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Abstract—We have developed a combined statistical 

analytical, machine learning (ML) and deep learning (DL) 

approach to detect abnormal traffic patterns in financial 

messages involving monetary payment instructions. We used 

optimally anonymized historical transaction data from multiple 

financial institutions from disparate geographic locations 

globally. Our objectives were to provide client institutions with 

customizable levels of alert notification based upon their risk 

tolerance, and the ability to detect and prevent fraudulent 

payment instructions in real time. Our statistical analytical 

approach demonstrates that a preliminary transaction-based 

calendar can be established based solely on historical transaction 

data containing message counts and their arrival times, and can 

be further improved based upon user input as necessary. Several 

ML and DL models were built and evaluated for each of their 

performance metrics (e.g., accuracy, confusion matrix). Our 

results suggest that a time series ML model (seasonal 

autoregressive integrated moving average (SARIMA)), and 

particularly two DL classification models (Autoencoder and 

Restricted Boltzmann Machine (RBM)) can consistently yield 

highly accurate predictions. Our study also suggests that ML and 

DL models in conjunction with a statistical analytical approach 

provide a powerful tool for real-time anomaly detection in 

financial transactions.  

Keywords—statistical analytical, machine learning, deep 

learning, anomaly detection. 

I. INTRODUCTION 

     The extent to which global financial fraud is reported in 
multiple surveys varies significantly among different sources 
and from one year to another [1, 2]. Yet, the reported rates of 
financial fraud around the globe are alarmingly high, and 
generally accelerating since 2009 [2]. For example, 84% of 
companies surveyed around the globe by Kroll’s Economist 
Intelligence Unit (EIU) in 2017-18 experienced financial fraud, 
up slightly from 82% in 2016 [1]. Similarly, the PwC’s 2018 
Global Economic Crime and Fraud Survey reports that 49% of 
global organizations have been victims of economic crime in 
the past two years, an increase from 36% in 2016 ([2], Fig. 1). 
Notably, the US financial services firms alone have 
experienced an 8.5% increase in average cost of fraud from 
2017 to 2018 [3].  

 

 

 Fig. 1: Percentage of companies reporting financial fraud during the 
period 2005-2018. [2] 

Financial fraud poses a challenging problem due to a 
variety of factors, including (a) the very small fraction of 
fraudulent transactions compared to the sheer volume of 
legitimate transactions processed by most financial institutions 
("needle in the haystack" problem); (b) real- or near real-time 
transaction processing ("high velocity" of big data); (c) 
frequent lack of traceability of transactions from ultimate 
source to final destination; and (d) lack of information sharing 
among financial institutions. Further, smaller financial 
institutions usually lack the resources, capabilities, 
sophisticated tools and technology often necessary to detect 
and prevent financial fraud.  

While accurate fraud detection is an essential part of 
financial crime prevention, misclassifications of legitimate 
transactions as fraud (“false positive”), on the other hand, can 
lead to significant loss of revenues for merchants and financial 
institutions. For example, the retail, e-commerce and financial 
services industries all had an estimated more than 20% false 
fraud alerts in 2017-18 contributing to signicant “opportunity 
cost” due to lost revenue [3]. Similarly, the risk of false fraud 
alerts in the financial services industry involving wholesale 
payments may amount to unwarranted cost of manual review 
and/or investigation, and also loss of trust. A combined 
approach that employs multiple and diverse fraud detection 
techniques is thus necessary in order to achieve an optimum 
balance between risk tolerance and cost.  

     In this study, we have developed an approach using 
combined dynamic statistical analyses, and artificial 
intelligence (AI) and ML models in order to detect anomalous 
traffic patterns in financial messages for wholesale payment 
instructions in real time. Our objective was to provide client 
institutions with tools for financial fraud detections and 
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generate customizable alerts based upon the risk tolerance of 
individual institution. We have used available anonymized 
historical transaction data from 13 consecutive months in 
2017-18 from 10 financial institutions. Selected “features” of 
the historical datasets (e.g., identity of sender or receiver 
financial institution, exact transaction amounts) were 
anonymized prior to their use in our study. Thus, the identities 
of specific institutions were withheld in compliance with 
applicable data protection and privacy laws. The financial 
institutions were, however, selected from disparate 
geographical locations around the globe in order to avoid 
geographical control on transaction patterns (e.g., country- or 
region-specific holidays, seasonal patterns). The historical data 
span a large range of traffic volumes per day (a few hundred to 
a few thousand). Thus, our data collectively represent both 
small and large financial institutions.  

     Our multi-prong solution for financial fraud detection 
involves statistical analyses of historical data in conjunction 
with the use of a time series ML model (SARIMA [4-6]) and a 
pair of DL models (Autoencoder [7] and Restricted Boltzmann 
Machine (RBM) [8,9]). We analyzed and modeled the subsets 
of historical data for each financial institution separately. The 
separate analyses and modeling for each institution were 
important because the transaction patterns among financial 
institutions in our datasets vary greatly, and, as a result, one 
single model is not suitable to generalize patterns across all 
institutions.  Here we report our implementation of this multi-
faceted approach as different phases in the fraud detection 
workflow, and demonstrate that the AI-powered prototype web 
application we have built can successfully identify fraudulent 
transactions with high accuracy and generate alerts in real time. 

II. OVERALL APPROACH 

     Here we briefly describe the three separate phases of 
our modeling. 

A. Dynamic Statistical Analysis 

     Unlike fraud detection based upon a fixed set of pre-
defined rules, statistical analyses of several features from 13 
months of historical data for each of the 10 institutions were 
used for alert generation. Different types of days (work days, 
non-work days, part-time work days, holidays) were identified 
for each institution based upon transaction counts for each day 
in the historical data. These days were used to define the 
transaction-based calendar. Further, the mean and standard 
deviation of features, namely, “Transaction count” and 
“Transaction Arrival Time,” were used to derive a transaction-
based calendar that describes the window of time when a given 
transaction is permissible. This transaction-based calendar may 
or may not be identical to the business calendar of the financial 
institutions. For example, a financial institution that opens for 
business at 8 a.m. and closes at 5 p.m. may have historically 
received its first transaction for a given day (e.g., Monday) at 
9:00 a.m. and its last transaction at 4:30 p.m. Thus, the 
business calendar for that day (8 a.m. to 5 p.m.) is different 
from its transaction-based calendar (9 a.m. to 4:30 p.m.).  

We derived the transaction-based calendar for each day 
based upon the mean of the first and last transaction arrival 

times, within default 3-sigma uncertainties. Transactions are 
considered legitimate when they arrive within the window of 
the transaction-based calendar, whereas transactions arriving 
outside of this window are either “blocked” or sent for “review 
request.” When a transaction arrives at a time outside of both 
the business and transaction based calendars, it is “blocked” 
from further processing. Alerts for “review requests” are sent 
when a transaction arrives outside of transaction-based 
calendar hours but still within the business hours of the specific 
institution.  

Each feature was approximated to a Normal Gaussian 
Distribution and alert rules were formulated based upon 
probabilities and z-scores, which in turn can be customized 
depending upon the risk tolerance of a particular institution. 
Also, such an approach is dynamic in that the statistical 
parameters that define the alert rules can change from one 
financial institution to another and also as new training data are 
added over time.  

B. Machine Learning Approach 

     The ML methods involved modeling aggregated 
message counts at individual minute intervals using the 
following four separate time series models: Auto-Regressive 
Integrated Moving Average (ARIMA), Seasonal ARIMA 
(SARIMA), Multi-Layer Perceptron (MLP) and Long-Short 
Term Memory (LSTM). These four models were trained and 
tested with the same set of sample data over multiple runs. 
Among these four models, the Seasonal ARIMA model 
seemed to yield the most consistently accurate results across 
multiple runs based on our test data. Accordingly, here we 
limit our discussion to the Seasonal ARIMA model. 

     The seasonal ARIMA model (SARIMA) combines both 
seasonal and non-seasonal factors in a multiplicative model 
using a paired set of 3 parameters. The common shorthand 
notation of the mode is as follows [4-6]: 

ARIMA(p, d, q) x (P, D, Q)m  

where: 

p is the non-seasonal autoregressive (AR) order, 

d is the non-seasonal differencing needed for stationarity, 
and 

q is the non-seasonal moving average (MA) order. 

The upper case P, D, Q terms represent the equivalent 
parameters (as in lower case p, d and q) for seasonal factors. 
The term m represents the time span of repeating seasonal 
pattern (e.g. m = 4 for quarterly data). The coefficients in the 
model are all positive integers, and determine the structure of 
the full prediction equation [4-6].  

C. Deep Learning Approach 

Our sample data from financial transactions include 
multiple fields (“features”) such as currency type, geographic 
route, message type, message counts and others that were used 
to identify anomalous transactions. These features, however, 
have complex interdependencies that, in some cases, make it 
difficult to detect abnormal traffic patterns using simpler ML 



 

 

models, as discussed in the last section. Accordingly, we also 
used two deep learning (DL) models, Autoencoder [7] and 
Restricted Boltzmann Machine (RBM: [8, 9]), in order to 
leverage the higher resolving power of Artificial Neural 
Networks (ANNs) used in these models. Further, we used two 
separate DL models (rather than one single model) in order to 
build a more robust solution for classification using two 
independent models for deep learning. Although DL models 
usually yield higher accuracy in predictions, the training and 
testing of these models typically require more computing 
power than in simpler ML models. As such, we used a pair of 
Nvidia GeForce GTX 1080 graphic cards to accelerate the 
training and testing of our deep learning models. We used a 
binary classification scheme for each transaction as either 
fraudulent (class 1) or legitimate (class 0). Below is a brief 
description of the Autoencoder and RBM models used in this 
study. 

1) Autoencoder 
 

 

 

 

 

 

 

 

 

 

Fig. 2. Architecture of the Autoencoder Model 

The Autoencoder model architecture (Fig. 2) consists of 
three layers: an input layer, a hidden layer, and an output layer. 
The nodes in the input layer have a 1-1 mapping with the 
corresponding nodes in the output layer. The transformations 
that take place in the hidden layer result in an indirect mapping 
from input to output. Each node in the input layer represents a 
feature in a transaction (e.g. message type, message count). 
The categorical data from the input layer were converted to 
numeric data using an enumeration process, and then 
standardized between 0 and 1 to allow the optimization 
algorithm to minimize the “reconstruction error” to work more 
efficiently  [11].  

The Autoencoder model attempts to reconstruct each 
transaction based on computed weights of features 
corresponding to each node in the hidden layer. The number of 
nodes in the hidden layer can be tuned during training to allow 
an optimal trade-off between resolving insights the model can 
offer versus additional computing power the ANN requires in 
order to yield desired levels of model accuracy. The 
“reconstruction error” for each transaction is analogous to the 
“cost function” in other ML models. This error is minimized 

using a Gradient Descent algorithm during the model training 
[11]. 

2) Restricted Boltzmann Machine (RBM) 
This model is similar to Autoencoder in that it 

automatically detects patterns in data by reconstructing the 
inputs. RBM is considered a shallow ANN because it only has 
two layers, the visible layer and the hidden layer. Each node in 
the visible layer connects to each node in the hidden layer. The 
RBM model is called ‘restricted’ because the nodes within 
each layer are not connected to other nodes in the same layer 
[11-13]. The training process starts with receiving the inputs to 
the nodes in the visible layer and moving them to the hidden 
layer. During each pass, the weights of inputs are modified in 
the input layer. Next, the hidden layer modifies the inputs 
again and produces new outputs. These new outputs are sent 
back to the input layer where they are compared with their 
corresponding original inputs and their differences are 
computed. These weight factors are adjusted during each pass 
until the differences between the input feature values and the 
reconstructed values are minimized. 

III. DATA ANALYSES AND MODELING 

A. Dynamic Statistical Analysis 

Four main features of the transaction data were explored for 
the statistical analysis: message arrival time at the minute level 
(timestamps), the type of message (categorical values), the 
message count (integers), and the sender institution 
(categorical). The historical sample data for 30 months were 
split into a 24-month training set and a 6-month test set. Based 
upon the user-entered risk tolerance level, a z-score was 
determined. 

Possible holidays were determined based on the transaction 
counts per day for the entire training period. The holidays were 
removed from the training set in order to yield the transaction 
counts for each working day. 

Different types of alerts were considered in this study. For 
example, if a message is received on a non-working day of the 
sender institution, an alert is generated. A particular day of the 
week was classified as a “non-working” day if the number of 
messages received on that day never exceeded 5% of the total 
messages for the week across all weeks in the training dataset. 
Notably, this definition of “non-working day” can be 
customized and configured based upon thresholds on 
transaction counts or proportions provided by individual 
financial institutions. Similarly, if a message is received before 
or after the “transaction window” of the sender financial 
institution, an alert is generated. This window was determined 
by taking the mean and standard deviation of the earliest and 
latest transaction arrivals for each day and generating a 3-
sigma bound before and after the respective means. Finally, 
some financial institutions send transactions as a batch (and 
usually with a cap on the maximum number of transactions). In 
those cases, a “hard ceiling” is set for transaction batches, and 
alerts are generated if a given batch carries more transactions 
than the cap determined for the entire training period.  



 

 

Fig. 3. EWMA graph along with its sigma envelope on a Monday for a 
particular bank. 

We used a rolling 15-minute time window, and computed 
the message influx rate (count of incoming messages per 
minute). The exponential weighted moving average (EWMA) 
and exponential weighted standard deviation (EWSD) of the 
message influx rates were computed for any given time within 
the window (Fig. 3). The EWMA assigns higher weights for 
more recent data compared to older data. Consequently, the 
EWMA yields accurate predictions on the expected transaction 
count at a given minute in time series datasets. Alerts are 
generated when transaction counts at a given minute fall 
outside of the 3-sigma error envelope at a given minute 
(EWSD), thus enabling our detection of the first order unusual 
transaction patterns. 

B. Machine Learning 

For the solution presented here, we have revised the 
original python source code from [14] and modified based on 
the specifics of our use case. For our seasonal ARIMA model, 
we used 13 months of historical sample data that were split into 
a 12-month training set and a one-month test set. Each 
financial institution had unique message traffic patterns over 
the time period in the training set, which, in turn, required 
separate sets of tuning parameters for each financial institution. 
We employed a grid-search method in order to find the optimal 
set of tuning parameters via continuously fitting SARIMA 
models to the training set and calculating the mean-squared 
error (MSE). With m = 12, all possible combinations of 0s and 
1s were fitted to a particular financial institution’s data 
(ARIMA (0,0,0) (0,0,0)12, ARIMA (0,0,0) (0,0,1)12, …, 
through ARIMA (1,1,1) (1,1,1)12). The result with the lowest 
MSE was then selected. The results of our SARIMA model for 
one specific institution are shown in Fig. 4.  

Fig. 4. SARIMA model predictions for daily total message counts for a 

specific bank during February 2018. The uncertainty bars represent 2-

sigma deviation from the corresponding predicted values. 

C. Deep Learning 

Deep learning models typically require large volume of 
data for model training. Accordingly, we simulated several 
hundred thousand transactions following the same statistical 
distribution patterns in the real data, and also anonymized the 
data appropriately. Further, unlike the statistical analyses and 
ML modeling discussed earlier, where only limited number of 
features were used, the data used in our Deep Learning models 
included a total of 24 features, including message type, arrival 
time, sender financial institution, receiver financial institution, 
currency type, transaction amount bucket (in USD), message 
count, sender and receiver countries, etc. Also, these simulated 
data included both “negative” (“legitimate” or class 0) and a 
suitable number of “positive” (“suspicious” or class 1) 
samples. The “suspicious” samples were created via artificially 
injecting outliers in the feature values (e.g. unusually high 
transaction amount, transaction arrival time outside of typical 
transaction window). The “positive” samples were used to test 
the accuracy of the models in predicting suspicious 
transactions.  

1) Autoencoder 
The simulated dataset was split into 85% training data and 

15% test data. Relevant features were extracted and the 
resulting feature matrix was fed into our Autoencoder model 
(Fig. 2). The model was initialized with four nodes within the 
hidden layer. The model was trained using 50 epochs, and the 
test set was subsequently fed into the model [10]. For each 
transaction in the test set, the model computes a Reconstruction 
Error (RE). Based upon the RE values, a threshold was 
established to classify the transactions, whereby all RE values 
above the threshold were flagged as suspicious transactions. 
The Autoencoder source code from [10] was modified to suit 
our model requirements. 

2) Restricted Boltzmann Machine (RBM) 
The same simulated data used for Autoencoder was also 

used for the RBM model. Unlike the Autoencoder model 
where an 85/15 split was used for training and test data, we 
used a 50/50 split for the RBM model because our research 
into RBM implementations showed more favorable results 
with a 50/50 split. Still, the training and testing processes for 
RBM are very similar to those used with Autoencoder. The 
python source codes for RBM published in [11-13] were used 
and modified for our solution. The training data is passed to the 
RBM over 50 epochs. Similar to the ranking of RE in the 
Autoencoder model, RBM uses Free Energy to mark a message 
as either suspicious (class 1) or legitimate (class 0). Records 
with free energy values close to zero, as computed by the RBM 
model, are assigned to class 0 (“legitimate”) [8]. Any record 
with computed free energy values above a defined threshold, 
on the other hand, is marked as class 1 (“suspicious”). This 
threshold can be customized based on the risk tolerance level 
of the financial institution. 



 

 

IV. RESULTS AND DISCUSSION 

The results of statistical analyses, SARIMA ML model and 
the DL models (Autoencoder and RBM) were analyzed and 
evaluated for their predictions on known test data. Here we 
briefly discuss these results along with the alert rules we have 
implemented for our fraud detection application.  

A. Dynamical Statistical Analysis 

The results of the dynamic statistical analyses were used as 
the basis of some of our alert rules. First, as expected, no alerts 
are generated for class 0 (“legitimate”) transactions. The 
application generates alerts only for the class 1 (“suspicious”) 
transactions. Secondly, two types of alerts were created for 
suspicious transactions: “forbidden” and “review required.” 
For example, a transaction is considered “forbidden” when it is 
received from a sender institution at a time outside of its 
business hours (e.g., non-working days or holidays), as defined 
via statistical analyses of its historical transaction data. In this 
case, our fraud detection system can trigger an alert to notify 
the appropriate transaction support team on the likely 
fraudulent nature of the transaction. The authorized user can 
block this transaction, if deemed necessary, from further 
processing. If a transaction, on the other hand, is received 
within business hours, yet outside of the transaction window of 
the originating institution (discussed in section III A), the 
transaction is considered “suspicious”. In this case, an alert is 
sent, and it requires a review of the legitimacy of the 
transaction by an authorized user prior to further processing.  

Our application is capable of ingesting real-time streaming 
transaction data, and can display the alerts on a web application 
approve a single transaction at a time or a batch of transactions 
together as necessary for faster processing. 

The use of EWMA, as opposed to regular moving averages, 
appears to more accurately define the trends in our historical 
time series transaction data. As noted in the previous section, 
the message influx rate (message counts per minute) was 
dynamically computed using EWMA for a 15-minute rolling 
window (Fig. 3). This message influx rate, in conjunction with 
an estimate of uncertainty (3-sigma), yields a useful measure of 
expected message count at a given minute within the business 
hour of the institution. When more messages are received than 
expected at a given minute, the system triggers alerts. Similar 
to alerts at minute levels, we also formulated alerts based on 
daily aggregates of transaction counts and their total monetary 
values. Further, alert rules were formulated based on aggregate 
daily, weekly, and monthly message counts in order to forecast 
trends in transaction at those levels.  

Notably, the majority of the alerts, formulated for our 
selected financial institutions, are due to deviations from our 
minute level predictions. There is also a trade-off between false 
negatives and false positives in model predictions, and their 
relative frequencies can be optimized based on the risk 
tolerance of an individual institution. For example, fewer alerts 
are triggered when the standard deviation threshold is raised 
(3-sigma instead of 2-sigma), which is likely to reduce the 
number of false positives at the expense of increased risk of 
missing fraudulent transactions. 

B. Machine Learning Models 

As mentioned, we used historical data for a total of 13 
months in 2017-18 for our SARIMA model. The model was 
trained using data for the first 12 months in the dataset, and 
tested using data for the remaining month. Aggregate daily 
message counts were predicted for the last month, and 
compared against the actual daily message count in our 
historical records. The results of these predictions for a single 
institution are shown in Fig. 4. 

Note in Fig. 4 that the prediction equation used in the 
SARIMA model (section II B), creates a sinusoidal projection 
that, within bounded uncertainties (“error envelope”), 
accurately reproduces the expected daily message count for a 
given financial institution bank over the period of a month. The 
uncertainty is defined by a 3-sigma envelope around the 
sinusoidal curve. If the message influx rate for a particular day 
plots outside of the error envelope, an alert is generated to 
suggest abnormal activity for that particular day. For example, 
if the actual message count is significantly above the predicted 
value, it may suggest suspicious or fraudulent transactions. On 
the other hand, if the message count is significantly below the 
predicted value, it may suggest possible system or network 
failure, an unscheduled financial institution closure, etc. 

C. Deep Learning Models 

1) Autoencoder 
Our Autoencoder model correctly predicted 6,539 out of 

6,544 legitimate (99.92%) and 26 out of 27 (96.3%) fraudulent 
transactions. One false negative (actual fraud misclassified as 
legitimate) and five false positive results (legitimate transaction 
misclassified as fraud) were predicted by the model. 
Combined, these results demonstrate the high degree of 
accuracy in predicting both legitimate and suspicious 
transactions. 

2) Restricted Boltzmann Machine (RBM) 
The results of the RBM model were also highly accurate. 

The free energies of the vast majority of simulated fraudulent 
transactions were distinctively above the threshold set for 
legitimate transactions. Accordingly, the RBM model correctly 
predicted 13 fraud transactions (true positives). There was only 
one false negative and no false positives in the RBM model 
predictions. These results suggest that the RBM model could 
be applied with a high degree of confidence in detecting 
fraudulent transactions. 

V. CONCLUSIONS 

First, while fraud detection can prevent financial loss, 
misclassification of legitimate transactions as fraudulent can 
lead to potential revenue loss as an unintended consequence. 
Thus, the optimal level of alert generation (“aggressive” versus 
“conservative”) is best determined based upon the level of risk 
tolerance (“risk appetite”) of a particular institution. 
Accordingly, the statistical analyses in our approach enable 
financial institutions to define alert rules and customize them 
based upon their specific level of risk tolerance. For example, 
different statistical measures of the transaction data, such as 
probability densities, z-scores, and exponentially weighted 
moving averages (EWMA), all can be used in our approach to 



 

 

define a set of alert rules that best suit the risk tolerance of an 
institution. 

Secondly, we have demonstrated that our ML model 
(Seasonal ARIMA) yields highly accurate predictions in 
detecting legitimate versus fraudulent transactions based upon 
the message influx rate (counts per minute). Further, the 
classification algorithms used in particularly two DL models 
(Autoencoder and RBM) similarly yield highly accurate 
predictions. Combined, this study suggests that a statistical 
analytical approach can be used in conjunction with the use of 
ML and DL models in order to detect anomalous traffic 
patterns in financial transactions.    

 Finally, our results suggest that the dynamic statistical 
analytical methods, combined with the ML and DL methods, 
provides a powerful tool to detect suspicious transactions with 
high accuracy in real time traffic. While our multi-prong 
approach followed in this study was applied only on financial 
messages carrying wholesale payment instructions, the same 
approach can be potentially applied to other business areas 
(e.g. retail banking, lending) via carefully selected set of 
relevant features of data on analogous financial transactions. 
Thus, the results of this study suggest that our approach can 
potentially reduce fraud-related monetary loss in financial 
transactions. 
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