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Abstract

We consider fuzzy inference of the form “if · · · then · · · else · · · ”and “and/or
”. We developed logical constructs based on logical intuitions developed by
Fukami. With the proposed method of fuzzy inference and causal logic , we
apply on logical constructs. We try to show the fuzzy inference satisfy all
intuitions under several criteria.

Keywords: fuzzy twofold logic, fuzzy granular propositions, fuzzy
inference, fuzzy reasoning, fuzzy conditional inference, fuzzy intuitions,

1. Introduction

Zade [9] proposed fuzzy logic. Zadeh [8]and Mamdani [1] proposed fuzzy
conditional inference. Fukami [2] studied fuzzy intuitions and shown that
Zadeh fuzzy conditional inference is not suitable for these intuitions. Fukami
adapting the Godel and Standard sequence methods and proved not all fuzzy
intuitions. We try to prove all fuzzy intuitions using our fuzzy conditional
inference method [6].

Zadeh defined fuzzy set with a single membership function. The fuzzy
logic with a two membership functions [7] will give more evidence than a
single membership function. We studied fuzzy conditional inference using
twofold fuzzy sets. We try to studied fuzzy conditional inference for granu-
alar fuzzy propositions.

The two fold fuzzy set Ã={Z1, Z2}, Where Z1 support the information
and Z2 is against the information.
Ã={true, false} , {belied, bisbelief} ,{known, unknown} , {likely, unlikely}
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etc

the fuzzy proposition “x is Ã”.

Type-1
If x is P̃ then y is Q̃ else y is R̃
x is P̃1

—————–
y is ?

If x is ˜Demand then y is ˜Profit else y is ˜Loss
x is P̃1

—————–
y is ?

Type-2
If x is P̃ and x is Q̃ or x is R̃ then y is S̃
x is P̃1 and x is Q̃1 or x is R̃1

—————–
y is ?

If x is ˜Demand and x is ˜Supply or x is ˜Price then y is ˜Profit
x is ˜verydemand and x is ˜moresupply or x is ˜moreprice
—————–
y is ?

The evidence is granular if it consists of collection of propositions,
E = {g1, g2, ..., gn}
g1= x1 is Ã1 is λ1

g2= x2 is Ã2 is λ2

· · ·
g1= xn is Ãn is λn

Suppose we have granular propositions
g1= x is very demand is likely
g2= x is sales is very true
g3= x is profit is very true

Type-21
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If x is P̃ then y is Q̃ else y is R̃ is λ
x is P̃1

—————–
y is ?

If x is ˜Demand then y is ˜Profit else y is ˜Loss is likely
x is P̃1

—————–
y is ?

Type-22
If x is P̃ and If x is P̃ and x is Q̃ or x is R̃ then y is S̃ is λ1

x is P̃1 and x is Q̃1 or x is R̃1 is λ2

—————–
y is ?

If x is ˜Demand and x is ˜Supply or x is ˜Price then y is ˜Profit is likely
x is ˜verydemand and x is ˜moresupply or x is ˜moreprice
—————–
y is ?

2. Fuzzy Logic Based on Two Fold Fuzzy Sets

Zadeh [11] defined fuzzy set with a single membership function [20]. The
fuzzy set with two fuzzy member functions “true” and “false”will give more
evidence than the single fuzzy membership function to deal with incomplete
information. In the following “two fold fuzzy set” is defined with “true” and
“false”fuzzy membership functions. The fuzzy logic and fuzzy reasoning of
single membership function is extended to fuzzy logic with two membership
functions “true” and “false”.

2.1. The Two Fold Fuzzy Sets

“A two fold fuzzy set” may be defined with two membership functions “true”
and “false” for the proposition of type “x is A”. The fuzzy set with two
membership functions “true”and “false” will give more evidence than the
single membership function.

For instance “Rama has Headache ”.
In this fuzzy proposition, the fuzzy set “Headache” may be defined with
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“true” and “false”.

Definition 2.1 The “a two fold fuzzy set” Ã in a universe of discourseX is
defined by its membership function µÃ(x) → [0, 1], where Ã = {µtrue

A (x), µfalse
A (x)}

and x ∈ X}

µtrue
A (x) and µfalse

A (x) are the fuzzy membership functions of the “a two
fold fuzzy set”Ã,

µtrue
A (x) =

∫
µtrue

A /x(x) = µtrue
A (x1)/x1 + · · ·+ µtrue

A (xn)/xn,

µfalse
A (x) =

∫
µfalse

A (x)/x = µfalse
A (x)µfalse

A (x1)/x1 + · · · + µfalse
A (xn)/xn,

where “+” is union,
For example, “young”may be given for the fuzzy proposition “x is young

”

young = {µtrue
young(x), µfalse

young(x)},

µtrue
young(x) = {0.9/10 + 0.8/15 + 0.69/20 + 0.59/25 + 0.5/30,

+ 0.42/35 + 0.36/40 + 0.31/45 + 0.26/50},

µfalse
young(x) = {0.36/10 + 0.31/15 + 0.26/20 + 0.23/25 + 0.2/30 + 0.18/35

+ 0.16/40 + 0.14/45 + 0.12/50}.
For instance. “Rama is young” with fuzziness {0.8, 02}, where 0.8 is

“true” and 0.2 is “false”.
The Graphical representation of “true” and “false” of “young” is shown

in Fig.1.

2.2. The Two Fold Fuzzy Logic

The fuzzy logic is combination of fuzzy sets using logical operators. The fuzzy
logic with “two fold fuzzy sets” is combination of “two fold fuzzy sets” using
logical operators. The fuzzy logic bases on “two fold fuzzy sets” can be stud-
ied similar lines of Zadeh’s fuzzy logic.

Some of the logical operations are given below for fuzzy sets with two fold
fuzzy membership functions.

Ã, B̃ and C̃ are fuzzy sets with two fold fuzzy membership functions.
Let tall, weight and more or less weight are two fold fuzzy sets.

4



˜tall = {0.9/x1 + 0.8/x2 + 0.7/x3 + 0.4/x4 + 0.2/x5,
0.5/x1 + 0.4/x2 + 0.3/x3 + 0.2/x4 + 0.1/x5}

˜weight = {0.8/x1 + 0.7/x2 + 0.5/x3 + 0.3/x4 + 0.2/x5,
0.2/x1 + 0.2/x2 + 0.1/x3 + 0.1/x4 + 1/x5}

more or less ˜weight= {0.9/x1 + 0.8/x2 + 0.7/x3 + 0.5/x4 + 0.4/x5,
0.4/x1 + 0.4/x2 + .3/x3 + .3/x4 + 0.3/x5}.

Negation
x is not Ã
Ã′(x) = {1− µtrue

A (x), 1− µfalse
A (x)}/x

x is not ˜tall
˜tall = {0.9/x1 + 0.8/x2 + 0.7/x3 + 0.4/x4 + 0.2/x5,

0.5/x1 + 0.4/x2 + 0.3/x3 + 0.2/x4 + 0.1/x5}
1− ˜tall = {0.1/x1 + 0.2/x2 + 0.3/x3 + 0.6/x4 + 0.8/x5,

0.5/x1 + 0.6/x2 + 0.7/x3 + 0.8/x4 + 0.9/x5}.

Disjunction
x is Ã or y is B̃
Ã ∨ B̃ = {max(µtrue

A (x), µtrue
B (y)), max(µfalse

A (x), µfalse
B (y))}/(x, y),

˜tall ∨ ˜weight= {0.9/x1 + 0.8/x2 + 0.7/x3 + 0.6/x4 + 0.5/x5,
0.4/x1 + 0.3/x2 + 0.2/x3 + .1/x4 + .1/x5}.

Conjunction
x is Ã and y is B̃
Ã ∧ B̃ = {min(µtrue

A (x), µtrue
B (y)), min(µfalse

A (x), µfalse
B (y))}/(x, y),

˜tall ∧ ˜weight = {0.8/x1 + 0.7/x2 + 0.5/x3 + 0.2/x4 + 0.2/x5,
0.1/x1 + 0.1/x2 + 0.1/x3 + 0.1/x4 + 0.1/x5}.

Composition
if x is Ã then y is B̃
x is Ã1

——————-
y is Ã1 o (Ã → B̃)

Ã o (Ã → B̃) ={min{µtrue
A (x), min(1, 1− µtrue

A (x) + µtrue
B (y))},

min{µDiselief
A (x), min(1, 1− µfalse

A (x) + µfalse
B (y)}}/y

if x = y
= {min{µtrue

A (x), min(1, 1− µtrue
A (x) + µtrue

B (x))},
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min{µDiselief
A (x), min(1, 1− µfalse

A (x) + µfalse
B (x))}

if x is ˜tall then x is ˜weight
x is very ˜tall
—————————-
x is very ˜tall o ( ˜tall → ˜weight)

Fuzzy quantifiers
The fuzzy propositions may contain quantifiers like “very” , “more or less”
etc. These fuzzy quantifiers may be eliminated as

Concentration
x is very Ã
µvery ˜A(x)={µtrue

very A(x)2, µfalse

very A(x)2}
x is very ˜tall
µ
very ˜tall

(x) = {0.81/x1 + 0.64/x2 + 0.49/x3 + 0.16/x4 + 0.04/x5,

0.25/x1 + 0.16/x2 + 0.09/x3 + 0.04/x4 + 0.01/x5}
µvery ˜A(x) ⊆ µ ˜A(x)

i.e.,
µvery ˜A(x) ≤ µ ˜A(x)

µvery ˜A(x) contains µ ˜A(x)

Diffusion
if x is more or less Ã
µmore or less ˜A(x)={µtrue

more or less A(x)2, µfalse

more or less A
(x)0.5}

if x is more or less ˜tall
µ
more or less ˜tall

(x) = {0.95/x1 + 0.89/x2 + 0.84/x3 + 0.63/x4 + 0.45/x5,

0.70/x1 + 0.63/x2 + .054/x3 + 0.44/x4 + 0.31/x5}.
3. Fuzzy Conditional Inference

Zadeh [10] fuzzy conditional inference is given as
if x is Ã then y is B̃ = Ã → B̃ = min{1, 1−Ã+B̃}, (3.1)
={min(1, 1− µtrue

A (x) + µtrue
B (y)), min(1, 1− µfalse

A (x) + µfalse
B (y))}/(x, y),

Mamdani [2] fuzzy conditional inference is given by
if x is Ã then y is B̃ = Ã → B̃ = Ã×B̃ (3.2)
Reddy[10] fuzzy conditional inference is given by
if x1 is Ã1 and x2 is Ã2 and · · · and xn is Ãn then y is B̃ =min{Ã1, Ã2, .. ,
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Ãn, B̃}
if x is Ã then y is B̃ = Ã
i.e B̃ = Ã (3.3)

if x1 is Ã1 and x2 is Ã2 and · · · and xn is Ãn then y is B̃ = Ã1andÃ2, · · · , Ãn

= min{Ã1, Ã2, .. , Ãn, Ã1, Ã2, .. , Ãn}
=min{Ã1, Ã2, .. , Ãn}
B̃ = Ã1andÃ2, · · · , Ãn

The fuzzy conditional inference is given as using Mamdani fuzzy condi-
tional inference,
if x1 is Ã1 and x2 is Ã2 and · · · and xn is Ãn then y is B̃ = {{min(Ã1, Ã2, ..
, Ãn), B}}
= {{min(Ã1, Ã2, .. , Ãn), B}}
if x is Ã then y is B̃={Ã} (3.4)

Fuzzy conditional inference is given for “if x is Ã then y is B̃ else y is
C̃ ” as,
if x is P̃ then y is Q̃ else y is R̃ = (P̃ × Q̃ ∨ P̃ ′ × R̃,) where “+ ” is union

if x is P̃ then y is Q̃ else y is R̃ =if x is P̃ then y is Q̃ = P̃ → Q̃, for P̃
if x is P̃ then y is Q̃ else y is R̃ =if x is not P̃ then y is R̃ = P̃ ′ → R̃,for

not P̃

3. Fuzzy plausibility

Plausibility theory will perform inconsistent information into consistent.
Generalization

p∨ q, µ =p, µ
p∨ q, µ = q, µ

Specialization
p∧ q , µ=p, µ
p∧ q = q, µ

The inference is given using generalization and specialization

p∧ q ∨ r, µ=p∨ q, µ = p, µ
p∧ q ∨ r, µ=q∨ r, µ = q, µ
p∧ q ∨ r, µ=r∨ p, µ = p, µ

Consider fuzzy inference Type-1
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The fuzzy inference is given for Type-1 using generalization and special-
ization

Confider fuzzy inference Type-11

Type-1 If x is P̃ then y is Q̃ else y is R̃
x is P̃1

—————–
y is ?

if x is P̃ then x is Q̃
x is P̃1

—————–
y is Q̃1

if x is P’ then x is R̃
x is P̃1

—————–
y is R̃1

The fuzzy inference is given for Type-2 using generalization and special-
ization
Type-2 indent If x is P̃ and x is Q̃ or x is R̃ then y is S̃

x is P̃1 and x is Q̃1 or x is R̃1

—————–
y is ?

If x is P̃ then y is S̃
x is P̃1

—————–
y is S̃1

If x is Q̃ then y is S̃
x is Q̃1

—————–
y is S̃1
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If x is R̃ then y is S̃
x is R̃1

—————–
y is S̃

From fuzzy conditional inference Type-1 and Type-2, the two criterions
may be given as

Criteria-1
If x is P̃ then y is S̃
x is P̃1

—————–
y is ?

Criteria-2
(if x is P’ then x is R̃)
x is P̃ ′

1

—————–
y is ?

The fuzzy inference is drawing a conclusion from fuzzy propositions.

The fuzzy inference is given for Criteria-1 according to fuzzy intuitions.

Table 1: Fuzzy inference for Criteria-1.

Intuition Proposition Inference

I-1 x is P̃ y is S̃

I-2 y is S̃ x is P̃

II-1 x is very P̃ y is very S̃

II-2 y is very S̃ x is very P̃

III-1 x is more or less P̃ y is more or less S̃

III-2 y is More or less S̃ is more or less P̃

IV-1 x is not P̃ y is not S̃

IV-2 y is not S̃ x is not P̃
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4. Verification of fuzzy intuition using Fuzzy Conditional Infer-
ence

Verification of fuzzy intuitions for Criteria-1

4.1.1 In the case of intuition I-1

P̃ o (P̃→ S̃)
=

∫
µP̃ (x) o (

∫
µP̃ (x) → ∫

µS̃(y))

Considering P̃ → S̃ = P̃
Considering S̃ = P̃

=
∫

µS̃(y) o (
∫

µS̃(y))
=

∫
µS̃(y) ∧ (

∫
µS̃(y))

Using specialization
=

∫
µS̃(y)

=y is ˜̃S
intuition I-1 satisfied.

4.1.2 In the case of intuition I-2

(P̃ → S̃) o S̃
= (

∫
µP̃ (x) → ∫

µS̃(y)) o
∫

µS̃(y)

Considering P̃ → S̃ = P̃
Considering S̃ = P̃

=
∫

µP̃ (x)) o
∫

µP̃ (x)
=

∫
µP̃ (x)) ∧ ∫

µP̃ (x)
Using specialization

=
∫

µP̃ (x)

=x is ˜̃P
intuition I-2 satisfied.

4.1.3 In the case of intuition II-1

veryP̃ o (P̃→ S̃)
=

∫
µveryP̃ (x) o (

∫
µP̃ (x) → ∫

µS̃(y))

Considering P̃ → S̃ = P̃
Considering S̃ = P̃

=
∫

µveryS̃(y) o (
∫

µS̃(x))
=

∫
µveryS̃(y) ∧ (

∫
µS̃(y))
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Using specialization
=

∫
µveryS̃(y)

=y is ˜veryS̃
intuition II-1 satisfied.

4.1.4 In the case of intuition II-2

(P̃ → S̃) o very S̃
= (

∫
µP̃ (x) → ∫

µveryS̃(y)) o
∫

µS̃(y)

Considering P̃ → S̃ = P̃
Considering S̃ = P̃

=
∫

µP̃ (x)) o
∫

µveryP̃ (x)
=

∫
µP̃ (x)) ∧ ∫

µveryP̃ (x)
Using specialization

=
∫

µveryP̃ (x)

=x is ˜veryP̃
intuition II-2 satisfied.

4.1.5 In the case of intuition III-1

indent moreorlessP̃ o (P̃→ S̃)
=

∫
µmoreorlessP̃ (x) o (

∫
µP̃ (x) → ∫

µS̃(y))

Considering P̃ → S̃ = P̃
Considering S̃ = P̃

=
∫

µmoreorlessS̃(y) o (
∫

µS̃(x))
=

∫
µmoreorlessS̃(y) ∧ (

∫
µS̃(y))

Using specialization
=

∫
µmoorlessS̃(y)

=y is ˜veryS̃
intuition III-1 satisfied.

4.1.6 In the case of intuition III-2

(P̃ → S̃) o more or less S̃
= (

∫
µP̃ (x) → ∫

µmoreorlessS̃(y)) o
∫

µS̃(y)

Considering P̃ → S̃ = P̃
Considering S̃ = P̃

=
∫

µP̃ (x)) o
∫

µmoreorlessP̃ (x)
=

∫
µP̃ (x)) ∧ ∫

µmoreorlessP̃ (x)
Using specialization
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=
∫

µmoreorlessP̃ (x)

=x is ˜veryP̃
intuition III-2 satisfied.

4.1.7 In the case of intuition IV-1

not P̃ o (P̃ → ˜̃S)
=

∫
µnotP̃ (x) o (

∫
µP̃ (x) → ∫

µS̃(y))

Considering P̃ → S̃ = P̃
Considering S̃ = P̃

=
∫

µnotS̃(y) o (
∫

µS̃(x))
=

∫
µnotS̃(y) ∧ (

∫
µS̃(y))

Using specialization
=

∫
µnotS̃(y)

=y is ˜notS̃
intuition IV-1 satisfied.

4.1.8 In the case of intuition IV-2

(P̃ → S̃) o very S̃
= (

∫
µP̃ (x) → ∫

µveryS̃(y)) o
∫

µS̃(y)

Considering P̃ → S̃ = P̃
Considering S̃ = P̃

=
∫

µP̃ (x)) o
∫

µveryP̃ (x)
=

∫
µP̃ (x)) ∧ ∫

µveryP̃ (x)
Using specialization

=
∫

µveryP̃ (x)

=x is ˜veryP̃
intuition IV-2 satisfied.

Criteria-1 is suitable for I-1,I-2, II-1, II-2, III-1, III-2, IV-1 and IV-2.

The fuzzy intuitions are give based on Fukami for Criteria-2 .

I’-1
if x is P̃ ′ then y is R̃
x is P̃ ′

—————————
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y is R̃

I’-2
if x is P’ then y is R̃
y is R̃
—————————
y is P̃ ′

II’-1
if x is P’ then y is R̃
x is very P̃ ′

—————————
y is very R̃

II’-2
if x is P’ then y is R̃
y is very R̃
—————————
y is very P̃ ′

III’-1
if x is P’ then y is R̃
x is more or less P̃ ′

—————————
y is more or less R̃

III’-2
if x is P’ then y is R̃
y is more or less R̃
—————————
y is more or less P̃ ;

IV’-1
if x is P’ then y is R̃
x is not P̃ ′

—————————
y is not R̃
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IV’-2
if x is P’ then y is R̃
y is not R̃
—————————
x is not P̃ ′

The inference is given for Criteria-1 according to intuitions.

Table 2: Fuzzy inference for Criteria-2.

Intuition Proposition Inference

I’-1 x is P̃ ′ y is R̃

I’-2 y is R̃ x is P̃ ′

II’-1 x is very P̃ ′ y is very R̃

II’-2 y is very R̃ x is very P̃ ′

III’-1 x is more or less P̃ ′ y is more or less R̃

III’-2 y is more or less R̃ is more or less P̃ ′

IV’-1 x is not P̃ ′ y is not R̃

IV’-2 y is not R̃ x is not P̃ ′

Verification of fuzzy intuitions for Criteria-2

4.2.1 In the case of intuition I’-1

P̃ o (P̃ ′ → R̃)
=

∫
µP̃ (x) o (

∫
µP̃ ′(x) → ∫

µR̃(y))

Considering P̃ ′ → R̃ = P̃ ′

Considering R̃ = P̃ ′

=
∫

µR̃(y) o (
∫

µR̃(y))
=

∫
µR̃(y) ∧ (

∫
µR̃(y))

Using specialization
=

∫
µR̃(y)

=y is ˜̃R
intuition I’-1 satisfied.

4.2.2 In the case of intuition I’-2
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(P̃ ′ → R̃)o R̃′

= (
∫

µP̃ ′(x) → ∫
µR̃(y)) o

∫
µR̃′(y)

Considering P̃ ′ → R̃ = P̃ ′

Considering R̃ = P̃ ′

=
∫

µP̃ ′(x)) o
∫

µP̃ ′(x)
=

∫
µP̃ ′(x)) ∧ ∫

µP̃ ′(x)
Using specialization

=
∫

µP̃ ′(x)

=x is P̃ ′

intuition I’-2 satisfied.

4.2.3 In the case of intuition II’-1

very P̃ ′ o (P̃ ′ → R̃)
=

∫
µveryP̃ ′(x) o (

∫
µP̃ ′(x) → ∫

µR̃(y))

Considering P̃ ′ → R̃ = P̃ ′

Considering R̃ = P̃ ′

=
∫

µveryR̃′(y) o (
∫

µR̃(y))

=
∫

µveryR̃′(y) ∧ (
∫

µR̃(y))
Using specialization

=
∫

µveryR̃(y)

=y is very R̃
intuition II’-1 satisfied.

4.2.4 In the case of intuition II’-2 (P̃ ′ → R̃)o very R̃

= (
∫

µP̃ ′(x) → ∫
µR̃(y)) o

∫
µveryR̃(y)

Considering P̃ ′ → R̃ = P̃ ′

Considering R̃ = P̃ ′

=
∫

µP̃ ′(x)) o
∫

µveryP̃ ′(x)

=
∫

µP̃ ′(x)) ∧ ∫
µveryP̃ ′(x)

Using specialization
=

∫
µveryP̃ ′(x)

=x is very P̃ ′

intuition II’-2 satisfied.

4.2.5 In the case of intuition III’-1

more or less P̃ ′ o (P̃ ′ → R̃)
=

∫
µmoreorlessP̃ ′(x) o (

∫
µP̃ ′(x) → ∫

µR̃(y))
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Considering P̃ ′ → R̃ = P̃ ′

Considering R̃ = P̃ ′

=
∫

µmoreorlessR̃′(y) o (
∫

µR̃(y))
=

∫
µmoreorlessR̃(y) ∧ (

∫
µR̃(y))

Using specialization
=

∫
µmoreorlessR̃(y)

=y is more or less R̃
intuition III’-1 satisfied.

4.2.6 In the case of intuition III’-2

(P̃ ′ → R̃) o more or less R̃
= (

∫
µP̃ ′(x) → ∫

µR̃(y)) o
∫

µmororlessR̃(y)

Considering P̃ ′ → R̃ = P̃ ′

Considering R̃ = P̃ ′

=
∫

µP̃ ′(x)) o
∫

µmoreorlessP̃ ′(x)
=

∫
µP̃ ′(x)) ∧ ∫

µmoreorlessP̃ ′(x)
Using specialization

=
∫

µmoreorlessP̃ ′(x)

=x is more or less P̃ ′

intuition II’-2 satisfied.

4.2.7 In the case of intuition IV’-1

not P̃ ′ o (P̃ ’ → R̃)
=

∫
µnotP̃ ′(x) o (

∫
µP̃ ′(x) → ∫

µR̃(y))

Considering P̃ ′ → R̃ = P̃ ′

Considering R̃ = P̃ ′

=
∫

µnotR̃′(y) o (
∫

µR̃(y))
=

∫
µnotR̃′(y) ∧ (

∫
µR̃(y))

Using specialization
=

∫
µnotR̃(y)

=y is not R̃

intuition IV’-1 satisfied.

4.2.8 In the case of intuition IV’-2

(P̃ ′ → R̃) o not R̃
= (

∫
µP̃ ′(x) → ∫

µR̃(y)) o
∫

µnotR̃(y)

Considering P̃ ′ → R̃ = P̃ ′
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Considering R̃ = P̃ ′

=
∫

µP̃ ′(x)) o
∫

µnotP̃ ′(x)
=

∫
µP̃ ′(x)) ∧ ∫

µnotP̃ ′(x)
Using specialization

=
∫

µnotP̃ ′(x)

=x is not P̃ ′

intuition IV’-2 satisfied.

Criteria-1 is suitable for I’-1,I’-2, II’-1, II’-2, III’-1, III’-2, IV’-1 and IV’-2.

5. Fuzzy Granular Propositions with Truth Variables

Zadeh [16] defined quantification of true variables as composition of fuzzy
set and true variables.

The evidence is granular if it consists of collection of propositions,
E = {g1, g2, ..., gn}
g1= x1 is Ã1 is λ1

g2= x2 is Ã2 is λ2

· · ·
g1= xn is Ãn is λn

Suppose we have granular propositions
g1= Rama is very young is true
g2= Rama is young is very true
g3= Sita is beautiful is very true
What is the fuzziness of the granular fuzzy propositions?

The granular fuzzy proposition is “x is Ã is λ ”.
Where λ is true, false, very true, more or less false, very true etc.

The fuzzy granular propositions may contain “if · · · then · · · else · · · ”
and “and/or ”.

If x is P̃ then y is Q̃ else y is R̃ is λ
If x is P̃ and x is Q̃ or x is R̃ then y is S̃ is λ

Definition 5.1 The quantification of fuzzy true variables for fuzzy set of fuzzy
proposition of the type “x is A is λ” is defined as µ−1

A (x) o λ,where µA(x)−1

is inverse of comparability function of A , “o” is composition and λ is fuzzy
true variable like true, false, very true etc.
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Definition 5.2 The composition of fuzzy true variables for “a two fold fuzzy set”of
fuzzy proposition of the type “x is Ã is λ” may be defined as
Ã(x)λ = µÃ(x)λ = {µtrue

A (x), µfalse
A (x)} o λ

where quantification of true variable applied on respective true functions. i.e.,

Ã(x)λ1 = {µA(x)λ1 , µ
false
A (x)}, where λ1= not true, very true, more or less

true e.tc.
For instance,λ1= very true
Ã(x)λ1 = {µA(x)2, µfalse

A (x)}

Ã(x)λ2 = {µA(x)true, µµ2

A (x)}, where λ2= not false, very false, more or
less false e.tc.
For instance,λ2= more or less false
Ã(x)λ1 = {µA(x)true, µ0.2

A (x)}

The true functional modification of fuzzy proposition “x is Ã is very true”
is given

{µtrue
A (x), µfalse

A (x)} o very true={µtrue

very A(x), µfalse
A (x)}

The true functional modification of fuzzy proposition “x is Ã is very false”is
given

{µtrue
A (x), µfalse

A (x)} o very false ={µtrue
A (x), µfalse

very A(x)},
The true functional modification of fuzzy proposition “x is tall is very true”

is given as
˜tall = {0.9/x1 + 0.8/x2 + 0.7/x3 + 0.4/x4 + 0.2/x5,

0.5/x1 + 0.4/x2 + 0.3/x3 + 0.2/x4 + 0.1/x5},
˜very tall = {0.81/x1 + 0.64/x2 + 0.49/x3 + 0.16/x4 + 0.04/x5,

0.5/x1 + 0.4/x2 + 0.3/x3 + 0.2/x4 + 0.1/x5}.
The true functional modification of fuzzy proposition “x is tall is very false”

is given as
˜tall = {0.9/x1 + 0.8/x2 + 0.7/x3 + 0.4/x4 + 0.2/x5,

0.5/x1 + 0.4/x2 + 0.3/x3 + 0.2/x4 + 0.1/x5},
˜very tall = {0.9/x1 + 0.8/x2 + 0.7/x3 + 0.4/x4 + 0.2/x5,

0.25/x1 + 0.16/x2 + 0.09/x3 + 0.04/x4 + 0.01/x5}.
The nested fuzzy propositions of the form
x is Ã is (λ1 is (λ2... is λn)) = x is Ã o λ1) o λ2 o · · · o λn.

Consider quantification of true variables for fuzzy inference Type-1
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If x is P̃ and x is Q̃ or x is R̃ then y is S̃ is λ
x is P̃1 and x is Q̃1 or x is R̃1

—————–
y is ?

The fuzzy inference is given for Type-1 using generalization and special-
ization

If x is P̃ then y is S̃ is λ
x is P̃1

—————–
y is ?

If x is Q̃ then y is S̃ is λ
x is Q̃1

—————–
y is ?

If x is R̃ then y is S̃ is λ
x is R̃1

—————–
y is ?

Confider fuzzy inference Type-2

If x is P̃ then y is Q̃ else y is R̃ is λ
x is P̃1

—————–
y is ?

The fuzzy inference is given for Type-2 using generalization and special-
ization

indent (if x is P̃ then x is Q̃) is λ
x is P̃1

—————–
y is ?
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(if x is P’ then x is R̃) is λ
x is P̃1

—————–
y is ?

From fuzzy conditional inference Type-1 and Type-2, two criteria may be
given as

Criteria-Iλ − 1
If x is P̃ then y is S̃is λ
x is P̃1

—————–
y is ?

Criteria-Iλ − 2
(if x is P’ then x is R̃) is λ
x is P̃ ′

1

—————–
y is ?

The fuzzy inference is drawing a conclusion from fuzzy propositions.
The fuzzy intuitions for Criteria-Iλ − 1.

Fuzzy Conditional Inference is straight forward based on verification of fuzzy
intuitions for Criteria-1
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Table 3: Fuzzy inference for Criteria-Iλ − 1.

Intuition Proposition Inference

Iλ − 1 x is P̃ o λ y is S̃λ

Iλ − 2 y is S̃ o λ x is P̃λ

IIλ − 1 x is very P̃ o λ y is very S̃λ

IIλ − 2 y is very S̃ o λ x is very P̃λ

IIIλ − 1 x is more or less P̃ o λ y is more or less S̃λ

IIIλ − 2 y is more or less S̃ o λ is more or less P̃λ

IVλ − 1 x is not P̃ o λ y is not S̃λ

IVλ − 2 y is not S̃ o λ x is not P̃λ

Criteria-1 is suitable for Iλ−1,Iλ−2, IIλ−11, IIλ−2, IIIλ−1 , IIIλ−2,
IVλ − 1 and IVλ − 2.
The fuzzy intuitions for Criteria-Iλ − 2.

I ′λ − 1
if x is P̃ ′ then y is R̃ is λ
x is P̃ ′

—————————
y is R̃λ

I ′λ − 2
if x is P’ then y is R̃ is λ
y is R̃
—————————
x is P̃ ′

λ

II ′λ − 1
if x is P’ then y is R̃ is λ
x is very P̃ ′

—————————
y is very R̃λ
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II ′λ − 2
if x is P’ then y is R̃ is λ
y is very R̃
—————————
x is very P̃ ′

λ

III ′λ − 1
if x is P’ then y is R̃ is λ
x is more or less P̃ ′

—————————
y is more or less R̃λ

III;λ−2
if x is P’ then y is R̃ is λ
is more or less R̃
—————————
y is more or less P̃ ′

λ

IV ′
λ − 1

if x is P’ then y is R̃ is λ
x is not P̃ ′

—————————
y is not R̃λ

IV ′
λ − 2

if x is P’ then y is R̃ is λ
y is not R̃
—————————
x is not P̃ ′

λ

The inference is given for Criteria-2 according to intuitions.
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Table 4: Fuzzy inference for Criteria-Iλ − 2.

Intuition Proposition Inference

I ′λ − 1 x is P̃ ′ y is R̃λ

I ′λ − 2 y is R̃ x is P̃ ′
λ

IIλ − 1 x is very P̃ ′ y is very R̃λ

II ′λ − 2 y is very R̃ o x is very P̃ ′

III ′λ − 1 x is more or less P̃ ′ y is more or less R̃λ

III ′λ − 2 y is More or less R̃ is more or less P̃.λ
IIV ′

λ − 1 x is not P̃ ′ y is not R̃λ

IV ′
λ − 1 y is not R̃ o is x is not P̃ ′

λ

Fuzzy Conditional Inference is straight forward based on verification of
fuzzy intuitions for Criteria-2

Criteria-1 is suitable for I ′λ−1,I ′λ−2, II ′λ−11, II ′λ−2, III ′λ−1 , III ′λ−2,
IV ′

λ − 1 and IV ′
λ − 2.

6. Fuzzy Certainty Factor

The fuzzy certainty factor(FCF) shall made as single fuzzy membership func-
tions with two fuzzy membership functions to eliminate the conflict of evi-
dence between “true ”and “false”.

Definition 4.1 The FCF of µÃ for propositions “x is Ã” is characterized
by its membership function µFCF

Ã
(x) → [0, 1], where µFCF

Ã
(x) = {µtrue

A (x) −
µfalse

A (x)}/x,
µF

Ã
CF (x) < 0, µF

Ã
CF (x) = 0 and µF

Ã
CF (x) > 0

are the redundant, insufficient and sufficient respectively.

The FCF will compute the conflict of evidence of the incomplete infor-
mation.
For Example
µtrue

young(x) ={0.9/10+0.8/15+0.69/20+0.59/25+0.5/30+0.42/35+0.36/40+
0.31/45 + 0.26/50}
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µfalse
young(x) ={0.9/10 + 0.8/15 + 0.69/20 + 0.59/25 + 0.5/30 + 0.42/35 +

0.36/40 + 0.31/45 + 0.26/50}
The fuzzy intuitions may be studied with fuzzy certainty factor as studied

in the above.

7. Application for Fuzzy Intuitions

The Business intelligence needs reasoning. The Business data is defied
with fuzziness with linguistic variables.

If x is Demand then y is Profit
x is very Demand
—————–
y is very Profit

Consider the fuzzy data sets.

Table 5: Fuzzy data set Demand

Item No. Demand

Item1 (0.4,0.1)
Item2 (0.6,0.1)
Item3 (0.9,0.2)
Item4 (1.0,0.2)
Item5 (1.0,0.0)

if x is Demand then x is Profit
The fuzzy conditional inference using (3.1) given by

v
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Table 6: Fuzzy data set Profit

Item No. Profit
hline Item1 (0.4,0.1)

Item2 (0.6,0.1)
Item3 (0.9,0.2)
Item4 (1.0,0.2)
Item5 (1.0,0.0)

Table 7: Fuzzy data set very Profit

Item No. very Profit

Item1 (0.16,0.01)
Item2 (0.36,0.01)
Item3 (0.81,0.04)
Item4 (1.0,0.04)
Item5 (1.0,0.0)
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If x is not Demand then y is Loss
x is not more or less Demand
—————–
y is more or less Loss

Consider the fuzzy data sets for production.

Table 8: Fuzzy data set not Demand

Item No. not Demand

Item1 (0.6,0.9)
Item2 (0.4,0.9)
Item3 (0.1,0.8)
Item4 (0.0,0.8)
Item5 (0.0,1.0)

The fuzzy conditional inference using (3.1) given by

Table 9: Fuzzy data set Loss

Item No. loss

Item1 (0.6,0.9)
Item2 (0.4,0.9)
Item3 (0.1,0.8)
Item4 (0.0,0.8)
Item5 (0.0,1.0)

If x is Demand then y is Profit is very true
x is very Demand
—————–
y is Profit is very true
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Table 10: Fuzzy data set Profit is very true

Item No. very Profit

Item1 (0.09,0.1)
Item2 (0.25,0.1)
Item3 (0.49,0.2)
Item4 (1,0,0,2)
Item5 (1.0,0.0)

If x is not Demand then y is Loss is more or lees is true
x is not Demand
—————–
y is Loss is more less is true

Table 11: Fuzzy data set Loss is more or less true

Item No. more or less Loss
Item1 (0.09,0.1)
Item2 (0.25,0.1)
Item3 (0.49,0.2)
Item4 (1,0,0,2)
Item5 (1.0,0.0)

7. Conclusion

FWe considered fuzzy intuitions and fuzzy granular intuitions of the form
“if · · · then · · · else · · · ”, “if · · · then · · · ”and “and/or”and fuzzy inference
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is studied using twofold fuzzy sets. we found the all fuzzy intuitions are
satisfied with our method.
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