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Abstract—The abrupt development of cryptocurrencies and
blockchain technology has pointed to the importance of deploying
large scale, highly robust Byzantine fault-tolerant schemes to
handle critical distributed failures in system networks. Although
traditional wisdom is to build systems by following synchronous
protocols such as PBFT consensus, these protocols strongly rely
on network time limitations and only guarantee liveness when
the nodes behave arbitrary. This paper presents the design
and implementation of Adrastus, a scalable blockchain system.
The main contributions of Adrastus are the use of a consistent
hashing mechanism which solves load balancing problems and
the efficient assignment of transactions on parallel regions of
single-chain consensus systems, referred to as zones, without
introducing unnecessary overhead. We claim that the Adrastus
blockchain system scales linearly without compromising system
security. We present theoretical analysis, discuss our solution,
and examine the conditions to meet both safety and liveness of
our fault-tolerant system.

Index Terms—Blockchain, Consensus Protocol, Byzantine
Fault Tolerance, Scalability, Distributed Systems, System Net-
works

I. INTRODUCTION

Nowadays cryptocurrencies [1] have been proved as
a promising infrastructure for pseudonymous online pay-
ments [2]. The blockchain consensus protocol [3] gives the
opportunity to every running node to confirm user transactions
periodically, batched into smaller patches called blocks. The
protocol is responsible for ensuring that all honest nodes
conform with the rules and agree on the same total ordering
of the confirmed blocks, so the set of the confirmed blocks
grows over time.

Blockchain is not just a new technology; it is an ensemble
of three well-known areas of the computer industry: game the-
ory, cryptography, and software engineering [4]. The Bitcoin
protocol [5], a peer-to-peer electronic cash system proposed in
2008 has introduced some of the fundamental key factors for
modern blockchain applications, while it keeps gaining more
popularity and attracting attention.

However, low transaction throughput has negative impact on
the scalability of cryptocurrency systems and leads to seeking
for new opportunities for increasing the numbers of user
transactions. Likewise, network latency is the root problem
that is highly engaged in the throughput issues. We measure
the processing throughout as Transactions per Second (TPS).
For example, Visa [6] is capable of handling an average
of 2000 TPS with a maximum rate of 4000 TPS whereas,
Bitcoin [5] and Ehereum [7] process only 10 TPS on average,

which is considered less than 0.2% of the average available
bandwidth measured in the P2P networks [8]. Many research
efforts focus on solving and improving transaction throughput,
resulting in a list of interesting designs for blockchains [8] [9].

Although blockchain technology offers great promises for
solving various issues in the computer science industry, it
faces various technical challenges that need to be addressed.
For instance, even if high throughput is achieved as stated
above, workloads require fast communication, descent storage
and surely enough computation power, a fact that sets new
preliminaries to the consensus node that wants to participate
in order to achieve consistency. In this paper we present a
scalable blockchain system, named Adrastus1 which intends
to achieve incremental scalability of its consensus protocol
while limiting the resource usage of communication storage,
computation, and memory cache management.

Additionally, there are further challenges that need to be
addressed in order to create a robust and scalable blockchain
network infrastructure. The following requirements remain
open issues in most of the current well-known present tech-
nologies:
• High scalability: The ability to work efficiently with

increasing numbers of nodes.
• Security Robustness: The ability to prevent different

kinds of attacks and preserve the security of the trans-
actions.

• Efficiency: Performing all the required operations with
minimal computational requirements and without the
excessive energy consumption.

• Applicability: The ability to be used in actual applica-
tions and deal with existing challenges.

In this work, we aim to address mainly three of the above
challenges: scalability, security, and efficiency. We use the
terms “Adrastus BFT consensus” to denote the process where
validators attempt to reach a consensus and “Adrastus system”
or “Adrastus network” to denote the entire environment of
zones,validators and others entities participating in the proto-
col. We claim that the Adrastus system supports meaningful
improvements in each of these issues. More specifically, the
network is partitioned in asynchronous zones where each zone
is responsible for validating assigned users’ transactions. The

1The name of our system was inspired by the legendary king of Argos,
Adrastus, who was joined by six more leaders and created an army to
commence the war of the Seven against Thebes. This name constitutes a
union symbol for multiple entities and was therefore, chosen for our system.



assignment process is accomplished under the supervision of
a consistent hashing mechanism to distribute transactions load
across multiple asynchronous zones. In a consistent hashing
mechanism [10], the output range of a hash function is
considered as a circular space with fixed values forming a
ring. Subsequently, each asynchronous zone is assigned with
a random value based on the hash algorithm which determines
the position in the circle. In addition, when a new transaction
enters the Adrastus network, a unique key is assigned, and it is
identified by hashing the transaction key to yield its position on
the circle. We have used a synthesis of well-known algorithms
to achieve efficiency and scaling by implementing techniques
from the design of the Amazon Dynamo database [11], a
distributed storage system that has a fast and predictable
performance with linear scalability.

The Adrastus has been designed to be scalable and efficient,
to achieve safety and liveness and to treat failure without im-
pacting the availability or performance of the entire network,
as will be presented in the following sections. Hence, the key
contributions of our work are the following:
• We introduce the usage of the consistent hashing mech-

anism as our main solution to solve load balancing
problems and to accomplish the efficient assignment of
transactions on parallel regions, referred to as zones,
without introducing unnecessary overhead.

• We present the AdrastusBFT protocol that needs fewer
communication rounds to achieve consistency and thus
we lower the communication latency from O

(
n2

)
to

O
(
n
)

compared with the PBFT [12]. In addition, we in-
clude BLS [13] aggregated signature for faster operations
on data exchanged.

• We propose an efficient technique based on V RF/V DF
random functions to achieve randomness and randomly
assign validators into zones.

The rest of the paper is organized as follows. In Section
II, we introduce the proposed system architecture while the
proposed consistent hashing algorithm and other optimizations
are presented in Section III. In Section IV, we analyze the
security obtained from the proposed system, in terms of safety
and liveness of the protocol. Related work is discussed in
Section V. Finally, Section VI concludes the paper.

II. SYSTEM DESIGN

This section introduces the design of the Adrastus system.
To begin with, the nodes in our system represent the active
validators that have the main responsibility to totally engage
in cooperative tasks. The validators are grouped in clusters
after we partition the network to create smaller groups. The
validators’ main role is to verify and transmit user transactions
and ensure system consistency. Furthermore, they are respon-
sible for running the consensus protocol, adding blocks to
the network, maintaining the current state, and being actively
rewarded for their services. In the rest of this paper, we assume
that we have a fixed subset of nodes that behave arbitrarily,
called Byzantine nodes. The rest of the network consists of all
the other nodes known as honest nodes where they compose

and follow the protocols according to the specifications. We
assume that time is divided into generations. We define a gen-
eration g as the fixed time between global configuration events
that take place in the network. The time during a generation g
is denoted as rounds r. During an individual round, each zone
along with its validators has the main responsibility to process
users’ transactions and finally construct and reach a consensus
on the block that they will create in round r according to the
Adrastus Byzantine Fault Tolerant (AdrastusBFT) consensus
protocol. In the Adrastus protocol, we introduce the main chain
directory committee. The main chain directory committee is
responsible to combine all micro transaction blocks of each
zone into a higher transaction block namely key block which
contains all the appropriate information for blocks of all zones
at a specific round.

A. Validators participation

One of the attacks that every blockchain needs to defend
is the Sybil attack [14]. This kind of attack is so important
because of its nature that lets an attacker poison the blockchain
network and subverts the reputation system that is built by
creating a large number of pseudonymous online identities,
they used them to gain control of the network for their own
benefits. Satoshi’s Nakamoto Bitcoin network depends upon
miners to solve cryptographic puzzles (PoW) [5] before pro-
ceeding with the agreement on the next block, thus avoiding
malicious registrations. The Adrastus system adopts a hybrid
approach by combining the PoS consensus protocol [15] with
the AdrastusBFT consensus protocol (described in section
III-D) to prevent malicious attackers from adding nodes to
the network which they will not comply with the protocol.
If someone wants to participate in the Adrastus network as a
representative validator node it demands to stake a number of
tokens and wait for verification. Tokens represent an amount
of money that the Adrastus blockchain requires from users or
from the validator to stake, in order to prove that they are
eligible nodes and that they will not easily trick or circumvent
the protocol. They are thus used as a trust mechanism. The
number of tokens that they stake will regulate the number
of voting power that they earn in order to participate in the
consensus protocol and get their rewards. We can consider
the voting power as a virtual ticket that gives the appropriate
permission to the validator to join the consensus and cast their
vote. The amount of tokens required for a voting power is al-
gorithmically calculated based on the height of the blockchain
and on the active validators. The validators who have staked
more amount of money have more chances to be elected as
representative organizers because they are considered more
trust. At the beginning of each generation, new validators’
virtual tickets are randomly assigned to zones. Hence, the new
validators join the zones where their voting power has been
assigned.

B. Adrastus Leader election process

The Adrastus consensus algorithm relies on specific nodes,
the supervisors to initiate the protocol and organize the
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Figure 1: Adrastus System overview.

other nodes of their zone. For that purpose, at the begin-
ning of each generation g, each validator computes a vir-
tual ticket ticketi,e,v = V RFski(”Supervisor”||structe||v)
where structe is the structure containing all the appropriate
registered validators and v is the current view number. The
current view number is used to count the number of the
height of the blockchain protocol. Nodes rely on view number
to always get coordinated on the same number. If for any
reason they fail to synchronize they agree to increment the
view number by one and then they try to reach again the
consensus. The validators gossip these tickets between each
other based on a specific time-bound δ. After that, they come
to an agreement at the lowest valid value they have seen
so far from the issuer who constructs it, and they recognize
the issuer as the corresponding supervisor of generation g.
The Adrastus makes the following assumption: In case that a
random supervisor at generation g is not an honest node and
thus it behaves maliciously and fails to further obey to the
correctness of the protocol agreement, the validators simply
ignore him for the rest of the generation g.

C. Randomness Generation on VRF/VDF Randomness

In this subsection, we introduce the protocol that we use
to allow validators to reach an agreement on a single ticket
described in section II-B. More specifically, the protocol
includes the following steps to assign validators into nodes. At
the beginning of the protocol, the supervisor of a previously
elected generation g sends a ”start” message with the hash of
the last valid block to the validators. The validators on their
turn, after receiving the ”start” message, begin to take action
by computing a VRF (verifiable random function) [16] that
provides publicly verifiable proofs of its output correctness.

For this purpose, a validator i calculates a random number ri
and a valid proof pi so that

(ri, pi) = V RF (Ski, H(Bn−1), v) (1)

where ski corresponds to the secret key of validator i and v
is the current view number that demonstrates the round of the
algorithm. The supervisor waits until receiving a quorum of at
least f + 1 valid random numbers from validators who partic-
ipated in the process and mixes them with a xor operation to
get the final randomness pRnd. The final randomness pRND
is a number that will be used as a seed to randomly assign
the nodes to zone. This value is critical because we don’t let
attacker forecast it as it produced just in time. As a result the
attacker has zero time to predict it. Furthermore, the supervisor
runs the AdrastusBFT consensus protocol (discussed in section
III-D ) to reach a consensus on pRnd and commit it in the
block Bn.

Nevertheless, the protocol has not ended yet because we
do not calculate the actual randomness of the block Bn. The
value pRnd is not the actual randomness that we use to elect
a new supervisor for the next block, but instead, it will be
used as an input into the VDF [16] verifiable delay function
(f : x→ y) to start computing the real randomness

Rnd = V DF (pRnd, T ) (2)

of the next block where T is the V DF difficulty which
is set dynamically depending on the growth of the system.
The reason that we benefit from V DF is that we want to
add delay, because V DF takes a specific time to calculate
a computational task, even on a parallel computer. The most
interesting part which we achieve with this method is that we
provably delay the revelation of the actual Rnd by adding
delay on the next block time generation and no one, even if
the supervisor of the previous block trying to generate the
randomness, is not able to predict, or bias the election process
until the time for the Bn+1 blocks comes. Particularly, we have
this strict security measure that no one is able to predict the
next randomness to prevent any malicious node or supervisor
that wants to behave arbitrarily, from owning the randomness
seed and uses it for his own purposes for the next block
during the process of attaching validators into zones. Shamir
and Wagner [17] use this method to build efficient time lock
puzzles and take advantage of the exponentiation in a group of
an unknown order as the key property to use V DF function.
This early revelation of Rnd cannot happen because it takes T
time based on the difficulty to compute it. Hence, an attacker
will not be able to bias the actual randomness.

Furthermore, after V DF has been computed, the output
can be verified by anyone. The Adrastus V DF construction
operates as follows: The setup algorithm Setup(λ, T ) consists
of two outputs. A finite abelian group of undefined order G,
and an efficient hash function H : X → G. In addition, it must
set the public parameters pp := (G,H, T ). The evaluation
algorithm consists of three computations. (a) a computation
of y ← H(x)2

T ∈ G by computing T squaring in G starting



with H(X), (b) a proof p and (c) the output(y, p).
The supervisor runs the AdrastusBFT consensus protocol

(discussed in Section III-D) to reach a consensus on Rnd and
commit it on the block Bn+T . The remaining question now
is how validators can quickly verify(pp, x, y, p) and check
that the output y is correct. We have implemented a solution
according to the proposal of Wesolowski [18] to prove that
h ← g2

T ∈ G. We let g := H(X) ∈ G be the base hash
function given as input to the V DF solver. In addition, we
let h := y ∈ G be the output of the V DF translated from
y ← H(x)2

T ∈ G to h ← g2
T ∈ G. The verifier checks

that g, h ∈ G and outputs reject if not. Correspondingly,
the verifier sends a random prime l sampled uniformly from
Primes(λ) to the prover. We define Primes(λ) as the set
containing the first 2λ primes.

III. ADRASTUS OPTIMIZATIONS

In this section, we propose the consistent hashing mech-
anism as our base solution to find out the destination zone
of a transaction in such a way that it is deterministic and
eliminates the unnecessary bottleneck. We believe that this
solution is the necessary key for adapting and overcoming the
load balancing problems and efficiently assign transactions to
zones. In addition to our main goal, our secondary objective is
to find a process where the increasing or decreasing number
of zones is negligible and consequently does not affect the
overall performance. In the following subsections, we present
the mechanisms that we introduce in our blockchain network
to achieve our objectives outlined in the introductory section.

A. Optimal Zone Computation

In this section, we propose an optimal formula to calculate
the number of zones Nzone in a generation gi+1(Nzone,i+1).
We define a bound threshold for the maximum number of
transactions existing in a block as ΘTX . Furthermore, we
use the variable Nopt that represents the optimal number of
validators into a zone. In addition, we adopt the variable
joinNi that represents the total number of eligible nodes
which are in the list to join the newly node pool. In addition,
pos value is a positive number that represents how many
validators can be accepted in a zone. Moreover, the value
NTR,i adjusts the average number of transactions in the
blockchain on all zones in generation gi. The formula that we
follow is that we change the total number of zones Nzone,i+1

in the network only if we face a utilization exceed by the total
number of eligible nodes joinNi. Therefore, if the number of
validators exceeds the given threshold ΘTX and the average
number of transactions per block is larger than the given
bounded threshold NTR,i ≥ ΘTX then we call nsplit. On
the other hand, if the number of validators drops down below
the given threshold, then we call nMerge as shown in the
function OptimalZoneComputeN.

B. Optimal transaction assignment across zones

In distributed computing, load balancing distribution is the
most common problem where dynamic environments should

Algorithm 1: OptimalZoneComputeN
Result: Nzone,i+1

nsplit← (Nzone,i + 1) ∗ (Nopt + pos);
nMerge← (Nzone,i − 1);
if joinNi ≥ nsplit and NTR,i ≥ ΘTX then

Nzone,i+1 ← joinNi+1/(Nopt + pos)
else if joinNi ≤ nMerge then

Nzone,i+1 ← joinNi+1/Nopt

deal with it. The reason this problem occurred is that we need
to split the traffic from the clients in a set of tasks to any
available server which is capable of fulfilling and make the
overall processing more efficient. Therefore, load balancers
accomplish to minimize the load across multiple servers that
cause a single point of failure in a single server. The first
proposed idea is to achieve availability in a distributed envi-
ronment issued by Amazon in a system called Dynamo [19],
which was used for treating and handling network failures by
eliminating unnecessary bottleneck. Particularly, the data are
partitioned and replicated in virtual nodes so as to minimize
the load on a single point of a server. In addition, Google
introduced another system [20] that leans to the consistent
hashing mechanism to minimize the negative impact of failures
in the network; hence, the clients are capable of connecting
to a stable server node.

Figure 2 depicts how the transactions are replicated in
distributed zones. More specifically, we assume that we desire
to assign clients (referred to as balls) to servers (referred to as
bins) in such a way that none of the servers get overloaded.
Following this, in the Adrastus distributed environment we
wish to allocate a large part of the incoming transactions across
zones. Consequently, we refer to the transactions as the balls
and to the zones as the bins along with the current supervisor
monitors each one of them. In order to further process and
accomplish the assignment process, it is necessary to find a
hashing style solution, where the given transaction hash id can
efficiently find the correct zone to be included.

The solution to this scenario is described as the consistent
hashing mechanism [10]. In this mechanism, the active trans-
actions (balls) and zones (bins) are hashed onto a unit circle,
in order to create a circular order of bins and balls. Assuming
that no collisions are detected, a transaction ball is placed on
the successor bin of the nearest neighbor, according to the
hash equation, following a clockwise around the circle. One
of the nice features of the consistent hashing mechanism [10]
is that if a zone (bin) is down or faces a change view state
protocol, the system just moves the user’s transactions (ball)
to the nearest neighbor zone (bin) around the circle. Therefore,
rehashing the values and computing new value orders is not
needed, thus any unnecessary latency or computation effort
is eliminated. Hence, with b balls and m bins, and a random
hash function h, it is expected that each bin will be filled
with b/m balls. Transactions and zones are both hashed into a
unit circle with a unique hash function that is fixed over time.
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Figure 2: Example of a DHT-based Assignment of Transac-
tions and Zones.

Our suggesting idea is that the [21] [22] consistent hashing
mechanism could help us improve our blockchain network and
give us the ability to assign transactions to zones on which
we are able anytime to reassign a transaction in a zone if the
zone is full and is not eligible to serve more tasks. This ability
to move a transaction from one zone to another is achieved
without rehashing the initial value. Let’s suppose now that a
new transaction is learned by validators and it is added to the
blockchain network for thorough processing. This transaction
is hashed and mapped to the zone following it in clockwise
order. If the zone is full, then it is forwarded around the circle
like a linear probing scheme until it finds a zone that is not
full, and then it is placed in that zone so as to be verified and
included in the tiny block later on.

Consider the example depicted in Figure 2 where 6 trans-
actions and 3 zones are assigned on the circle, based on
two different hash functions. We suppose that the capacity
of each zone is a block of 2 transactions. We start allo-
cating transactions in the increasing order of their entrance.
Transaction number 1 moves clockwise and goes to zone C.
Transaction number 8 goes to zone A. Transactions 7 and 2
go to zone B. Transaction number 5 goes to zone C; Later on,
transaction number 6 arrives. It moves clockwise and hits zone
B first. However, zone B has capacity 2 and already contains
transactions 7 and 2. So transaction 6 keeps moving to reach
zone C; however, zone C is also full. Finally, transaction 6
ends up in zone A that has a free slot for it.

In the following we explain how our system prevents
double-spent attacks. Let us assume that a transaction t1
has been created by a user u and the consistent hashing
mechanism indicates that the nearest zone to be assigned is
z1. Furthermore, let’s consider that a harmful user replays this
transaction and creates an identical t2 with the same id, a fact
that simply means the assignment will also be on z1 because
the hash for the same id will produce the twin value in the
circle near the zone z1. The Adrastus network will prevent the
execution of the malevolent transaction t2 because we consider

that every transaction is individual and depends on the nonce
value which is an auto incremental value that never lets two
transactions be executed simultaneously. Instead, the execution
will happen with chronological order starting from the lowest
nonce and rejecting all others since the t1 is smaller compared
with the t2. Hence, by incrementing the nonce value, it is not
possible for anyone to duplicate the same payment. We also
make the assumption that the hash function for the transactions
is independent from the hash function of the zones. In fact,
with that limited range, we may observe hashing collisions.
In order, to avoid this scenario, we reuse the same hash
function k times with k different seeds in order to produce
a k-independent way of hash function that is strong enough to
avoid multiple collision detection. Furthermore, we make the
following assumption: if two transactions or two zones hash to
the same location on the circle, then the one with the lower id
precedes the other. In addition, if a transaction and a zone hash
to the same location, we assume that the transaction precedes
the zone.

C. Optimal formula for zones’ load balancing capacities

A critical concept that we need to take care of is that the
allocation should be balanced and not overflow transactions
into zones. For example, we do not want any scenario where
the random assignment of transactions to zones, based on the
consistent hashing mechanism will fill some zones and the
others will remain empty. This kind of scenario would be
harmful to system performance and to system scaling due to
not accomplishing a desirable throughput. Allocation errors
can become challenging because when the Adrastus network
becomes overflowed with users’ transactions, the capacity of
each zone reaches constraint limits.While a consistent hashing
scheme [21] minimizes the expected number of transaction
movements, there is still a high probabilistic chance for
allocation errors to occur.

In order to tackle the aformentioned issues, we firstly,
introduce a capacity for each zone (bin) that can not exceed
a specific limitation. Let’s suppose a given load balancing
parameter c = 1 + ε > 1. We want to ensure that no zone
has more than [cb] transactions, when transactions are created
and learned from validators. Assuming a linear ordering of
the transactions, we let the lowest zones have a capacity with
an upper bound at [cb/m] with the respect that the total
capacity only needs to change at most [c] zones capacities.
We refer to the former zones as the safer zones, which are
chosen based on the reputation the supervisors are built upon,
and the latter as the small zones. Moreover, we do not let
the capacity to drop below a specific threshold. For example,
let’s consider a scenario where there is a fixed set of zones
z, all of which have capacity c and each of t transactions
provide u uniformly choice between the zones. The most
desirable question is how large the capacity c should be before
it becomes overloaded. An interesting solution that fits our
needs [22] proves that by using u = O

(
log(1/ε)

)
choices,

we can assign transaction to only z = (1 + ε)t zones, so that
the maximum load of 1 is at most 1 + ε times the average



load. In addition, to introduce more efficient insertions, it is
proven that if u ≥ 5 + 3ln(1/ε), then a transaction can be

assigned in uO
(
log(1/ε

)
= (1/ε)O

(
log(log(1/ε))

)
expected time

and in O
(
n
)

assumption time [21]. We assume that each node
equipped with the above dynamic algorithm calculates the
capacity of each zone an after they come on communication
to reach consensus and agree on the number of nodes that will
be assigned to each zone.

D. AdrastusBFT Consensus Protocol

A distributed system can be considered as a blockchain
network that needs to follow specific rules in order to survive
from common failures such as crashes. The Byzantine fault
tolerant system [12] was the first system used to eliminate
malicious nodes in a network and prevent arbitrary failures
of its components by giving the opportunity to the network
nodes to take critical actions and change their state to prevent
or handle losses and recover from crashes. The Adrastus
network can be considered as an asynchronous distributed
system whose main responsibility is to guarantee the safety
and liveness (described in section IV), even though there are
specific nodes that behaved arbitrarily from the protocol. In
an asynchronous P2P network, nodes need to communicate
with each other to reach a consensus by following a common
replication log. As a result, our system needs at anytime ensure
that the data transmitted in the network cannot be tampered,
delayed, or duplicated by random attackers. For that reason,
we use cryptographic techniques to protect the integrity of our
data and to prevent spoofing, replay attacks, or detect corrupted
messages. Moreover, the nodes are demanded to agree in a
common signature called aggregated signature which will be
used to verify the integrity of the data transmitted through the
Adrastus blockchain network.

The aggregated signatures have been proven very useful
because they are cheap and have the potential to save much
computation time, and therefore improve the overall perfor-
mance of the entire network [23]. ECDSA [24] signatures
have proved the effectiveness so far. They are good and
they are widely used, but the problem with them is that
signatures or keys cannot be combined and as a result, every
signature has to be verified independently. The main idea of the
multi-signature schemes was inspired by ByzCoin BFT [25].
ByzCoin uses communication trees based on collective signing
algorithms to collect a multi aggregated signature. Another
solution proposed is the EC-Schnorr [26] multi signatures
schemes. The block validation becomes faster, but the problem
which still exists is that multisig scheme requires several
communication rounds. Furthermore, we have to rely on a
random number generator. BLS [13] signatures can fix the
above problems because they do not need random numbers
and also all signatures in the block can be combined to a
single signature.

Following this, we mix the BLS [13] signatures with the
AdrastusBFT consensus protocol to reach consensus on a
single message, with the produced aggregated signature. We
follow three phases on each asynchronous zone to validate a
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Verify Sign Signature
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New Block
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#3 Validator

#2 Validator

#1 Validator

Supervisor

Overview of Adrastus BFT

Announce
The supervisor con-
structs the new block
and broadcast the block
header to all validators

Prepare
The supervisor waits
for at least 2f+1 valid
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BLS multisignature

Commit
The supervisor waits for at
least 2f+1 valid signatures
from validators and finally
commits the Block

Figure 3: Adrastus Network communication during a single
round of consensus on each asynchronous zone.

block: the announce phase, the prepare phase, and the commit
phase. Figure 3 depicts a communication round of the block
commitment along with agreement of the BLS signature for
the given round.

Announce phase: The nodes on the asynchronous zone are
informed about new transactions via a gossip protocol so, later
on, these transactions are collected and sent to the current
supervisor of each zone. When the current supervisor’s timer
expires, he constructs a new block with all the transactions that
he has been informed so far and broadcasts the block header
to the validators of this zone.

Prepare phase: Subsequently, the validators receive the
announce phase message from the supervisor and they change
their state to prepare phase. All honest nodes check the
integrity of the block header and after that, they sign the block
header with a BLS signature and send that signature back to
the supervisor. The supervisor waits for at least 2f + 1 valid
signatures and aggregates them into a BLS multi-signature
scheme. This guarantees that the message proposed by the
leader is safe and consistent. Then, the supervisor broadcasts
the aggregated multi-signature along with a bitmap struc-
ture indicating which validators were involved in the multi-
signature process and including the public key and verifiable
proofs of the signers B[i] = 1.

Commit: At this phase, the validators check that the multi-
signature scheme has at least 2f + 1 valid signers whose
public key exists on the bitmap. In addition, they verify the
transactions encompassed in the current block content which
were broadcasted by the same supervisor during the announce
phase. After that, they commit the new block along with the
bitmap structure indicating which validators were involved
in the process. The supervisor on its turn waits for at least
2f + 1 valid signatures, and finally creates a bitmap with all
the signers that participated in the commit process. In the end,
the supervisor commits a new block in the blockchain with
all the signatures and bitmaps attached. By this final step, we
conclude the improvement process of the BFT protocol.

Table I demonstrates some well-known communication pro-
tocols footprints together with the Adrastus network. The



Table I: Consensus Protocol Complexity.

Protocol Correct
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Leader
failure(view-
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)
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)
O
(
n4

)
PBFT [12] O
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)
O
(
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)
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(
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)
SBFT [28] O

(
n
)

O
(
n2

)
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(
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)
Tendermint [29] O

(
n2

)
O
(
n2

)
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(
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)
LibraBFT [30] O

(
n
)

O
(
n
)

O
(
fn

)
AdrastusBFT O

(
n
)

O
(
n2

)
O
(
fn2

)

numbers that appear in this table, were the result of a literature
survey on the distributed fault tolerance protocols, specifically,
the asymptotic complexity of the different ways that these
protocols use to deal with.

IV. SECURITY ANALYSIS

In this section, we describe how the Adrastus achieves
the goals of randomness security, adaptive zone threshold,
security of intra zones consensus, safety and liveness, which
are presented in the following subsections.

A. Safety of Intra-Zones Consensus

As we mentioned before, the AdrastusBFT consensus pro-
tocol achieves safety in the network. With the term safety,
we refer to whether or not the agreement on the same block
height has been accomplished by all the validators who exist
in the consensus process. We suppose that a supervisor the
majority, of the time, conforms with the consensus protocol
and collectively controls at least n − t valid messages from
all the given nodes of any generation g. Let’s call that n the
maximum number of validators and t the maximum number
of corrupted nodes. In the following paragraphs, we first prove
safety by assuming that all the validators are fixed over time
and the randomness that we use is unbiaseable. Subsequently,
we assume that:

Theorem 1. For every two zones of validators in the same
generation, there exists an honest node called supervisor that
behaves as a leader and controls both zones.

Proof. Let’s assume that Hi ≥ N − f(i = 1, 2, ..) is the
total voting power of each zone. The voting power H ′i of each
zone, excluding the malicious Byzantine nodes, satisfies H ′i ≥
Hi−f ≥ N−2f . We notice that if the two sets are disjointed,
the voting power of the union H ′1 +H ′2 ≥ 2N − 4f ≥ N − f
exceeds the total voting power of all the validators. Following
this, there exists an honest validator called supervisor, which
controls the validators at both zones.

Theorem 2. The AdrastusBFT consensus protocol achieves
safety if the validators in an asynchronous zone have no more
than f > 1/3 fraction of corrupted nodes.

Proof. We prove the safety of a proposed blocked header
during a random generation g. Let’s assume that a supervisor

node V is the first node that accepts a block header Hi for
round j > i. This implies that this specific node has already
broadcasted this header to other nodes of the zone. If another
honest validator accepts a block header H ′i at round j′ > i
there must be a valid accept message. Thus, H ′i is false for
any non-faulty validator j(including i = j) such that Hi 6= H ′i .
Consequently, this means that no supervisor can construct a
safe prepare message for a different header other than Hi

because validators accept a message only with a valid proof
of certificate. Besides, the supervisor cannot obtain enough
votes from honest validators to create an mf+1 proof. Finally,
we prove that two non faulty nodes agree on the same block
header at each round r of generation g.

B. Liveness

This subsection describes how liveness is achieved in the
Adrastus system network. The term liveness corresponds to the
meaning of how validators treat failures in the network. For
example, we suppose that validators try to reach a consensus
for a proposed block, and let’s further assume that there is a
fixed bound time δ when the operation must make progress.
Our protocol needs to ensure if for any reason the reaching
consensus process fails, the validators are required to move
their current state to a new view and change the log based on
a new round. Moreover, we guarantee that there is enough time
for validators to wait for the view change protocol. In addition,
we make certain that the duration of the view change protocol
grows based on the block staking difficulty. We obtain liveness
via the following methods

A validator multicasts a message for a view r+ 1, and then
he waits for at least 2f + 1 messages for this view number
r+1. Thus, he starts the timer for the view r+1 and waits for
a time period T in order for the view to expire. If the timer
expires before the validator receives 2f + 1 messages for the
view number r + 1, then it starts the new view number r + 2
but now, in this case, he waits for 2T + D time, where D
depends on the block difficulty. Consequently, in this way, we
avoid delays that become larger than the timeout period when
the difficulty increases.

To prevent the nodes from starting the next view change
protocol too late we preserve the following: we suppose a case
when a random validator identifies a failure in the protocol
and chooses to broadcast a new view change message to the
other validators of the consensus. Let’s further assume that
this validator also receives a new view change message from
the other nodes with a view number smaller than his view
message. If the timer has not expired yet, he will wait to
get confirmation until a specific quorum of 2f + 1 messages
is to be meet, in order to be sure that this was the lowest
value message. Finally, when the timer expires he follows the
smallest value that he has seen so far.

Theorem 3. The AdrastusBFT consensus protocol achieves
liveness if the zones have no less than m × f malicious
byzantine nodes.



Proof. We first prove that all honest validators on a zone
accept all the blocks that are proposed, or they have already
accepted them on their blockchain since they behaved honestly
for the time of generation g where an organizer behaves
honestly. Furthermore, we note that all the messages preserve
the integrity and they are inviolated by using digital signatures.
Since the organizers of a zone are chosen randomly based on
the randomness generation with V DF and V RF , we expect
an honest leader/organizer to be elected in each zone of every
generation. Honest organizer will send valid proposals for all
the proposed blocks to all validators with a valid proof of
acceptance. This consequently means that some of the honest
validators have either already accepted the proposed blocks
or they will accept them since it is safe (as described in the
theorem of safety). Hence, all honest validators will vote for
the proposed block and as a result they will receive mf + 1
votes since there are mf+1 honest nodes. Therefore, all honest
validators will achieve to reach a consensus and complete the
voting process for the proposed block header at the end of
each round for every generation.

V. RELATED WORK

In the proposed work we aim at building a replicated state
machine system, such as in [31], where a client generates
and submits transactions and the system tries to fulfill them
based on total ordering and append-only transaction log.
Those systems are characterized by the atomic broadcast
protocol [32]. In Bitcoin [5], this terminology is called the
blockchain. Since, our work involves improvements in relation
to existing blockchain systems, we explain below the most
closely related efforts to ours.

Regarding fault tolerance, while Paxos [33] and Raft [34]
and many other similar distributed systems tolerate failures in
the network such as crashes, Byzantine fault-tolerant protocols
such as PBFT [12] and AdrastusBFT tolerate even arbitrary,
corrupted, or malicious nodes. However, even though BFT [12]
protocols manage to tolerate byzantine nodes, they still rely on
timing assumptions about the distributed network. Our work
takes this approach further, offering improved performance by
guaranteeing good throughput even in a fully asynchronous
network. In general, the AdrastusBFT is evaluated in deploy-
ment scenarios where latency and CPU are bottlenecks. More
specifically, the AdrastusBFT leverages PBFT [12] for the fol-
lowing reasons: our system consists of fewer communication
rounds thus, we lower the communication latency from O

(
n2

)
to O

(
n
)
, depends on a unique signature aggregation, and has

both linearity and responsiveness.
Bitcoin-NG [35] is a distributed fault-tolerant protocol

designed to scale the blockchain architecture, which has
inspired our work. Although Bitcoin-NG [35] increases the
overall throughput, it is still vulnerableto some type of at-
tacks [36], [37]. The Adrastus was designed and inspired by
the idea of Bitcoin-NG [35]. Our architecture goes beyond the
state of the art and it can be seen as an enhancement of the
existing models, improving the performance and focusing on
the achievement of better security, scalability, and robustness.

Regarding scalability, Chainweb [38] is another attempt to
scale the Bitcoin consensus by maintaining multiple parallel
shards. It requires multiple synchronous growths on all shards
to periodically maintain the system consistency. Unlike, the
Adrastus involves random-assigning validators to its z zones,
and it can easily use as large z as needed to scale better.
Section III-A has already discussed this effort. Spectre [39]
confirms blocks without guaranteeing a total order, while the
inclusive protocol [40] includes as many non-conflicting trans-
actions as possible. These works provide weaker consistency
notions than the Adrastus, which guarantees a total order.

Finally, OHIE blockchain system [41] is the first work
so far, which claims that it can achieve consistency while
maintaining a constant failure ratio of f < 1/2 compared
with the Adrastus that needs f < 1/3. We give some inner
thoughts for future work on the work of [42] which concerns
routing communications over a sparse graph and mantains less
than quadratic computation time.

VI. CONCLUDING SUMMARY

In this paper, we presented the design of the Adrastus sys-
tem, Adrastus consensus protocol and the integrated consistent
hashing mechanism which solves load balancing problems.
Then, we explained how we determine bounds with respect
to adding limit constraints on the capacity of each zone.
Following this analysis, we examined functions to achieve
randomness for zones and validators. We then verified our
insights by proposing the AdrastusBFT consensus protocol for
the construction of a secure scheme that has linear complexity.
Additionally, we displayed the way our nodes obey to our
protocol to guarantee safety and liveness.

Our discussion and theoretical analysis show that Adrastus
can be a useful component in the cryptocurrency industry. We
believe that our work demonstrates the promises of building a
scalable cryptocurrency system inspired from traditional fault
tolerant processing systems.

As a part of future work, we will evaluate the scalability
and fault-tolerance of Adrastus by using different blockchain
topologies such as different number of zones and a different
number of validations per zone to measure the performance of
the system in terms of throughput and latency. Furthermore,
we plan to analyze some of the most common attacks against
blockchain systems and evaluate the resilience of the proposed
system concerning these attacks. Moreover, we are going to
present the global state of Adrastus and give more emphasis
to the components of the system.
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