
EasyChair Preprint
№ 3005

A Semantic Question Answering in the Domain of
Smart Factories

OrcÌ§un OrucÌ§ and Uwe Aßmann

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 19, 2020

A Semantic Question Answering
in the Domain of Smart Factories

Orçun Oruç∗, Uwe Aßmann†
∗Software Technology Group, Technische Universität Dresden, orcun.oruc@tu-dresden.de, Dresden, Germany
†Software Technology Group, Technische Universität Dresden, uwe.assmann@tu-dresden.de, Dresden, Germany

Abstract—Industrial manufacturing has become more inter-
connected between smart devices such as the industry of things
edge devices, tablets, manufacturing equipment, and smart
phones. Smart factories have emerged and evolved with digital
technologies and data analytics in manufacturing systems over
the past few years. Basically, smart factories make complex
data enables digital manufacturing and smart supply chain
management and enhanced assembly line control. However, the
more data created by smart factories, the harder it is for
human operators and experts to understand the meaning of data
because of the readability of machine-readable data. Nowadays,
smart factories produce a large amount of data that needs to
be apprehensible by human operators and experts in decision
making. However, linked data is still hard to understand and
interpret for human operators, thus we need a translating
system from linked data to natural language or summarize the
volume of linked data by eliminating undesirable results in the
linked data repository. In this work, we propose a semantic
question answering that can understand and interpret linked
data repository in the domain of a smart factory. We have
used heterogeneous RDF Turtle datasets from one of the OPC
UA Server which is connected to the Fraunhofer IWU 1 edge
devices, an annotated time-series data SPARQL endpoint and
statically generated data from eniLINK 2 linked data repository.
The semantic question answering might interpret the data from
open or closed domain questions, but rather we will examine the
question answering system in a restricted smart factory domain
with the above-mentioned data source. Lastly, we will perform
qualitative and quantitative evaluation of the semantic question
answering, as well as discuss findings and conclude the main
points regarding our research questions.

Index Terms—Semantic Web, Web 3.0, Information Retrieval,
Natural Language Processing, Industry 4.0

I. INTRODUCTION

Currently, a vast amount of unlabeled data can not be used
by applications, World Wide Web Consortium (W3C) decided
to create standardization of the Web 3.0 called Semantic
Web in order to apply Linked Open Data 3 concept. In this
concept, hypertext documents of the web sites or ad-hoc have
been connected to each other through links such as Uniform
Resource Identifiers (URIs)4. As part of this development,
Fraunhofer IWU started to organize its smart factories that are
capable of generating structured linked data. Smart factories
can use real-time data or linked data in order to diminish
bottlenecks in assembly lines, provide predictive maintenance,

1https://www.iwu.fraunhofer.de/en.html
2http://platform.enilink.net/
3https://lod-cloud.net/
4https://www.w3.org/DesignIssues/LinkedData.html

enhance human-machine interaction with digitalization.

The present study introduces a human-machine-interaction
concept for smart factories in terms of linked data processing
integrated into a question answering. The Semantic Web is
a state-of-the-art research area that orchestrates the use of
understanding in linked data between humans to machines
and machines to machines. You can link data and documents
to external data through linked data. In the present day, smart
factories equipped with intelligent manufacturing devices,
sensors, and actuators create a massive amount of data.

A semantic question answering is used for information
retrieval to provide answers to questions through linked data.
The proposed semantic question answering can understand
complex natural language expressions, and it can respond
to the user by answers. Mainly, the semantic question
answering system employs unstructured data or structured
data. We obtain linked data generated by an OPC-UA
Server named Dynamic Server and the eniLINK streaming
data. The empirical analysis indicates the answer return
rate and precision; therefore, it evaluates the usability for
a human operator, experts or an end-user web application.
The goal of this research is to show a model of semantic
question answering for a smart factory that utilizes the natural
language expressions as sentences, questions or keywords to
give a precise and rapid answer to human operators or experts.

The remainder of this paper is structured as follows: Section
II will provide a brief overview of smart factories and Industry
4.0 and serialization process of linked data from another type
of data such as the Information Model and from streaming
data to the linked data. Section III introduces the theoretical
background of natural language understanding and practical
implementation of the question answering. Section IV summa-
rizes the research approach of the semantic question answering
aspect of the smart factory constructed by Fraunhofer IWU.
In Section V, we implement an application and we give the
implementation details of the present study. As for Section VI,
we will explain the test environment; accordingly, we give
the results of the semantic question answering. Section VII
explains the state-of-the-art status the Industry 4.0 and Smart
Factories. Then, we answer specified research questions in
order to clarify key points with discussion in Section VIII.
Finally, we conclude in Section IX.

https://www.iwu.fraunhofer.de/en.htm
http://platform.enilink.net/
https://lod-cloud.net/
https://www.w3.org/DesignIssues/LinkedData.html

II. BACKGROUND

A. Smart Factories and Industry 4.0

The definition of the smart factory has been explored
over the past few years. Basically, a smart factory consists
of new integrable technological terms such as Machine
Learning and Artificial Intelligence through intelligent
devices such as tablets, smartphones, and sensors in order
to make apprehensible models from unknown data areas
in the manufacturing. Industry 4.0 is a defined term that
relates to the notion of smart factory bringing researchers to
find state-of-the-art applications such as question answering
systems, manufacturing augmented reality and semantic
sensor networks.

A smart factory is a highly digitized and connected
production facility that relies on smart manufacturing [1].
This concept is one of the key outcomes of Industry 4.0,
which intelligently changes manufacturing technologies.
Smart manufacturing is a term coined by a set of departments
of the United States [2]. The central power of the smart
factory is that it makes data collection possible. Additionally,
sensors enable the monitoring of specific processes throughout
the factory that increases awareness of what is happening on
multiple levels [3].

The development of Industry 4.0 has a significant influence
on the manufacturing industry. In the era of smart manufactur-
ing systems, Industry 4.0 needs to standardize all connection
pipelines in smart factories. The primary objectives of Industry
4.0 are making the manufacturing technologies of factories
more capable of handling semantic triples, optimizing the
chain of processes, and enhancing the capabilities of commu-
nication with each other. Moreover, Industry 4.0 enforces end-
to-end digital integration of engineering throughout the value
chain to facilitate highly customized products, thus reducing
internal operating costs [4].

B. Linked Data Serialization

Our data sources are structured as semantic triples such as
Turtle, RDF, or OWL, which it is also publicly available in
the Github repository 5

1) The Semantic Data for OPC Unified Architecture
Information Model: OPC Unified Architecture was developed
for devices of industrial internet of things to remedy
problems about service orientation, loose coupling, and
object-orientation paradigm. The OPC UA has been evolved
from OPC to OPC UA over the past few decades and the
architectural designed was entirely changed. The fundamental
disadvantage of OPC was that it was restricting devices
to connect just to Windows-based operating systems. After
developing the Distributed OPC and OPC UA ideas,
the foundation of Open Platform Communications has

5https://github.com/zointblackbriar/QuestionAnswering/tree/master/
AlgorithmQuestionAnswering/SemanticSource

constructed a viable concept that consists of object-oriented,
loose-coupling and service orientation in manufacturing
systems.

Aside from the OPC UA is a complex protocol; the OPC
UA is one of the ubiquituous communication protocols that
can be used in the various stages of the manufacturing.
Thanks to the OPC client-server architecture, any devices
can connect to the protocol in a manufacturing system. A
programmable logic controller, a sensor or an actuator can
connect to the same server, and they can assign their values
into different folder organizations to represent data in an
address space. The address space is a data plane for an OPC
UA server; hence it should coordinate variables, methods,
objects, and nodes respectively. An end-user can identify
primitive and user-defined types so that the complex structure
of devices can be represented as a whole in a big data plane.
However, this data plane only provides definitions and types.

The Information Model supports object-oriented paradigms
such as abstraction and inheritance between References and
Objects. It is well known that an object can live as a Node
Class in the address space. The objects may have relation-
ships with other objects in the Information Model. Utilizing
References, a user can traverse in the address space of OPC
UA to reach all levels of nodes and variables. Nevertheless,
neither the Address Space of OPC UA nor the Information
Model is unable to understand the meaning of data. The
semantic understanding of the OPC UA Information Model has
a vital role in performing an answering question system. The
Information Model holds all device-specific information such
as device type, data changes of the device, vendor type and
relationship between devices. These information sources could
be helpful to human operators or experts aspect of system
information in regard to manufacturing systems.

2) Mapping the OPC UA Data into Semantic Data:
The primary data sources are semantically parsed data
from eniLINK [5] and the OPC-UA server in Fraunhofer
IWU named Dynamic Server. In the phase of the OPC UA
server generated data, we used an SDK, which is published
by FreeOPCUA6 and TU-Dresden7. We contributed to the
aforementioned projects with extra conversion steps such as
XSLT and triple store processing.

OPC UA standard utilizes an information model and the
information model can be used to simulate OPC UA Servers
with Extensible Markup Language (XML). Due to the nature
of the XML language, it is a language that depends on
strong hierarchical elements and has its own data model with
elements and attributes that are hardly parseable. However,
semantic data such as Resource Description Framework
(RDF) can employ triples with the SPARQL query language.

6http://freeopcua.github.io/
7https://github.com/plt-tud/opc_ua_xml_export_client

https://github.com/zointblackbriar/QuestionAnswering/tree/master/AlgorithmQuestionAnswering/SemanticSource
https://github.com/zointblackbriar/QuestionAnswering/tree/master/AlgorithmQuestionAnswering/SemanticSource

Algorithm 1 Node Extraction
1: function MAINFUNCTION() . Starting point
2: export = ServerExport(serverurl, filename)
3: export.IMPORT NODES(serverurl)
4: export.EXPORT FILE(outputFile, namespaces)
5: end function
6: function BUILD NODE TREE(nodes) . Node Formatting
7: client← GETENDPOINT()
8: client← CLIENT(serverurl)
9: nodecumulated←None

10: nodeID ←0
11: for node < nodes do
12: nodecumulated = node.nodeid.Namespaceindex
13: for ref < node.getreferences() do
14: nodecumulated.extend(

ref.nodeid.Namespaceindex
15: end for
16: nodecumulated = list(set(nodecumulated) . Clear

duplicates
17: end for
18: return nodeID . Return node id list
19: end function
20: function IMPORT NODES(serverurl) . Traverse Node
21: client = Client(serverurl)
22: client.connect()
23: for ns < client.getNamespaces() do
24: namespaces[client.getNamespaceIndex(ns)] = ns
25: end for
26: root = client.getRootNode()
27: child = client.iterateChildNodes()
28: end function
29: function EXPORT FILE(outputF ile, namespaces =

None) . Export into XML
30: if namespaces != None then
31: for node != nodes do
32: if node.nodeid.namespaceindex is namespaces

then
33: nodes = [node]
34: else
35: nodes = list(nodes)
36: end if
37: end for
38: end if
39: export = XmlExport(client)
40: export.BUILD NODE(nodes)
41: export.appendXML(outputFile)
42: end function

The algorithm, as shown in Algorithm 1, identifies tree
elements of a node by taking namespace indexes. The
namespace index contains node ids. Once a user browses
from a node to another, the user needs to know the node
identification number. If the user did not scan the total
number of references, the application should get all nodes
that have references until the algorithm reaches all of the
mesh networks. Accumulated nodes are inserted into a list
to export an XML format. After obtaining XML structures,
the system can convert the elements into linked data such
as Turtle RDF through Extensible Stylesheet Language
Transformations (XSLT). XSLT can transform from the
XML format to the RDF format by minimizing the nodes
without resources called blank nodes. Once the application is
converted to RDF/XML format, graph libraries can deal with
the conversion process into triple formats. The application
only takes care of the uniform locator identifier to do a
conversion, and then the application ought to arrange uniform
locators by considering different from ’example.org’.

3) Mapping an OPC UA Data into Semantic Data:
Streaming data sources have intricacies in the use of linked
data taken from sensors, actuators or software logs. The
aspect of smart factories, sensors, and actuators that are the
underlying structure of manufacturing machines mostly create
streaming data. Fraunhofer IWU collects the real data source
by saving it into a time-series database. The major drawback
is that when the time series data are taken, the endpoint of
a semantic query cannot use the unstructured data without
annotating it. Such annotations can be the formulation of
triples, insertion of predicates, or serialization, which means
that convert one type of formal language to another. The
proposed architecture utilizes a streaming semantic data
annotator that extracts triples from time-series data in a
database provided by Fraunhofer IWU. To this end, it serves
as a federated SPARQL endpoint.

Fig. 1: KVIN Continuous SPARQL Mapping

The current study proposes a service named KVIN8 to
perform a SPARQL request against a specific endpoint. This

8https://github.com/enilink/enilink

https://github.com/enilink/enilink

service is based on a combination of the triple store through
the Level DB, which is a key-value storage library written
by Google Inc. It has been used as an RDF4J’s extension to
create a SPARQL service. After obtaining time-series data, the
data are mapping the SPARQL triples. These graphs contain
mapped triples with their time-stamped value so that we can
employ values with some complex processes with SPARQL
language. Moreover, a federated service replies to the queries
determined by users, which reduces the answer return time
of a question answering system. The KVIN does not create
instantly hard-coded triples nor a new language such as C-
SPARQL [6]. It only arranges the size of the time window and
puts the graphs into the service to present them to the end-user.

SPARQL was designed for the use of semantically
structured triples, not for relational datasets. PREFIX,
SELECT and WHERE are there basic operators of SPARQL
Protocols. PREFIX makes the serialization easier in
referencing to the Uniform Locator, UNION statement can
help at federating multiple triples into a single query -
OPTIONAL statement is used to allocate a particular portion
of SPARQL into triples. As can be seen, the primary goal of
the query language is to federate information among various
data sources.

III. THEORY OF THE NATURAL LANGUAGE
UNDERSTANDING

In natural language processing, we need to identify the
structure of a natural expression to reach the step of Query
Formulation. The following methods that we used in the
practical application are concisely given.

Preprocessing and Tokenization: Chiefly, all of the
natural language processing tasks starting with preprocessing,
which means cleaning the data for specific tasks, could be the
reduction of non-optimized data and discrepancies between
the values or removing non-related morphological properties.
A question answering system should parse natural language
expressions as tokens. Tokenization is the initial step for
part-of-speech tagging to parse from a natural language to
lexical grammatical structure such as verbs, nouns, cardinal
numbers, or adjectives.

Lemmatization and Stemming: Lemmatization and
Stemming are similar to each other with one difference.
While a stemming algorithm is used to find syntactical
structures, a lemmatization algorithm looks for a semantic
structure. Stemming clears out the morphological structure
of suffix and prefixes. In our proposed system, we are
supposed to use a lemmatizer and stemmer in order to reduce
lexical complexities. A lemmatizer is used to examine the
morphological analysis of verbs, e.g. from "contains" and
"contained" to "contain". Then we need to take this verb to
map it into a predicate to construct a SPARQL query. The
lemmatization and stemming are part of the normalization

process in terms of morphological properties.

Part-of-Speech Tagging: It is a preprocessing step for
parse trees to identify item taggers such as verbs, adjectives or
nouns. A sentence consists of a couple of structures including
expressions like nouns, verbs, pronouns, prepositions,
adverbs, conjunctions, participles, and articles that are the
main categories of part-of-speech processing [7]. The part-
of-speech (POS) tagger mostly applies the Markov Model [7]
that is a part of statistical natural language understanding.
The Markov Model stands for a state that can depend on the
current state, but there is no dependency between previous
states. For instance, a noun or a verb defines its neighbors,
e.g. nouns are preceded by determiners, adjectives, verbs
[7]. As an example, a chess player moves any chess piece
according to the last movement of a rival rather than guessing
from the first movement of the competitor. In this way,
pre-saved corpora that have a massive amount of words have
to be tagged by the POS Tagger.

Parsing: The approach of parsing is two fold, which are
the rule-based approach and the probabilistic approach [8].
The rule-based approach is a top-down approach to solve
problems via predefined rules such as regex-parsing and
character-based parsing. Therefore, a question answering
system should define rules precisely to get the correct answer.
Open-domain question answering systems use this approach
because of the high complexity of the bottom-up approach and
broad question types. Nevertheless, the rule-based approach
could give undesirable results to question answering systems
in restricted-domain so that this could be a time-wasting and
an error-prone approach.

A dependency parser analyzes the grammatical structure
of a sentence, and it gives information about the relationship
among them. The dependency parser also defines the
relationship between dependent words and root words.
Thus, we can identify the center verbs or dependent nouns of
complex sentences. This parser utilizes a dependency treebank
file and word embedding files. Chiefly, a dependency parser
applies the supervised machine learning method to reach a
syntactical and semantical result. A constituency (phrase)
parser is likely to be known as a phrase parser that has
an objective is to check the grammatical structure of
sentences by parsing the chunks of morphological structure.
The constituency parser may not handle the relationship
among language items. The dependency parser examines the
grammatical structure of given natural expressions to identify
the relationship between a root word and dependent words
that relate to the root word.

Named-Entity Recognition: It is a subtask of information
extraction to locate and classify named entities with pre-
classified labels, such as names of people, organizations,
locations, etc. Named-entity recognition is a method that
identifies the item of a sentence as a domain-specific one.

It solves the problem of recognition in the same way that
the chunking method does. However, the named-entity
recognition may be trained with labeled data and it is a more
advanced technique than the chunking technique, which has
deep and shallow parsing methods.

Similarity Analysis: Sentence similarity is used to compare
two string inputs to achieve indicative questions like “Is
the system health good?”. Mainly, this similarity method
leverages averaging word vectors such as word2vec and glove
that implement Euclidean Distance, Manhattan Distance
or Cosine Similarity [7]. In the following, three similarity
methods that we analyzed are introduced:

The Levenshtein Distance denotes the calculation time
that could be O(|s1| x |s2|) using O(min(|s1|, |s2|)) space.
After calculating the distance between s1 and s2, the result
is divided into the maximum length of string [9]. The Jaro
Winkler has a transposition matrix t with common characters
that are calculated together to reach the similarity value [16].
The Jaccard Similarity algorithm takes into consideration the
size of the intersection divided by the size of the union of
two sets [9]. Under the same test data and methods, similarity
levels of the Jaccard, Jaro Winkler, and Levenshtein are
0.8095, 0.7544, and 0.58 respectively. The higher score shows
a better performance for similarity measurement.

In order to calculate the word-based similarity, we perform
the WordNet with glove vectors. Such vectors are pre-
calculated synset values are compiled and stored into a file
. These synset values show the similarity value with the
cosine similarity algorithm. The WordNet can calculate the
similarity of acronym and hypernym except for synonym. The
calculation of semantic similarity is a hard and complicated
process. As we will explain in the following scenario, two
phrases such as ‘Internet of Things’ and ’Mesh Network’
are semantically similar. The first implies “the network of
physical objects with electronics, software, sensors, and
connectivity” and the latter implies “the topology of a
network whose components are all connected directly to
every other component”. We cannot easily calculate this
semantic similarity. Instead of calculating semantic similarity,
we can calculate word vectors of verbs and nouns related
to similarity synset. If a computed synset value is above
the threshold value, a question answering can accept these
two strings that are constructed similarly. In the practical
implementation, we have used verb synonym similarity to
map onto <IRI: predicate> triples.

Question Classification: Questions should be categorized
to get the correct answer. It is a part of question processing
that can parse the question input and assign it to the correct
labels. Machine learning methods can define the derivation of
an expected answer. This paper utilized Logistic Regression
and Support Vector Machine for the question classification
phase. While the support vector machine was classifying

Parameters Precision F1 Recall

Newton-cg 95.55% 95.56% 95.57%
Linear SVC 92.75% 92.76% 92.77%
Limited BFGS 94.21% 94.22% 94.23%
Logistic
Regression
CV

95.63% 95.63% 95.64%

Linear SVC for
Li-Roth Taxon-
omy

65% 45.5% 35%

TABLE I: The evaluation of the Question Classification

the question with TREC Dataset9, the logistic regression
examined the type of question at the Github repositories10

11. Questions are grouped with coarse-grained labels, which
are Abbreviation, Entity, Description, Human, Location, and
Numeric. On the other hand, another dataset that we have
been trained with Logistic Regression comprising of ’what’,
’quantity questions-how many, how much, ’who’, ’unknown’
and ’why’ labels. The Logistic Regression and Linear Support
Vector Classification have supervised machine-learning
methods by identifying coarse-grained question indicators
with pre-trained labels. Logistic Regression estimates the
parameter with a logistic function. The type of regression
allows classifying the aforementioned labels according to
multi-labels . The Support Vector Machine aims to improve
the quality of hyperplane that separates multi-class labels.
Linear SVC12 is such a method that implements a linear
kernel function through the Support Vector Machine. The
Newton-cg has a gradient descent function that reduces
the error rate during each iteration to find out the global
minimum. The Limited BFGS is an optimization method
that can be used instead of Newton-cg. Logistic Regression
Cross-Validation (CV)13 applies cross-validation to train and
test datasets by splitting at particular percentages between
them. The result has been listed in Table I.

IV. RESEARCH APPROACH

Research Questions:

1) RQ-1: Can a semantic question answering utilize
heterogeneous linked data sources (e.g., OPC UA
Information Model, streaming data, static data) in the
domain of smart factory?

2) RQ-2: What are the requirements of the Semantic
Question Answering for smart factories?

9https://trec.nist.gov/data.html
10https://github.com/swapkh91/Question-Classification
11https://github.com/5hirish/adam_qas
12https://scikit-learn.org/stable/modules/svm.html
13https://scikit-learn.org/stable/modules/generatedsklearn.linear_model.

LogisticRegressionCV.html

https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/generatedsklearn.linear_model.LogisticRegressionCV.html
https://scikit-learn.org/stable/modules/generatedsklearn.linear_model.LogisticRegressionCV.html

3) RQ-3: Can we generalize our approach to other plants
and how did we contribute to the research area?

RQ-1: Today, a smart factory creates a massive amount of
data by leveraging big data analysis technology. However, the
data source suffers from comprehensible by humans. This re-
search question relates to the implementation of a serialization
process into linked data. This research question evaluates the
types of data sources by implementing an application.
RQ-2: This research question relates to the algorithm design
thinking and domains-specific requirements to fulfill informa-
tion retrieval theory and natural language understanding. This
question has to evaluate the practical application.
RQ-3: This research question examines the viability of the
proposal in an aspect of the division of a plant or a smart
factory. Generated new test questions set to evaluate our
semantic question answering.

V. IMPLEMENTATION

We implement a mixed parsing based approach in order
to define essential elements of a natural query. The major
priority is to detect <subject-predicate-object> triples and
then map the verbs and nouns onto template SPARQL. This
template was created according to the requirements of a smart
factory. For instance, dynamic queries that fetch information
from streaming data possibly need SUM, AVG, and MIN filter
statements of SPARQL language.

As for static queries, we have hiearchical triples that contain
units of the smart factory and linked data of the Information
Model. Listing 1 and 2 show examples regarding hierarchical
triples of the smart factory of eniLINK and annotated OPC
UA linked data. Such predicates <factory:contains> should
be parsed and they need to be matched with verbs. However,
this may lead us to a misconception to match synonym verb
of predicates. Therefore, as illustrated in Figure 2, we inserted
an extra step to identify the synonym of verbs.

Fig. 2: Natural Language Processing for Question Answering

Listing 1: Sample triples of the eniLINK hierarchical data [10]

1 <http://linkedfactory.iwu.fraunhofer.de/
↪→ linkedfact

2 ory/linkedfactory/demofactory/machine10>
3 factory:contains
4 <http://linkedfactory.iwu.fraunhofer.de/

↪→ linkedfact
5 ory/demofactory/machine10/sensor1>,

Listing 2: Sample triples of the linked OPC UA Data

1 <unknown:namespace#UANodeSet/
↪→ UAVariable_321> :BrowseName "0:
↪→ MinSupportedSampleRate" ;

2 :DataType "Duration" ;
3 :NodeId "i=2017" ;
4 :ParentNodeId "i=2013" ;
5 :DisplayName <unknown:namespace#

↪→ UANodeSet/UAVariable_321/
↪→ DisplayName> .

6 <unknown:namespace#UANodeSet/
↪→ UAVariable_321/DisplayName> rdf:
↪→ value "MinSupportedSampleRate" .

After taking input from any user, stop-word preprocessing
starts to filter unnecessary characters such as question
marks, exclamation points, commas, dots, or determiners.
Tokenization is the next step to reduce the size of characters
to provide optimization in natural language processing and it
reduces the complexity of instances of sequence characters.
Lemmatization and stemming are fundamental steps before
WordNet verb analysis since the primary target is to extract
verb, nouns and related chunking to formulate a SPARQL
query that can answer.

There is an if-else statement for the named-entity
recognition after finding synonyms of the verb. As previously
explained, it is a way of extracting the most common entities
such as locations or names. A question answering application
can face problems in identifying domain-specific names,
locations, or organizations. For instance, the linkedfactory can
be comprehensible for Fraunhofer IWU’s smart factory, but
another smart factory or different domain may not know what
kind of entity this is. Therefore, if the question answering can
catch the entity-relationship pair as shown in Figure 3, the
question answering system inserts natural expressions into
shallow and deep syntactic parsing.

For dynamic queries, the question answering system applies
a similarity measurement. In Algorithm 2, the similarity flag
employs a sentence similarity in the following case. "Is
the system in trouble ?" is a reasoning query. The system
should interpret this query, and the system needs to know
exactly the semantic meaning of the sentence. However, the
above-mentioned approach is similarity-based identification.
When a user asked a question "Is the system trouble for

sensor1 in machine1?" the semantic question answering
can interpret a reasoning question through machine-readable
annotations.

Algorithm 2 Query Formulation
1: function QUERY FORMULATION(naturalinput)
2: query ← QueryWithPrefixes
3: r ← contituent.parse.tree
4: indirectdependency ← dependendency.parse.tree
5: while nodes 6= leafs.terminal do . Until leaf

nodes(Terminals)
6: verbs← PARSER(nodes)
7: nouns← PARSER(nodes)
8: similarityflag ←

WORDLATENANALYSIS(verbs)
9: if StaticInformation is True then

10: indirectdependencyF lag ←
DEPENDENCYPARSER(nodes)

11: if similarityflag and IndirectDependency is true
then

12: object←nouns
13: predicate←verbs
14: query += object + predicate + ?subject
15: else
16: subject←nouns
17: predicate←verbs
18: query += ?object + predicate + subject
19: end if
20: end if
21: if DynamicInformation is True then
22: predicate← PARSER(nodes)
23: object← PARSER(nodes)
24: similarityflag ←

SENTENCESIMILARITY(input)
25: query += object + predicate + ?subject
26: end if
27: end while
28: return query
29: end function

The architecture has provided a SPARQL endpoint for local
static data, and the KVIN presents a SPARQL Endpoint for
time-series data. We are using different techniques for different
question types. In case of a given natural language expression
as below, we can specify deep and shallow parsing diagram,
as depicted in Figure 3:

"Could you tell me which one contains fofab?"

Fig. 3: An example sentence from Stanford CoreNLP [11].

We specified noun and verb phrases at a basic level so
that they are using a shallow parsing that can alleviate the
constituency-parsing disambiguities. If the system catches the
right verb-noun pairs, it should eliminate expressions to reach
the origin of the noun or verb. Such expressions may represent
determiners, adjectives, or pronouns. As shown in Figure 4, the
system has two verbs that it needs to map the predicate of triple
onto the Turtle RDF data source. If it may find out the similar-
ity level of ’contains’ and ’tell’, the question answering could
say the essential verb to be evaluated. However, the order of a
verb is important for direct and indirect questions. As shown
in Figures 4 and 5, multiple objects have relationships with
the head verbs ’tell’ and ’contains’. Subjects and objects can
inverse the order of SPARQL query. In this case, the system
needs to identify universal dependencies 14. The named-entity
recognition can show the types of relationships as illustrated
in Figure 6 and Figure 7. A drawback of this identification
is a particular keyword can perplex of the identifier, noun,
etc. In essence, the question answering system needs more in-
depth analyses to solve the perplexities of unique keywords
and open-domain words.

Fig. 4: A Reversed Query Dependency Parser [11]

14https://universaldependencies.org/

https://universaldependencies.org/

Fig. 5: A Direct Query with Dependency Parser [11]

Fig. 6: Named-Entity Recognition Stanford CoreNLP [11]

Fig. 7: Named-Entity Recognition with OpenIE [11]

VI. EVALUATION

A. Test Environment

In the evaluation phase, the data sources linked data from
the OPC UA Server, eniLINK linked data that consist of
elements under the linkedfactory [12] and streaming data
that resides in eniLINK. As previously detailed in Linked
Data Serialization (II-B), we have a heterogeneous data
source for the semantic question answering. Generated
data from OPC UA has no particular namespace definition
unless we define it explicitly. However, the user-defined
IRIs definition has drawbacks such as collision or non-
extendibility. Linked data that has been instantly generated
triples makes the structure complex so that two subjects of
the list can collide with identical-defined IRIs. In this case, all
namespaces are generated with http://www.example.org/ and
"<unknown_namespace>". In Table II, answer return rate
means that an answer takes round-trip time after prompting a
question or keyword in the system. Querying style indicates
the type of queries that we can enter and coverage shows the
source of data that has been created. As for size parameter
in Table II, the size of dataset that we generated from OPC
UA Server has 19,687, which is 2 MB sized Turtle File.
The Linkedfactory triples relate to hierarchical triples that
have 70 triples as Turtle format and we test the question
answering with manually generated questions through Intel
Core i7-2720QM CPU @ 2.20 GHz, 2201 MHz, and x64
based Windows 10 Pro.

As a result, up-to-dateness supports update statement in
SPARQL in a question answering system supports. Lastly,
query formulation assistance displays to the end-users about
the type of assistant modulethat is used in a question
answering system.

B. Result

Evaluation criteria exhibits recall; accuracy, precision, and
F1 Score of answers against semantic question answering
system, as shown in Table III. General evaluation parameters
for a restricted domain question answering are not only
limited to responding to questions but also we can assess with
speed, user interaction, querying style (keywords, browsing,
spell checker, abbreviation recognition). In the following
formulas, TP, TN, FN, and FP denotes true positive, true
negative, false negative, false positive respectively.

Prediction = TP/(TP + FP) (1)

Recall = TP/(TP + FP) (2)

F1−Score = 2x(PrecisionxRecall)/(Precision+Recall)
(3)

Accuracy = (TP + TN)/(TP + FP + FN + TN) (4)

The precision (1) presents an expected answer that was
correctly predicted against the total responses. F1 Score (3) is
a balanced weight average between the Recall and Precision.
The recall (2) is the proportion of correctly answered
questions with respect to the number of questions. The
accuracy of the model (4) explains the model that has a ratio
of accurately predicted observation to the entire inspection.

Test questions were created with a combination of keywords
and elements of sentences. Due to the domain restriction,
the generation of test questionss has a goal that responds to
the questions precisely ranging from keywords to complex
natural input. The target data source is a mixed source that
combines static and streaming data. In the appendix, readers
can observe combinations of test questions to use for further
improvements.

http://www.example.org/

Evaluation Parameters Properties
Answer Return Rate QA against generated data from

OPC UA - 23.25 seconds aver-
age
QA against static query from
RDF file of the eniLINK - 18.92
seconds average
QA against dynamic query from
streaming data - 17.48 seconds
QA against Template Based
Open-Domain Questions -
20.55 seconds

Querying Style Keywords-Based Search and
Question-Based Search

Coverage The eniLINK data, the linked-
factory streaming data

Size Static data relatively small size
Streaming data relatively large
size

Up-to-dateness No update statement provided
by SPARQL

Query Formulation Assistance Voice Input Recognition, Spell
Checker

TABLE II: The semantic question answering evaluation crite-
rion

Question Answering Parameters Total Questions
True Positive 34

False Negative 13
False Positive 3

Precision 94.44%
Recall 72.34%

F1 Score 81.92%
Accuracy 68.00%

TABLE III: The Evaluation of the Question Answering (QA)

VII. RELATED WORK

[Molla, Vicedo 2007] reviewed primary characteristics
of question answering in restricted domain according to
integration of domain-specific information [13]. [Molla,
Vicedo 2007] defined main characteristics of question
answering system over limited domains, e.g. circumscription
of question answering, the complexity of question answering,
and practical usage of question answering [13]. The authors
have compared between open-domain and restricted-domain
question answering by figuring out key points. [Molla,
Vicedo 2007] offers four clear-cut aspects such as the size of
data, domain context, resources, and use of domain-specific
resources.

[Ferre 2012] published one of the detailed reports that
express common pitfalls of natural language processing and
essential points while consolidating SPARQL query and
morphological definitions [14]. SQUALL is a solution for
querying and updating RDF graphs by exploiting controlled
natural language expressions that restrict grammar structures
of a sentence in order to diminish complexities [14]. It has
been grouped all substantial features of a morphological
language, and the author pointed out what type of features
in a natural language harnessed with regarding priorities and
orders. The main contribution of SQUALL is categorizing

ambiguities of natural expressions and how they turned an
advantage out when using a controlled natural language [14].

[Biswas, Sharan and Malik 2004] proposed an architecture
that extracts precise answers for a given question [15]. The
authors described the module distinctly and defined the types
of questions that can be asked to the question answering.
The authors sketched a translation from their intermediate
language to SPARQL to gain more accuracy with their
system [14]. Template-based solutions were commented on
for a restricted domain and open domain question answering
systems. [Unger et. al. 2012] proposed a template-based
solution that produces a SPARQL template, which it directly
matches in the internal morphological features of the question
[16].

Evaluation of a semantic question answering is still a
cumbersome and hard problem. Lack of test questions that
belong to a specific domain is one of the major problems.
[Diekerma, Yilmazel and D. Liddy 2004] [17] offer different
methodologies from an open-domain question answering while
evaluating the restricted domain question answering. The
authors specify the evaluation methodology as below [17]:

System Performance: Speed and availability Answers:
Accuracy, Completeness Display User Interface: Querying
styles, natural language queries, keywords, browsing, and the
question formulation assistance (spell checker, abbreviation
solver)

The authors stated that the TREC style question answering
evaluation might not be suited for their restricted domain
system so that user-based evaluation can be more viable in
order to evaluate the system [17].

VIII. DISCUSSION

In this chapter, we will discuss the significance of the
findings relevant to the research problem being investigated.
Taking our findings into consideration, we will summarize
insights about problems.

First, RQ-1 and RQ-2 address distinct architectures for
the use of semantic question answering. The proposal is
implementing a service called KVIN that employs key-value
mapping with windowed time-series data. The time-series
data has been windowed with the size of data as well as the
extent of the data size. Although the information structure
is limited to be mapped onto Turtle triples, it can be useful
for rapid prototyping. No cost will be arise from designing
a new language onto SPARQL or overhead of instant linked
data creation from streamed data.

Generating test datasets still is a problematic topic for
the restricted domain question answering systems because
there could be some bias. For instance, the test dataset
for the information technology domain is not valuable for
a manufacturing domain, which restricts the testability;
however, we have used the parameters of referenced research

[17]. One of the findings is that the answer return rate is
similar to template-based open-domain question answering
[18]. If we want to get an answer relevant to node id, node
parent id, references, and connected devices to OPC UA
Servers, we need to convert the Information Model of the
OPC UA to the linked data. Converting from the root
node to the leaf nodes with namespaces of nodes would be
enough to map onto <subject-predicate-object> triples. The
semantic question answering should give precise answers for
dynamic data and list the results of the answer against static
data. Previous studies tried to solve the restricted domain
question answering problem with template-based solutions
by implementing a generic solution. Whereas, we perform a
heuristic-based syntactic parsing to a smart factory domain.
This heuristic-based approach does not guarantee optimal
results in similar statements; however, it can give a high
accuracy and F1-Score, as shown in Table III.

Showing the test results of the semantic question answering
and question classification, this study guides researchers of
Industry 4.0 regarding how to develop an advanced dialogue
system. RQ-2 defines the main features of the semantic
question answering in the smart factory domain, which
consists of short-listed answering, deep and shallow parsing
methods and the use of heterogeneous data sources. The
display interface may reduce the time that a human operator
spends on typing and correcting spelling mistakes so that the
efficiency of query processing may increase.

Consequently, as referred to RQ-3, the generalization of a
semantic question answering that works in a restricted domain
to another one is not an easy solution. Although the algorithm
and architecture generalizations are possible; however, the
drawbacks are the particular keywords in unstructured data
and streaming data. Moreover, this research contributes to the
research circle with algorithms regarding test set generation
and features of a semantic question answering to be used
against heterogeneous sources.

The major problem of this proposal is that the question
answering solely depends on the predicates of the data set
defined by the smart factory. To solve the dependency problem,
subject-predicate-object pairs can be recognized by deep
learning methods with unstructured data. Correspondingly,
the first finding was that the named-entity recognition had
shown poor performance compared to the parsing method
aspect of identifying noun and verb phrases.

The second finding is that complex paragraphs need a
complicated mechanism such as co-reference resolution.
Speed is another factor that we can infer when it comes
to the customization of the semantic question answering.
Accordingly, a technical operator or expert cannot get an
answer from streaming data within the time-constraint of a
mission-critical system.

The third finding is the serialization of the OPC UA can
be a time-consuming task; moreover, there must be a control
script to detect unaltered semantic triples. We propose the
source code 15 so that one could recognize simulation data in
OPC UA Server with a script to stave off the repercussion
during serializing. The last finding is that the implementation
of a generalized algorithm could degrade the precision of
answers but increase the scalability at the various departments
in a smart factory.

IX. CONCLUSION

The operator assistant system increases the productivity of
human operators and experts in smart factories. In this paper,
we have proposed an application for a restricted domain
question answering that utilizes generated data from OPC
Unified Architecture and streaming data. This application
can reduce the total amount of time for searching through
a large number of triples. The significant findings, that are,
the proposed novel approach can be used effectively to
create a supervisor tool for manufacturing technologies and a
synthesized human operator assistant system, which caters to
a robust architecture for the aimed platform. The proposed
model reduces the complexity of the normalization process
and employs state-of-the-art natural language understanding
toolkits.

For future improvements, we plan to implement advanced
semantic question answering that can be extended for time-
constrained tasks such as soft-critical software systems. Fur-
thermore, a question autocomplete system can be designed.
Such a system would be efficient because it prevents the
obligation of pattern or template-based question types. By
scoring correctness of answers, the system can give better
insight to the end-users. Lastly, named-entity recognition for
smart factory and manufacturing lexicons can be added in
order to eliminate a set of natural language processing steps
shown in Figure 2. The more annotated data is inserted in the
smart factory domain, the higher accurate reason induction,
which is compatible with the question answering.

ACKNOWLEDGMENTS

This work is funded by the German Research (DFG) within
the Research Training Group Role-Based Software Infrastruc-
tures for continuous-context-sensitive Systems (GRK 1907).

REFERENCES

[1] R. Margaret and D. Daniel, “Definition of Smart Factory.” [Online].
Available: https://searcherp.techtarget.com/definition/smart-factory

[2] K. D. Thoben, S. A. Wiesner, and T. Wuest, ““Industrie 4.0” and smart
manufacturing-a review of research issues and application examples,”
2017.

[3] C. Team, “What is the smart factory and its impact on
manufacturing?” [Online]. Available: https://ottomotors.com/blog/
what-is-the-smart-factorymanufacturing

15https://github.com/zointblackbriar/QuestionAnswering

https://searcherp.techtarget.com/definition/smart-factory
https://ottomotors.com/blog/what-is-the-smart-factorymanufacturing
https://ottomotors.com/blog/what-is-the-smart-factorymanufacturing

[4] T. D. Oesterreich and F. Teuteberg, “Understanding the implications of
digitisation and automation in the context of Industry 4.0: A triangula-
tion approach and elements of a research agenda for the construction
industry,” 2016.

[5] L. D. P. IWU and F., “eniLink.” [Online]. Available: http:
//platform.enilink.net/

[6] D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus,
“C-SPARQL,” in Proc. 18th Int. Conf. World wide web - WWW ’09,
no. May 2014. New York, New York, USA: ACM Press, 2009,
p. 1061. [Online]. Available: http://portal.acm.org/citation.cfm?doid=
1526709.1526856

[7] D. Jurafsky and J. H. Martin, Speech and Language Processing - An In-
troduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition, third edit ed., Stanford University, 2019.

[8] J. Perkins, D. Chopra and N. Hardeniya, Natural Language Processing
: Python and NLTK, 2016.

[9] P. Christen, “A comparison of personal name matching: Techniques and
practical issues,” in Proceedings - IEEE International Conference on
Data Mining, ICDM, 2006.

[10] F. IWU, “eniLINK,” 2020. [Online]. Available: http://platform.enilink.
net/

[11] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. Mc-
Closky, “The Stanford CoreNLP Natural Language Processing Toolkit,”
2015.

[12] F. IWU, “Linkedfactory Intro,” 2018. [Online]. Available: http:
//linkedfactory.iwu.fraunhofer.de/linkedfactory/view

[13] D. Mollá and J. L. Vicedo, “Question Answering in Restricted
Domains: An Overview,” Computational Linguistics, vol. 33, no. 1, pp.
41–61, mar 2007. [Online]. Available: http://www.mitpressjournals.org/
doi/10.1162/coli.2007.33.1.41

[14] S. Ferré, “SQUALL: A Controlled Natural Language for Querying
and Updating RDF Graphs,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2012, pp. 11–25. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-32612-7{_}2

[15] P. Biswas, A. Sharan, and N. Malik, “A framework for restricted domain
Question Answering System,” in Proceedings of the 2014 International
Conference on Issues and Challenges in Intelligent Computing Tech-
niques, ICICT 2014, 2014.

[16] C. Unger, L. Bühmann, J. Lehmann, A. C. N. Ngomo, D. Gerber, and
P. Cimiano, “Template-based question answering over RDF data,” in
WWW’12 - Proceedings of the 21st Annual Conference on World Wide
Web, 2012.

[17] A. R. Diekerma and E. D. Liddy, “Evaluation of restricted domain
Question- Answering systems,” Center for Natural Language Process-
ing, 2004.

[18] Machinalis Group, “Quepy Question Answering.” [Online]. Available:
http://quepy.machinalis.com/

http://platform.enilink.net/
http://platform.enilink.net/
http://portal.acm.org/citation.cfm?doid=1526709.1526856
http://portal.acm.org/citation.cfm?doid=1526709.1526856
http://platform.enilink.net/
http://platform.enilink.net/
http://linkedfactory.iwu.fraunhofer.de/linkedfactory/view
http://linkedfactory.iwu.fraunhofer.de/linkedfactory/view
http://www.mitpressjournals.org/doi/10.1162/coli.2007.33.1.41
http://www.mitpressjournals.org/doi/10.1162/coli.2007.33.1.41
http://link.springer.com/10.1007/978-3-642-32612-7{_}2
http://quepy.machinalis.com/

APPENDIX

Question ID Sample Questions Precision Recall

1 What do linkedfactory,heatmeter, and e3fabrik incorporate exactly ? 0.0 0.0
2 Provide me a combined result for IWU and e3sim 1.0 1.0
3 I want to know which one carries fofab ? 1.0 1.0
4 There is a member named fofab. Please give me all of its members 1.0 1.0
5 I am a customer of this company. Could you tell me please what the value of sensor1 of machine1 is ? 0.0 0.0
6 Could you tell me please what is the current value of sensor2 in machine2 ? 1.0 1.0
7 What POWERMETER holds ? 1.0 1.0
8 What does FOFAB incorporate ? 1.0 1.0
9 What does machine5 HOLD ? 1.0 1.0

10 What does gmx comprise ? 1.0 1.0
11 What comprises karobau? 1.0 1.0
12 System health for sensor2 in machine6 1.0 1.0
13 Tell me the health of system for sensor2 in machine1 0.0 0.0
14 Could you browse generated data ? 1.0 1.0
15 Give me all of the members of gmxspanen4 0.0 0.0
16 What holds coolingwater ? 1.0 1.0
17 What is the hierarchical structure of fofab ? 1.0 1.0
18 What contains IWU? 0.0 0.0
19 Could you give me the members in which contained by versuchsfeld ? 1.0 1.0
20 Could you give me the members in which linkedfactory has ? 1.0 1.0
21 What is the value of sensor1 in machine6 ? 1.0 1.0
22 What is the minimum that we can calculate for sensor1 of machine1 ? 1.0 1.0
23 What is the value of the maximum can be calculated by the sensor1 of machine1 ? 1.0 1.0
24 Could you tell me what the average for sensor3 in machine1 is ? 1.0 1.0
25 I need to learn an average value for sensor5 in machine2 0.0 0.0
26 What is the average of sensor3 in machine3 ? 1.0 1.0
27 Could you get me the references of nodes ? 1.0 1.0
28 Could you browse generated data ? 1.0 1.0
29 Is the E3-Sim member of linkedfactory ? 0.0 0.0
30 Could you take me all members of generated data ? 0.0 0.0
31 Give me all registered node id 1.0 1.0
32 I need to learn parent node id in generated data 0.5 0.5
33 Could you give me parent nodeID in the file of generated data ? 1.0 1.0
34 Give me all data blocks 1.0 1.0
35 Data blocks in generated OPC file 0.0 0.0
36 Give me the name of stations in generated data 0.0 0.0
37 All stations which are in generated data or new data 0.0 0.0
38 Registered node id 0.0 0.0
39 Who is Fofab ? 0.0 0.0
40 How is the system status for sensor1 in machine1? 1.0 1.0

TABLE IV: 40 Test Questions in order to test the application

	Introduction
	Background
	Smart Factories and Industry 4.0
	Linked Data Serialization
	The Semantic Data for OPC Unified Architecture Information Model
	Mapping the OPC UA Data into Semantic Data
	Mapping an OPC UA Data into Semantic Data

	Theory of the Natural Language Understanding
	Research Approach
	Implementation
	Evaluation
	Test Environment
	Result

	Related Work
	Discussion
	Conclusion
	References
	Appendix

