model based on histopathological images
and genomic features could significantly improve survival prediction for pRCC
patients and assist in clinical decision-making.
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1 Introduction

In the past decade, localized renal cell carcinoma (RCC) has increased in prevalence
and incidence substantially [1]. It is the most common malignant neoplasm arising
from the adult kidney [2] and is responsible for ~95% of all cases [3]. RCCs are
malignant tumors of the renal cortex displaying distinct clinical, morphologic, and
genetic characterizations [4], [5]. Currently, there are 20 different RCC variants [6].
Classically, the Heidelberg classification system categorizes RCC into the following
histologic subtypes: clear cell, papillary, chromophone, collecting duct, and
unclassified RCC [7]. Papillary renal cell carcinoma (pRCC) is the second most
commonly identified subtype of RCC (10%-15% of cases), following the clear cell
subtype (ccRCC) [8]. pRCC is distinguished from ccRCC morphologically by the
presence of basophilic or eosinophilic cells in a papillary or tubular form [9]. pRCC
compared to ccRCC, has been reported with a greater male predominance [9]. Clear
cell papillary renal cell carcinoma (ccpRCC) is a distinct histotype that progresses in a
more indolent manner. [4]. pRCC tumors possess immunohistochemical and genetic
profiles that are distinct from ccRCC and ccpRCC [9]. While frontline surgical
extirpation of suspected malignant localized RCC remains the standard of care, recent
increases in renal mass biopsies for risk stratification indicate a growing preference of
both patients and surgeons for the characterization of tumor at the outset to inform
treatment decisions. Precise pathologic information coupled with emerging molecular
tools remains the best course of pretreatment risk stratification [3].
Pathologists use immunohistochemical staining to increase contrast between

specific cell types in biopsy specimens for tumor evaluation [10]. With the growing
digitization of Whole-Slide Images (WSIs), computational image analysis has shown
great potential in diagnosis and discovery of new biomarkers for multiple types of
cancers, such as breast [11], colon [12], and lung [13]. Morphological interpretation
of histologic images is the basis of pathological evaluation. WSIs are a rich source of
biological information as this level of resolution facilitates detailed assessment of the
relationship of cancer cells with other cells and tumor microenvironment (TME), all
of which are referred to as “hallmarks of cancer” [14]. Accurate and reproducible
models can be made to assess prognosis through automatically quantifying
morphological features. A pipeline is developed which automatically segments cancer
images and generates quantitative features [15]. The majority of previous work in
quantitative pathology has required laborious image annotation by skilled
pathologists, which is prone to human error [16]. Automation using image analysis
and ML methods has significantly corrected inconsistencies that result from histologic
preparation [11], [12], as even expert human eyes have difficulty in distinguishing
some granular image features [17].
In addition to histopathologic images, information on molecular alteration has also

been widely adopted for predicting cancer clinical outcomes [18], [19]. Cancers are
diverse, with varying genetics, phenotypes, outcomes and subtypes. In the past
decades, molecular stratification of tumors using gene expression microarrays has
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been considered an important field in cancer research [20], with an increase in
application of integrative genomics or panomics approaches [21], [22]. This approach
is used to identify biomarkers for stratification of patients into groups with different
clinical outcomes. Solid tumors are heterogeneous tissues composed of a mixture of
cancer and normal cells that further complicates the interpretation of their molecular
profiles [23]. Cancer, immune, and stromal cells form an integral part of the TME;
however, their admixture poses challenges for molecular assays, especially in large
scale analyses [23]. Alternatively, Molecular profiles yield quantifiable results via
computational and statistical inferences on big data. For instance, studies have shown
that lymphocytic infiltration can be inferred from gene expression profiles [24], as
well as cellularity from single-nucleotide polymorphism (SNP) information [25].
However, these approaches are indirect and strongly rely on statistical assumptions
[26]. To leverage the richness of histopathological information and quantitative results
of computational analyses, a systematic approach that integrates histopathology and
genomics was developed. An image-based approach was used to increase the power
of molecular assays and to complement them with each other to unveil prognostic
features otherwise invisible in molecular data [2]. Recent studies have also
highlighted the contribution of gene expression and morphologic phenotypes to
cancer growth and progression [11], [27]. The integration extends recent approaches
that only identified morphological features prediction of survival by image analysis
[11]. One study ventured into an integrative approach for predicting ccRCC prognosis
or time-to-event outcomes [2]. The study utilized both histopathologic images and
eigengenes to predict patient outcome. Eigengenes are the summarized genetic
module expression profile used to reduce a gene co-expression network involving
thousands of genes [28]. The model developed from the study was able to generate
risk indices that correlated strongly with survival of ccRCC patients, outperforming
predictions based on morphologic features or eigengenes separately. Cheng et al. [2]
showed significant correlation according to Bonferroni correction between image
features and eigengenes, with results suggesting that low expression of some
eigengene were related to poor prognostic outcome, implying impaired renal function;
while high expression of some eigengene observed to coexpress in multiple types of
cancers [29] indicated aggressiveness and was negatively related to patient prognosis
[2]. The integration of multi-modal data for prognosis estimation has led to new
insights into the influence of tissue genotype on phenotype [30], [31].
Random Survival Forest (RSF) is an ensemble tree-based machine learning (ML)

model for the analysis of survival data. The method has been used in several studies
showing superior predictive performance to traditional strategies in low and
high-dimensional settings [32], [33]. RSF can capture complex relationships between
predictors and survival without prior specification requirements. Risk prediction
models play a vital role in personalized decision-making, especially for time-to-event
outcomes of cancer patients [33]. Traditional prediction models often ignore the
longitudinal nature of medical records, using only baseline information. The use of
risk prediction models incorporates longitudinal information to produce updated
survival predictions during follow-up check-ups. This allows for high accuracy in the
automated prediction of cancer prognosis, showing significant promise in improving
the quality of care where pathologists are scarce. This study aims to overcome the
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difficulty of sub-classifying pRCC using morphological features alone and contribute
to better prognosis methods for pRCC patients.

2 Materials and Methods

2.1 Dataset Overview

The pRCC patient samples used in the study include matched hematoxylin and eosin
(H&E)-stained WSIs, transcriptome, somatic mutation, and clinical information. The
patient data were acquired from the The Cancer Genome Atlas (TCGA) data portal of
the National Cancer Institute Genomic Data Commons. Microscopic images (20× and
40× magnification) were obtained from the TCGA. Gene expression profiles with
20,531 Entrez-identified sequences were taken from Broad GDAC Firehose. Prior to
preprocessing, the dataset included 287 pRCC cases. Patients with missing data were
excluded from the study, leaving us with 277 patients.

2.2 Histopathological Image Processing

Image Preprocessing and Image Feature Extraction.WSIs were first chopped into
equal-sized patches (1000×1000×3) using Openslide. The resulting image patches
were then assessed for tissue content using pixel intensity statistics. The generated
sub-images were then filtered according to quality. Sub-images with >50% white
background were excluded. To do so, a range value for the whole dataset was
determined, where images from one randomly chosen patient were grouped according
to the cell coverage of their image patches. The mean and standard deviation (SD) of
the pixel value of each image were calculated, and were averaged to determine the
pixel value range for each group. Then, 20 sub-images were randomly selected for the
next step to eliminate sample selection bias and reduce computing load. Since there
were varying sources of the WSIs, the images were color normalized to prepare for
downstream analysis. Macenko color normalization [34] was used. Then,, H&E stains
were separated from the original images to facilitate nuclear extraction for
downstream feature calculation. Quantitative performance evaluation of nuclei
segmentation was performed using manually annotated subset of image patches.
CellProfiler version 4.2.1 [35], [36] software was used to extract image features

from each sub-image. Individual cell segmentation was conducted using builtin
modules in CellProfiler and included Otsu Thresholding followed by morphological
postprocessing. Here, we measured object intensity, object size, object shape, image
granularity, and image texture. The measurement of object size and shape includes
features such as area, Zernike shape, perimeter, formfactor, solidity, Euler's number,
and orientation. The Zernike shape features comprise a set of 30 shape characteristics
that are derived from Zernike polynomials ranging from order 0 to order 9. Finally,
we extracted 448 image features from each sub-image and calculated the mean value
of the 20 representative sub-images for each patient.

Feature Elimination. To obtain prognosis-related features, an R implementation of
the support vector machine's recursive feature elimination (SVM-RFE) and Lasso
Regression algorithms were employed to filter the prognostic image features most
correlated with pRCC prognosis. A 5-fold cross validation in both the SVM-RFE and
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Lasso Regression algorithms were applied. A total of 441 image features were filtered
using the SVM-RFE and Lasso Regression. Feature reduction pipeline was built using
the glmnet and caret libraries. Data for this model was split using a 70:30 ratio. The
image features were also filtered using the e1071 multiple SVM-RFE (mSVM-RFE)
[37] as adapted from https://tinyurl.com/3ceynuh9. SVM-RFE is a ML method with a
backward feature SVM. Feature filtration using SVM-RFE was performed using a
method performed by Li et al. [35]. The SVM-RFE was used to rank the pathological
image features in a descending order of significance, iteratively eliminating the
minimum features and training the model with the remaining image features until all
features are removed. The maximal cross-validated accuracy was adopted as the
evaluation index to select the optimal feature subset related to the prognosis. Finally,
intersection of the optimal subset of features from the SVM-RFE model and LASSO
regression was used to obtain the most relevant pathological features to the prognosis.

2.3 Gene Coexpression Analysis

The profiles of mRNA expression for the pRCC tumors in TCGA were transformed
from Illumina HiSeq 2000 RNA-seq V2 read counts to normalized transcripts per
million (TPM). TPM fulfills the invariant average criterion that RPKM does not
account for. By definition, TPM and RPKM are proportional, thus are closely related
as shown by this equation:

TPM = 106 × (1)𝑅𝑃𝐾𝑀
𝑆𝑢𝑚(𝑅𝑃𝐾𝑀)

Expression data were then scaled with the natural logarithm operation [38]:

Xinput = log(Xoriginal + 1) (2)

where Xoriginal was the genetic data or the non-negative RNA sequencing expression
values (Illumina Hi-Seq RNA-seq v2 RSEM normalized), and Xinput was the input
covariate vector for the coexpression network analysis.
WGCNA package [39] was used to cluster genes into coexpressed modules and

each module was summarized as an eigengene using the protocol described in the
study [39]. This approach allows for substantial improvement in statistical power
and for more focus to be placed on important biological processes and genetic
variations related to coexpressed gene modules. We adopted code from
https://tinyurl.com/4psu2wrw. The generated module eigengenes were then correlated
with prognostic image features. Biological relevance of the module eigengenes were
obtained through Metascape (https://metascape.org/).

2.4 Risk Categorization

Each prognostic feature was correlated with survival status to determine the direction
of relationship. For each prognostic feature, we divided the patients into two groups
(low and high-risk groups) where the median of each prognostic feature was used as a
cut-off point. Depending on the relationship and feature values relative to the median,
prognostic features of each patient were categorized as high or low risks. Finally, we
assigned a patient's risk level based on the dominant risk level among their features.
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2.5 Prognosis Prediction Model

RSF algorithm was used to construct an integrative prognostic model. The method
will be implemented using the R package randomForestSRC, tailoring based on the
different ensemble parameters that affect building of survival trees. The number of
splits in each candidate variable can reduce computation time compared to testing all
possible split points for each covariate. A 7:3 ratio and 10-fold cross validation was
used during model development. The RF model estimated survival risk for each
patient and determined their risk scores, which was plotted on a survival curve. As
predicted by the learned model, we compared 11-month survival differences between
the two groups using Kaplan-Meier (KM) analysis and log-rank test. KM analysis was
used for patient stratification, while the log-rank test calculated the p-value, where p
<0.05 is considered significant.

3 Results

3.1 Patient Characteristics

277 pRCC patients (72 female and 205 male) were included. Histopathological
images, mRNA expression data, and clinicopathological information were
downloaded from TCGA, Broad GDAC Firehose, and cBioportal.

Table 1. Demographic and clinical characteristics of pRCC patients.

Characteristics Total (n = 277) Train (n = 194) Test (n = 83)

Gender Male 205 141 64

Female 72 53 19

Events Alive 235 164 71

Dead 42 30 12

3.2 Prognosis-related Image Features and Co-expression Gene Module
Selection

441 image features were used for the data dimension algorithms used, specifically
LASSO and mSVM-RFE. The optimal subset of features determined by the feature
elimination of the mSVM-RFE algorithm obtained six features while LASSO
regression identified 20. We then found the intersection of the results of the two
algorithms to obtain two pRCC prognostic image features ( Image Granularity feature
and Zernike shape feature). To identify the prognostic co-expression gene modules,
WGCNA was applied to evaluate the relationship between the two prognostic image
features and eigengene modules. The most significant positive association with the
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Zernike feature was the dark red module, while it was the turquoise module for the
Image Granularity feature. Examples of selected histopathological sub-images in both
high-risk and low-risk groups are presented in Fig 1.

TCGA-2Z-A9J1 TCGA-2Z-A9J3

High
Risk

TCGA-2Z-A9J2 TCGA-2Z-A9J8

Low
Risk

Fig. 1. H&E and eosin-stained histopathological sub-images in high- and low-risk groups

Fig. 2. Significant associations with the image features from nine modules (salmon,
dark turquoise, blue, turquoise, green, brown, dark red, purple, and yellow).

3.3 Enrichment Analysis of the Key Gene Modules

There were 471 genes in the purple module, 147 genes in the dark red module, and
3500 genes in the turquoise module, with other significant genes shown in Fig. 2.
These indicate that there are significant intrinsic associations among the biological
functioning of the selected genes in each module. Most genes were enriched in the
biological processes such as metabolic process, response to stimulus, biological
regulation, developmental process, localization, growth, immune system response,
signaling, and cellular process. More specific associations include NRF2 pathway,
glucuronidation, cellular response to DNA damage, and VEGFA-VEGFR2 signaling
pathway.
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3.4 Construction and Evaluation of the Integrative Prognostic Model

The pRCC patients were randomly divided into a training (n =194) and test set (n =
83). 30 trees were used in the integrative model. The time-dependent ROC curve can
better demonstrate the model's predictive ability over time, as it incorporates both
survival state and survival time in the results. In the test set shown in Fig. 4, the 11-,
16-, and 20-month AUCs were 0.877, 0.769, and 0.811 respectively. The predictive
accuracy of the test set remained at a good level, especially at the 11-month
discrimination. The integrative model performed significantly better than the
standalone models as seen in Fig. 5, with 11-, 16-, and 20-month AUCs of 0.793,
0.748, and 0.772 respectively for the Genomic prognostic model training set; and
0.547, 0.497, and 0.483 respectively for the Phenotypic prognostic model training set.
The test sets of both standalone models performed poorly as well.
The KM curve of the overall unweighted data showed a significantly different

survival rate between the risk groups (p = 0.00028). Also, the test results of the KM
analysis with weights from Random Forest demonstrated that the survival rate of
low-risk score patients was significantly better than that of high-risk score patients (p
= 0.0018).

4 Discussion and Conclusion

Our study was able to identify two significant image features with the prognosis of
pRCC through feature elimination, including a Zernike shape and a Granularity
image. We conclude that the texture and morphology of pathological images may be
correlated to pRCC prognosis. Apart from predicting prognosis, the variation in the
pathological image features may incur different cell arrangements which may cause
variations in the invasion of various potential tumors. We were able to conclude that
histopathological image features have a certain ability to predict patient survival, and
the combination of genomics and clinical data could further improve the prognosis
prediction of pRCC. In the enrichment analysis, associations with the NRF2 pathway
and metabolic processes were observed. Recent studies found that NRF2 indeed
exhibits an aberrant activation in cancer [40]. Evidence shows that NRF2/KEAP1
signaling pathway is associated with cancer cell proliferation and tumorigenesis
through metabolic reprogramming. This correlates with the established notion that
RCC is known as a metabolic disease [41] as seen from the diverse array of metabolic
defects and perturbations occurring as a result of the genetics driving the tumors.
Similarly, study of the genetic information in pRCC denotes significant relation to the
metabolic process.In the enrichment analysis, associations with the NRF2 pathway
and metabolic processes were observed. Recent studies found that NRF2 indeed
exhibits an aberrant activation in cancer [40]. Evidence shows that NRF2/KEAP1
signaling pathway is associated with cancer cell proliferation and tumorigenesis
through metabolic reprogramming. This correlates with the established notion that
RCC is known as a metabolic disease [41] as seen from the diverse array of metabolic
defects and perturbations occurring as a result of the genetics driving the tumors.
Similarly, study of the genetic information in pRCC denotes significant relation to the
metabolic process.
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A B

Fig. 3. (A) Test Group Survival Analysis AUC for Genomic and Phenotypic Data. (B) KM
Curve of Genomic and Phenotypic Data with weight from Random Forest

A B

Fig. 4. (A) Test Group Survival Analysis AUC for Genomic Data. (B) Test Group Survival
AUC for Phenotypic Data.

Moreover, glucuronidation also suggests an important relation to the genetic
prognostic features of pRCC patients. UDP-glucuronosyltransferases (UGT) encodes
enzymes that regulate the glucuronidation pathway in humans. UGTs are important
metabolic enzymes responsible for approximately 40-70% of endo and xenobiotic
reactions [42], which include anti-cancer drugs. UGT enzymes are highly expressed
in metabolic tissues such as the liver, intestine, and kidney, consistent with their role
in facilitating the elimination of certain metabolites; however, the expression of most
UGT members also extends to many other organs and blood cells. Generally, UGTs
are anchored to the luminal side of the endoplasmic reticulum (ER), explaining why
glucuronidation reactions generally occur in the lumen of the ER [43]. Moreover,
UGTs, along with other drug-metabolizing enzymes and transporters, can participate
in the inactivation of xenobiotics. Drug inactivation by UGTs is emerging as an
important mechanism of drug resistance in cancer [43].
Typically, kidney damage is prone to trigger ER stress. In the kidney, ER stress and

unfolded protein response (UPR) participates in acute and chronic histological
damages, as it is linked to the molecular basis of progression of Chronic kidney
diseases; however, contradictorily, it also promotes cellular adaptation and
nephroprotection [44]. UPR pathway is launched by the ER, as it is involved in
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maintaining ER homeostasis. Dysregulation of the UPR pathway is linked to kidney
disease symptoms. Experimental models have also revealed that disruption of the
UPR causes podocyte injury and albuminuria as a mouse grows older [45]. This may
suggest why pRCC predominantly occurs in the older generation.

Overall, the model deepened the cognition about the genomic and
histopathological image information of pRCC, which could potentially aid in clinical
decision-making and treatment of the disease. Moreover, further exploration of
biological mechanisms of the histopathological image features and the integration of
other data sources, such as clinical data, can lead to a more comprehensive
understanding of the disease and improve patient outcomes. Future studies can also
explore the generalizability and reproducibility of the model on larger and more
diverse patient cohorts to validate its clinical utility.
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