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Abstract

Safe Reinforcement Learning (Safe RL) aims to produce con-
strained policies with constraints typically motivated by is-
sues of physical safety. This paper considers the issues that
arise from regulatory constraints or issues of legal safety.
Without guarantees of safety, autonomous systems or agents
(A-bots) trained through RL are expensive or dangerous to
train and deploy. Many potential applications for RL involve
acting in regulated environments and here existing research is
thin. Regulations impose behavioural restrictions which can
be more complex than those engendered by considerations
of physical safety. They are often intertemporal, require plan-
ning on behalf of the learner and involve concepts of causality
and intent. By examining the typical types of laws present in
aregulated arena, this paper identifies design features that the
RL learning process should possess in order to ensure that it
is able to generate legally safe, compliant policies.

Introduction

In this position paper I will consider the problem of learning
a solution to a sequential decision making problem in an en-
vironment governed by some laws via Reinforcement learn-
ing (RL). I will assume that the learned policy should not
break these laws because doing so would impose sanctions
by the environment’s regulator or law enforcer. By present-
ing a taxonomy of laws which exist in real life, whose fea-
tures are relevant to RL, I am able to make some inferences
about the general design of a RL process that can produce
legal policies.

Reinforcement Learning is a process which can produce
novel policies to solve sequential decision problems. Its po-
tential has been demonstrated in the super-human mastery of
Go (Silver et al. 2017) and advanced performance in more
complicated games like Starcraft (Vinyals et al. 2019) but
adoption in real life settings has been retarded by safety (in-
cluding legal) considerations. This is noticeable in Finan-
cial trading applications which already use algorithms ex-
tensively! but have been slow to adopt RL.

RL requires an environment which allows ample explo-
ration and feedback. In game applications such as Go and
Atari games the training environment is a faithful recreation
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of the deployment environment and training is costless. Po-
tential real world applications of RL are often more com-
plex, almost certainly regulated, and the cost of mistakes
made in training or deployment could be catastrophic. In
such applications where safety, cost or legality are issue, one
approach is to conduct learning in a simulator of the environ-
ment where the cost of bad policies is negligible. The use of
any simulator raises the risk of misspecification and poor
generalisation. Misspecification refers to the case where the
RL learner optimises on an environment which is not a faith-
ful recreation of the actual deployment environment and the
policy performs poorly on deployment. In the case of poor
generalisation, the actual environment produces a situation
of the like which was not seen in the training process and the
policy fails on deployment. An alternative to using a simu-
lator is placing the RL learner very carefully in the target
environment with a human overseer ready to take over in
tricky spots. This approach has limitations according to the
complexity of the task (Saunders et al. 2018). It might not
be feasible to use this approach in applications like trading
because the speed of decision making is beyond the ability
of a human overseer to monitor.

Whether learning takes place in a simulator or carefully
in the target arena, the ability to generate legal policies with
high probability is very desirable. Laws can present differ-
ent challenges to other types of constraint. A legally trans-
gressive policy might not be obvious in the way a physically
transgressive one might be. The nature of laws will dictate
the methods of RL used to generate optimal, legal policies.

Background

Markov Decision Processes (MDPs) are a common frame-
work underpinning RL. In this formulation time is discre-
tised and labelled t = 1,2,3,.... A MDP is described by a
tuple (S, So, A, T, R,~y) where:

1. S is the set of states in the environment.

2. sp is a distribution over the initial states of the environ-
ment p(s) for s € S.

3. A is the set of all actions available.

4. T(s,a,s") = P(s'|s, a) is the transition probability distri-
bution; the probability of transitioning to state s’ when in
state s € S and choosing action a € A.



5. R : S x A — Ris the reward function, the feedback
mechanism through which learning is possible.

6. v € (0,1] the discount factor to differentiate the value
of rewards now vs those received in the future. In finite
horizon cases 7 = 1 and can be ignored.

The learner then has the objective of funding a policy
function from the set of all policy functions IT : S — A
which solves the maximisation of the expected discounted
sum of rewards:

7 = argmax F [ Z Y R(s¢, a0)|7]
mell t=0

The policy function is often a probability distribution over
actions 7(a|s) = P(als) Va e A, s € S

The Markovian property of this process comes from the
transition function. It is satisfied if the probability of tran-
sition to a new state is determined only by the current state
and chosen action.

An extension of the MDP is the Partially Observable MDP
(POMDP). This covers the very probable contingency where
the full state of the world is not visible to the decision maker.
It is described by the tuple (S,Sp, A, T, R,v,Q,0). two
additions to the tuple are as follows:

7. € is the set of all observations that the learner can receive.
For convenience we assume that it includes the reward 7
received in any time period.

8. O = P(w|s’, a) is the probability distribution of receiving
observation w € Q after transition to state s’ and action a
was chosen.

The domain of the policy function then becomes the his-
tory of all observations and actions which we write 7(a|h¢)
where h; is short hand for (01, a1, 02,as,...a;—1,0¢).

The complexity of a solving a POMDP is much higher
than that of a MDP (Abel, MacGlashan, and Littman 2016)
because the learner is required to perform inference over the
state of the world using the history of actions, observations
(including rewards). Intuitively this can be seen by observ-
ing that the domain of the policy function is exponentially
larger and any search process taken over the set of all policy
functions will take much longer.

Our interest in introducing POMDPs is not so much the
partial observability of this problem but more the enlarged
domain of the policy function which they necessitate. This
paper will show that law abiding policies are likely to be de-
pendent on the history of observations regardless of whether
there is partial observability or not.

Structural Causal Models

This paper will show that the legality of behaviour can de-
pend on establishing the causal effects of an action. The
definition of causality is a complicated topic and there is
a distinction between predictive causality which refers to
predicting the effect of actions and actual causality which
refers to evidential analysis after actions have been taken.
Structural Causal Models (a special case of Bayesian Causal
Networks) (Pearl 2000) can be used in both senses. Ac-
tual causality is a harder undertaking since it necessarily

involves counterfactual reasoning. Halpern Pearl Causality
(HP) (Halpern 2016) is a general purpose definition of actual
causality. More simple definitions are discussed in (Liepina,
Sartor, and Wyner 2020).

For a set of variables X = (X1, ... X,,) we define a struc-
tural causal model (SCM) to be defined by:

1. A set of independent noise variables U = (Uy,...Uy)
with associated distributions P,

2. A Directed Acyclic Graph (DAG) G over vertices X UU.

There is a directed edge from X; to X iff X is a direct
cause of X;. That is to say, changing the values of X
whilst keeping other members of Pa(X;) constant will
change X

3. A set of functions fy,...fxy such that: X; =

filpa(X;),U;) where pa(X;) are the parents of X; ac-
cording to the graph G.

Under this structure, the values of X are uniquely by the
values of U and the distribution of P(U) = []""_; P(u;) de-
termines a distribution over X, P(z1, z2, ..., ;). Further-
more it can be shown that the graph G satisfies the causal
markov condition which states that X; is independent of all
its non-descendants given its parent set pa(X;). The graph is
equivalent to a Bayesian causal model, an augmentation to a
standard Bayesian graphical model where the directed edges
encode causal statements not just independence statements.

To assess the effect of actively changing a subset of vari-
able(s) Z on a disjoint set of variables in Y both in X, Pearl
(Pearl 2000) introduces the concept of an atomic interven-
tion. P(Y'|do(2)) is the probability distribution obtained by
setting Z = z in the equations and deleting any equations
which determine elements of Z. This is equivalent to consid-
ering the distribution of the subgraph G’ which is obtained
by removing any ancestral vertices to elements Z and giv-
ing unitary point mass to the realised values of Z for any
dependent distributions.

Intent in RL

RL has been used infer the intent of others (Qi and Zhu
2018), and even in IRL to define a reward function that cor-
responds to the intentions of an expert demonstrator (Mac-
Glashan and Littman 2015). However it has not ever defined
what intent means for the learner. Ashton (2020) presents a
definition of direct intent in terms of causality and desire of
realised states. An agent directly intends a state s by com-
mitting an action a if a causes s and the agent aims or desires
state s. In the context of RL, where an agent has a value
function over every possible state, inferences can be made
about what a learner desires. Within criminal law, different
levels of intent are required for different crimes (Loveless
2013). Direct intent is the strictest, being required for murder
but lower levels such as oblique intent, recklessness and neg-
ligence also exist. Whilst these lower levels of intent do not
necessarily have any requirements about desire, their defini-
tions often include subjective and objective tests of foresee-
ability vis-a-vis the prohibited outcomes of actions. Subjec-
tive tests raise interesting questions in model-free modes of
RL since the learner does not explicitly expect any outcome



to their action. Objective tests require an external judgement
about the probability of an outcome given an action. If a
consequence of an action was foreseeable then the offender
can be thought of intending the outcome. Lagioia and Sar-
tor (2020) discuss this method of intent inference and con-
sider it sufficient albeit principally in the context of Belief
Desire Intent (BDI) agents (Cohen and Levesque 1990). An
intriguing corollary of the use of objective tests, is that the
predictive model that the RL agent uses or learns should be
accurate. This bypasses the danger of the learner develop-
ing a ’delusion box’ type model (Ring and Orseau 2011) to
justify otherwise illegal policies.

A non-exhaustive taxonomy of laws

In this section I present a number of law-types which are
likely to exist in a regulated environment. I differentiate be-
tween states and actions. Actions are assumed to be orig-
inated by the learner only and their commission is volun-
tary. States refer to some measurable property of the envi-
ronment, stable for the duration of the time period. Actions
cause a measurable change in the environment but I assume
that their duration is instantaneous so there is no state that
records an action in progress.

Simple State restriction laws

This the simplest type of law and the one which Safe RL
research has concentrated on as many physical safety con-
straints are of this type. Examples might include ’drive be-
low 30 miles per hour in urban environments’ or ’don’t crash
into pedestrians’. For a state restriction to be a law, its re-
alisation should necessarily caused by the actions of the
learner. This is obviously the case for the speed restriction
example and a desirable though maybe not strictly true in
the pedestrian avoidance one.

Caused state restriction laws

Some states exist which could be both caused through the
learner’s actions and through an external mechanism. This
marks the first departure from conventional safe-RL research
because the safety constraints traditionally considered do
not differentiate between those states caused by the learner
and those that are not. It does not matter whether the drone
caused itself to fly over the volcano or whether it was blown
by the wind, the state of being located over the volcano is
the one to be avoided. For legal restrictions, certain states
might only be restricted if they were caused by the learner?.
A concrete example of such a causal dependent state restric-
tion can be found within financial markets where the UK’s
financial regulator prohibits trading algorithms from creat-
ing or contributing to disorderly market conditions. Such
conditions could arise independently of the behaviour of
the learner, if the learner has no mechanism of determining
whether this the case, learning efficiency will be compro-
mised.

For caused state restriction laws to be broken two condi-
tions should be satisfied. Firstly a restricted state § should

Death is not generally prohibited, but causing it generally is!

occur and secondly that the actions of the learner foresee-
ably caused the state to occur.

Action sequence laws

Laws exist in a variety of settings which are restrictions on
conduct with no necessary requirement for a lasting change
in the state of the world. Examples in the UK include the
offence of Careless Driving and more seriously Dangerous
driving. There is no causation requirement since I assume
that the A-bot has the freedom to choose its own actions at
any time® Action sequence laws could be transformed into
a simple state restriction law by adding a state variable that
indicates whether a restricted action sequence has occurred.
Such an approach might not be efficient if a large number of
conduct laws exist in the environment as it would cause the
dimension of the state space to grow.

Mixed State Action sequence laws

Laws exist which combine a sequence of actions that cause
restricted state(s). Continuing the driving examples from the
previous section, in the UK there exist statutory offences of
causing death by careless or reckless driving. These laws
constitute a restriction on how certain states are arrived at.

Inchoate offences: Laws restricting behaviour that
may induce future restricted states

Inchoate offences are restrictions on action sequences and
states which may lead to restricted states which are not nec-
essarily realised. Examples in the UK include attempt crimes
such as attempted murder or possession of drugs with intent
to supply. In the USA conspiracy and solicitation (the re-
quest, encouragement or payment for someone else to com-
mit a felony) are major classes of inchoate offence.

Laws requiring intent

Common law as practised in UK, USA, India and Canada
amongst others requires that the accused had mens rea (the
mental element of intent to commit a crime) for certain crim-
inal offences to have been committed by them. Different lev-
els of intent exist, ranging from direct intent where the ac-
cused deliberately caused and wanted to cause a prohibited
outcome in the extreme to oblique intent where prohibited
outcomes were caused as a side-effect of their behaviour, to
recklessness and negligence where the prohibited outcomes
were foreseeable outcomes of their behaviour to various de-
grees. Certain offences will specify what level of mens-rea
is required so murder requires direct or oblique intent.
Aside from the crimes of specific intent, certain laws exist
which require establishing for what purpose the accused did
something. This is called basis intent by Bathaee (2011). US
Examples cited include market anti-spoofing laws, a practice
which is defined as the placement of orders with the intent to
cancel them. Another related and topical example is termed

3Situations where there is no action which won’t break a law are
analogous to the concept of deadlock in model checking (Baier and
Katoen 2008). Laws can still be broken when the perpetrator had
no choice but to break the law but the defence of necessity might
then be valid



Gatekeeping Intent by Bathaee. Laws or systems which are
discriminatory in effect are only unlawful if discriminatory
intent behind them is established.

Implications of the taxonomy

There exist a number of challenges to developing an RL
method which produces legal policies under a rich set of
laws. I classify them into three areas:

1. Encoding The environment’s laws need to be described
in such a way as to be machine interpretable.

2. Determination A mechanism needs to exist which can
determine the legality of any behaviour either in advance
or in retrospect.

3. Constrained policy learning There should exist a
method to constrain the policy of the A-bot to be law abid-
ing when it is acting or learning.

Generally these problems should be solved in the order
displayed. The determination of legality requires an encod-
ing of law to reference (planned) behaviour against and con-
strained policy learning relies on knowing what policies are
acceptable and what are not. By looking at the taxonomy of
laws, some inferences can be made about all three elements
of this process. I will run through each of the three tasks and
make comments on how laws affect them. In practice the
three tasks might be heavily intertwined.

Encoding

Safe RL research is only beginning to pay attention to how
laws should be described. This is because the types of re-
strictions considered have largely been of the simple state
type which can be encoded using simple algebraic expres-
sions. This approach becomes untenable when considering
more complicated laws like the ones identified in the previ-
ous example. Furthermore the quantity of applicable rules in
regulated environments is larger than most rulesets hitherto
considered in research. I identify four desirable features of
an encoding which should be used to convey laws.

1. Temporal A number of laws restrict sequences of states
or actions. Moreover there is no requirement that these
sequences are contiguous. An encoding needs to be rich
enough to express multiple states and actions with tempo-
ral relations like always, until, next etc.

2. Probabilistic As in the case of Inchoate offences, some
laws refer to future states not realised. Since the space of
all possible future events is a large one, law reasonably
concerns itself with restricting foreseeable consequences
of behaviours. An encoding of laws should be rich enough
to express this.

3. Causal As we saw in the previous section, laws will of-
ten prohibit the causation of a state, not the state itself per
se. Our death is not usually prohibited, but causing it nor-
mally is. Causation when considered in prospect will also
normally require some sort of probabilistic reasoning.

4. Intent Certain laws require establishing levels of intent
on the part of the transgressor. Different levels of intent
exist and are applicable to different offences.

In Table 1 I summarise what level of encoding expres-
siveness is required for each of the law types described in
the previous section. Nearly all of the laws require a tem-
poral expressiveness. Temporal Logic systems allows us to
express when conditions should be true. A wide variety ex-
ist such as Linear Temporal Logic (LTL) (Pnueli 1977),
Computation Tree Logic (CTL) (Clarke and Emerson 1981)
which considers multiple future paths and Probabilistic CTL
(PCTL) (Hansson and Jonsson 1994) which as the name sug-
gests accounts for probabilistic transitions. Kleinberg and
Mishra (2009) extends this to provide a language capable
of expressing causal relationships. To our knowledge there
is no similar extension to express intention and this is an im-
mediate project. (Alves, Dennis, and Fisher 2020) succeed
in encoding the road junction rules for an autonomous vehi-
cle using a variant of LTL.

The analysis is not exhaustive. For example in any given
regulated environment there are likely to be a large number
of rules that the learner should obey simultaneously. This is
likely to mean deadlock situations arise where not breaking
one law may result in the breaking of another. A meta order-
ing of laws may be required to deal with this situation.

Encoding Expressiveness

Law Type Temporal | Probabilistic | Causal | Intent
State Restriction

Caused State Restriction | Maybe Maybe Yes

Action Sequence Yes

Action state sequence Yes Maybe Maybe

Inchoate Yes Yes Yes Maybe
Intent Yes Yes Yes Yes

Table 1: The complexity of the encoding language required
is dependent on the law type

Determination

Given that we have a codified set of rules, we require a de-
vice to determine when a sequence of behaviour has or is
contravening a law. I assume that the states referred to in
the encoding are either the same as those perceived by the
learner or there is an available mapping function between
the learning and encoding statespaces. This is of course not a
given since the learner may be perceiving continuous states
and the encoding is likely to refer to high level states. In
the case of simple state restrictions this is not a difficult task
but it becomes increasingly complex with richer laws. I have
separated the requirements into four main features.

1. Domain Consider an arbiter function I' which determines
legality to the binary set - denoting legal or illegal. The
domain of this function is dependent on the type of law it
is considering. Laws which reference more than one state
or action for example require a domain which includes the
history of states and actions h; = (s1, a1, S2,as, ... St).
Laws which reference future paths will also require the
policy function of the learner 7(-). Laws which require in-
tent may also require information about the reward func-
tion of the learner or its estimation of state values.

2. Future Projection A model of the environment is re-

quired for almost all laws. In the case where strong safety



is required in training, the legality of any action needs to
be assessed before choosing it and this means assessing
the likely state transitions which occur as a result. Projec-
tion is also a requirement in causal reasoning.

3. Causal Reasoning As certain laws are defined by causa-
tion, a method is required to determine whether restricted
states have or are likely to be caused by the learner’s ac-
tion. This requires a causal model of the environment.

4. Intentional Reasoning In environments where laws are
defined by intent, a learner must be aware of what they
are intending to do (ie their likely policy trajectory) by
choosing a particular action at any moment in time.

In Table 2 I show the necessary features of a legality deter-
mination process according to the law type present. Reason-
ing about intent requires an algorithmic definition of intent.
This is an open area of research since the concept of intent
has been deliberately left as a primitive by legal practition-
ers. Care must be taken to ensure that the definition of intent
used in safe RL corresponds to what a court would find suf-
ficient.

Learning Process

The taxonomy of laws informs us how those laws should be
described and the process which determines the legality of
behaviour. Finally, it can also inform us about the proper-
ties of RL methods which will generate legally constrained
policies.

1. Memory Reinforcement Learning approaches typically
use a MDP formulation to model their task. Whilst a
record of the current state might still be valid for the tran-
sition model, most of the law types that I have identified
rely to some extent on sequences of states and actions.
Thus the device which chooses actions at any state (most
likely the policy function) must include histories in its do-
main. Otherwise the standard MDP learner would not be
able to understand whether its current action is legal or
not. Including the history of actions and states is some-
thing that POMDPs do in order to make inference on the
hidden states of this model.

2. Model for planning Determining the legality of any ac-
tion requires a predicting the likelihood for future states.
How far prediction is expected to go into the future de-
pends on the laws present - avoiding inchoate offences
presumably requires greater foresight. Much of RL is
’model free’ and successfully so, but they seem unavoid-
able here. Established methods like Dyna-Q simultane-
ously learn to act and create a world model (Sutton 1990)

3. Causal model Determining whether a law has been bro-
ken or not will often require some test of causality ex post
(Turner 2019). The task of the learner is to make sure that
they do not cause a restricted state to occur ex-ante, and
if it does occur that they are not subsequently adjudged
to have been a legal cause of it. The presence of causal
restrictions necessitates a causal model of the world to be
formed for predictions. Bayesian Causal Models or equiv-
alently Structural Causal Models (SCMs) (Pearl 2000)

can be used to predict causal effects and used to deter-
mine causality ex-post. They readily accept techniques
like counterfactual analysis which allows off-policy data
treatment (Bareinboim and Pearl 2016) which is impor-
tant for off-policy RL methods. There also exist defini-
tions of causality based on SCMs such as Actual Causality
of (Halpern 2016) which are capable of dealing with the
trickier causal problems of overdetermination, preemp-
tion and omission. See Bareinboim (2020) for an intro-
duction to causal RL.

Related work

The task of learning a legally constrained policy through RL
is one possible task in the subject area of Safe RL. It has
seldom mentioned in isolation but instead cited as a possi-
ble use case in more general Safe RL work. A recent popu-
lar application with similarly rich rule set has been the task
of learning an ethical policy. For a RL approach see Abel,
MacGlashan, and Littman (2016) or Winfield et al. (2019)
for a more general discussion on ethically constraining au-
tonomous systems. Ethical constraint is an important task
a harder one since there is no single source of ethical con-
straints to apply to the learner. In contrast to those of ethics,
Hildebrandt (2019) points out that questions of legality al-
ways have closure.

Garcia and Ferndndez (2015) provide a general survey of
Safe RL, dividing approaches into those that modify the re-
ward structure and those that modify the exploration pro-
cess. Constrained Markov Decision Processes (CMDPS) do
the former, by adding a finite set of auxiliary cost functions
C; : § x A — R to the vanilla MDP. Policies should then
achieve a discounted total cost in expectation less than some
scalar d; (whilst maximising the normal reward function).
This is largely the approach of Constrained Policy Optimi-
sation presented by Achiam et al. (2017). A drawback with
such an approach is that bad states can be reached in ex-
ploration making learning outside a simulator potentially
expensive. Aside from this, constraints introduced as cost
functions need to be differentiable and Markovian if certain
gradient methods are to be used. Neither of these restrictions
apply to the Constrained Cross-Entropy method of Wen and
Topcu (2018), though perhaps at the cost of data parsimony.

Safe RL methods which constrain exploration include ap-
proaches where a policy is learnt from observing a safe
policy in a process known as Inverse RL or Apprentice-
ship RL (Abbeel and Ng 2004). Recent examples include
Noothigattu et al. (2018) who train a learner to play Pac-
Man following the rule 'don’t eat the ghosts’ through ex-
pert demonstration and a bandit policy which alternates be-
tween observed ’safe’ behaviour and optimal self taught be-
haviour. Abel, MacGlashan, and Littman (2016) present a
method where the ethical-preferences of an expert are de-
rived through observation and then used to develop policies
accordingly. IRL approaches such as these obviate the re-
quirement for an explicit representation of rules. This could
be seen as a good feature in constrained tasks such as the
learning of ethical behaviour or customs where there is no
written source of what the constraints should be. This is not
the case in regulated settings. Moreover IRL is an ill-posed



L Future trajectory | Arbiter function domain Causal Intentional

aw Type . . .
prediction Reasoning | reasoning

State path | Action path | Policy

State Restriction Maybe

Caused State Restriction | Yes Yes Yes

Action Sequence Yes

Action State sequence Maybe Yes Yes Maybe

Inchoate Yes Yes Probably

Intent Yes Yes Yes Yes

Table 2: Taxonomy implications for the determination process

problem - many reward-functions exist to explain any ob-
served behaviour. To make the problem tractable, simplify-
ing assumptions must be made about its form. The resulting
reward function might not be rich enough to encode the pref-
erence required not to break all laws. In particular, Arnold,
Kasenberg, and Scheutz (2017) note that IRL does not infer
intertemporal rules.

A developing area of Safe RL are those methods which
combine formal methods based on symbolic logic into the
learning machinery of RL. Many of these techniques orig-
inate from the research area of formal verification methods
and model checking (Baier and Katoen 2008). These are the
techniques developed to error check software systems and
provide stronger guarantees for correctness. Temporal log-
ics provide a language more suited to the description of rich
rule sets likely to be found in regulation and is a progression
beyond the state based restrictions traditionally considered
in Safe RL. Many temporal logic systems exist, and have
been applied to the learning of policies in MDPs where tran-
sitions are known or not and with or without models. Lin-
ear Temporal Logic (LTL) is used in Hasanbeig and Kroen-
ing (2020),Hasanbeig, Abate, and Kroening (2019) Fu and
Topcu (2015) and Wen, Ehlers, and Topcu (2015) and Dif-
ferential Dynamic logic is used in Fulton and Platzer (2018).
Probabilistic computation tree logic (PCTL) is used in Ma-
son et al. (2017). Kleinberg and Mishra (2009) extend PCTL
to reason about causality and this could be used to describe
the causal constraints discussed in this paper.

Alshiekh et al. (2018), and Jansen et al. (2018) use a struc-
ture called a shield to create safe policies through RL. This
is a system which sits between the learner and the agent and
either filters the choice of available actions for the learner
in learning time, or replaces unwise actions in deployment.
The shield has a model of the environment, knows the re-
quired constraints which are described in temporal logic,
and is able to use a formal program verification methods
to check the legality of any action at any moment in time.
An attractive feature of this method is that the method of
constraint is separate and somewhat agnostic to the method
of learning. Jansen et al. (2020) identify three challenges
to this approach: Model checking is computationally ex-
pensive, safety in a probabilistic environment is not binary
so threshholds need to be considered and finally shielding
may obstruct efficient exploration thereby generating sub-
optimal policies.

Seldonian Reinforcement learning (Thomas et al. 2019) is
a recent technique that aims to produce RL algorithms that

only output safe policies with a certain probability. It dif-
fers from other methods discussed in this paper in that the
technique searches for learning algorithms not policies. The
general method presented is capable of using any constraint
derived from the output of the learning algorithm, thus in
theory it should be flexible enough to deal any of the laws
discussed in this paper including perhaps restrictions of in-
tent since the policy function is an output of the algorithm.
The RL example presented concerning a safe insulin injec-
tion calculation has restrictions of limited complexity so we
will have to wait for more published research to assess this
method properly.

Conclusion

This paper could be viewed as an application of legal re-
quirements engineering. As it originates singularly from a
computer scientist and not a legal practitioner, it is guilty
of the principle crime of the method as identified by Boella
etal. (2014). Yet it is a starting point which still informs. An
important observation is that legal norms change over time;
concepts such as causality and intent will change dependent
on precedents set in the court and not through code.

This paper is motivated by an aim to design Safe RL pro-
cesses which are capable of producing policies constrained
under a general rule set. By creating a brief taxonomy of
laws in the language of states and actions specifically for
the application I have been able to draw some conclusions
about the requirements of legally-safe RL. Laws are com-
monly defined in inter-temporal ways over actions and state.
This means that a learning process must include a memory
of past states and actions. Thus the domain of a legal pol-
icy function will include history just as it does in RL un-
der a POMDP. Causality and Intent can be key concepts
in determining whether and which laws have been broken.
Whilst RL is beginning to tackle causality, it has not done in
the context of constrained learning. Intent is barely defined
quantitatively but it will have to be if generally legal RL sys-
tems are to be produced. Causality, Intent and the existence
of inchoate offences mean that a legally-safe RL algorithm
will require prediction about likely future trajectories. This
will require some type of environment model to be learned
or supplied to the learner.

References

Abbeel, P;; and Ng, A. Y. 2004. Apprenticeship Learning
via Inverse Reinforcement Learning. In Proceedings of the



2st International Conference on Machine Learning (ICML).
ISBN 1581138285. doi:10.1145/1015330.1015430.

Abel, D.; MacGlashan, J.; and Littman, M. L. 2016. Rein-
forcement learning as a framework for ethical decision mak-
ing. AAAI Workshop - Technical Report WS-16-01 -: 54-61.

Achiam, J.; Held, D.; Tamar, A.; and Abbeel, P. 2017. Con-
strained Policy Optimization. URL http://arxiv.org/abs/1705.
10528.

Alshiekh, M.; Bloem, R.; Bettina, K.; Niekum, S.; Topcu,
U.; and Street, E. 2018. Safe Reinforcement Learning
via Shielding. In AAAI Conference on Artifical Intelli-
gence. URL https://aaai.org/ocs/index.php/AAAI/AAAILS/
paper/view/17211/16534.

Alves, G. V.; Dennis, L.; and Fisher, M. 2020. Formalisa-
tion and Implementation of Road Junction Rules on an Au-
tonomous Vehicle Modelled as an Agent. In Formal Meth-
ods. FM 2019 International Workshops, volume 1, 217-232.
Springer International Publishing. ISBN 9783030549930.
ISSN 16113349. doi:10.1007/978-3-030-54994-7\ 16.

Arnold, T.; Kasenberg, D.; and Scheutz, M. 2017. Value
alignment or misalignment - What will keep systems account-
able? AAAI Workshop - Technical Report WS-17-01 -: 81-88.

Ashton, H. 2020. Definitions of intent for Al derived from
common law. In Jurisin 2020: 14th Intl Workshop on Jurisi-
informatics. URL https://easychair.org/publications/preprint/
GfCZ.

Baier, C.; and Katoen, J.-P. 2008. Principles Of Model Check-
ing. MIT Press. ISBN 9780262026499. URL http://mitpress.
mit.edu/books/principles-model-checking.

Bareinboim, E. 2020. Causal Reinforcement Learning (CRL).
URL https://crl.causalai.net/.

Bareinboim, E.; and Pearl, J. 2016. Causal inference and the
data-fusion problem. Proceedings of the National Academy
of Sciences of the United States of America 113(27): 7345—
7352. doi:10.1073/pnas.1510507113.

Bathaee, Y. 2011. The artificial intelligence black box and
the failure of intent and causation. Harvard Journal of Law
& Technology 2(4): 31-40.

Boella, G.; Humphreys, L.; Muthuri, R.; Rossi, P.; and Van
Der Torre, L. 2014. A critical analysis of legal require-
ments engineering from the perspective of legal practice.
2014 IEEE 7th International Workshop on Requirements En-
gineering and Law, RELAW 2014 - Proceedings 14-21. doi:
10.1109/RELAW.2014.6893476.

Clarke, E. M.; and Emerson, E. A. 1981. Design and synthesis
of synchronization skeletons using branching time temporal
logic. In Workshop on Logic of Programs, 52-71.

Cohen, P. R.; and Levesque, H. J. 1990. Intention is choice
with commitment. Artificial Intelligence 42(2-3): 213-261.
ISSN 00043702. doi:10.1016/0004-3702(90)90055-5.

Fu, J.; and Topcu, U. 2015. Probably Approximately Cor-
rect MDP Learning and Control With Temporal Logic Con-
straints. doi:10.15607/rss.2014.x.039.

Fulton, N.; and Platzer, A. 2018. Safe reinforcement learning
via formal methods: Toward safe control through proof and

learning. 32nd AAAI Conference on Artificial Intelligence,
AAAI 2018 6485-6492.

Garcia, J.; and Ferndndez, F. 2015. A Comprehensive Survey
on Safe Reinforcement Learning. Journal of Machine Learn-
ing Research 16: 1437-1480.

Halpern, J. Y. 2016. Actual Causality. MIT Press, 1st edition.
ISBN 9780262035026.

Hansson, H.; and Jonsson, B. 1994. A logic for reasoning
about time and reliability. Formal Aspects of Computing 6(5):
512-535. ISSN 09345043. doi:10.1007/BF01211866.

Hasanbeig, M.; Abate, A.; and Kroening, D. 2019. Logically-
constrained neural fitted Q-iteration. Proceedings of the Inter-
national Joint Conference on Autonomous Agents and Multi-
agent Systems, AAMAS 4: 2012-2014. ISSN 15582914.

Hasanbeig, M.; and Kroening, D. 2020. Cautious Rein-
forcement Learning with Logical Constraints. doi:10.5555/
3398761.3398821.

Hildebrandt, M. 2019. Closure: on ethics, code and law. In
Law for Computer Scientists, chapter 11. Oxford University
Press. ISBN 9780198860877.

Jansen, N.; Junges, S.; Bettina, K.; and Bloem, R. 2018.
Shielded Decision-Making in MDPs.

Jansen, N.; Konighofer, B.; Junges, S.; Serban, A.; and
Bloem, R. 2020. Safe Reinforcement Learning Using Prob-
abilistic Shields. In 31st International Conference on Con-
currency Theory, CONCUR 2020, 1-3. doi:10.4230/LIPIcs.
CONCUR.2020.3.

Kleinberg, S.; and Mishra, B. 2009. The temporal logic of
causal structures. Proceedings of the 25th Conference on Un-
certainty in Artificial Intelligence, UAI 2009 303-312. URL
https://arxiv.org/abs/1205.2634v1.

Lagioia, F.; and Sartor, G. 2020. AI Systems Under Criminal
Law: a Legal Analysis and a Regulatory Perspective. Phi-
losophy and Technology 33(3): 433-465. ISSN 22105441.
doi:10.1007/s13347-019-00362-x.

Liepina, R.; Sartor, G.; and Wyner, A. 2020. Arguing about
causes in law: a semi-formal framework for causal argu-
ments. Artificial Intelligence and Law 28(1): 69-89. ISSN
15728382. doi:10.1007/s10506-019-09246-z.

Loveless, J. 2013. Mens Rea: Intention, Recklessness, Neg-
ligence and Gross Negligence. In Complete Criminal Law:
Test, Cases and Materials, chapter 3, 91-150. OUP Ox-
ford. ISBN 0198848463. doi:10.1093/he/9780199646418.
003.0003.

MacGlashan, J.; and Littman, M. L. 2015. Between imitation
and intention learning. In Twenty Fourth International Joint
Conference on Artificial Intelligence. ISBN 9781577357384.
ISSN 10450823.

Mason, G.; Calinescu, R.; Kudenko, D.; and Banks, A. 2017.
Assured reinforcement learning with formally verified ab-
stract policies. ICAART 2017 - Proceedings of the 9th In-
ternational Conference on Agents and Artificial Intelligence
2: 105-117. doi:10.5220/0006156001050117.

Noothigattu, R.; Bouneffouf, D.; Mattei, N.; Chandra, R.;
Madan, P.; Varshney, K.; ...; and Rossi, F. 2018. Interpretable



Multi-Objective Reinforcement Learning through Policy Or-
chestration. URL http://arxiv.org/abs/1809.08343.

Pearl, J. 2000. Causality: Models, reasoning and inference.
Cambridge University Press. ISBN 0521773628.

Pnueli, A. 1977. The temporal logic of programs. Proceed-
ings - Annual IEEE Symposium on Foundations of Computer
Science, FOCS 1977-Octob: 46-57. doi:10.1109/sfcs.1977.
32.

Qi, S.; and Zhu, S.-C. 2018. Intent-aware Multi-agent Re-
inforcement Learning. In IEEE International Conference on
Robotics and Automation (ICRA), 7533-7540. doi:10.1109/
ICRA.2018.8463211.

Ring, M.; and Orseau, L. 2011. Delusion Survival and Intelli-
gent Agents. In Conference on Artificial General Intelligence
(AGI-11). ISBN 9783642228872. doi:10.1007/978-3-642-
22887-2.

Saunders, W.; Stuhlmiiller, A.; Sastry, G.; and Evans, O.
2018. Trial without error: Towards safe reinforcement learn-
ing via human intervention. Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent Sys-
tems, AAMAS 3: 2067-2069.

Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; ...; and Hassabis, D. 2017. Mas-
tering the game of Go without human knowledge. Nature
550(7676): 354-359. doi:10.1038/nature24270.

Sutton, R. S. 1990. Integrated architectures for learning, plan-
ning, and reacting based on approximating dynamic program-
ming. In Proceedings of the 7th. International Conference on
Machine Learning pages(1987): 216-224.

Thomas, P. S.; da Silva, B. C.; Barto, A. G.; Giguere, S.;
Brun, Y.; and Brunskill, E. 2019. Preventing undesirable
behavior of intelligent machines. Science 366(6468). doi:
10.1126/science.aag3311.

Turner, J. 2019. Robot Rules. Palgrave Macmillan. ISBN
978-3-319-96234-4.

Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; ...; and Silver, D. 2019. Grandmaster
level in StarCraft II using multi-agent reinforcement learning.
Nature 575(7782): 350-354. doi:10.1038/s41586-019-1724-
Z.

Wen, M.; Ehlers, R.; and Topcu, U. 2015. Correct-by-
synthesis reinforcement learning with temporal logic con-
straints. IEEE International Conference on Intelligent Robots
and Systems 2015-Decem: 4983-4990. doi:10.1109/IROS.
2015.7354078.

Wen, M.; and Topcu, U. 2018. Constrained Cross-Entropy
Method for Safe Reinforcement Learning. In Advances in
Neural Information Processing Systems 31, NeurIPS, 7461—
7471. URL http://papers.nips.cc/paper/7974-constrained-
cross-entropy-method-for-safe-reinforcement-learning.pdf.

Winfield, A. F. T.; Michael, K.; Pitt, J.; and Evers, V. 2019.
Machine ethics: The design and governance of ethical ai and
autonomous systems. Proceedings of the IEEE 107(3): 509—
517. doi:10.1109/JPROC.2019.2900622.



