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Abstract. Most methods of data transmission and storage are prone
to errors, leading to data loss. Forward erasure correction (FEC) is a
method to allow data to be recovered in the presence of errors by en-
coding the data with redundant parity information determined by an
error-correcting code. There are dozens of classes of such codes, many
based on sophisticated mathematics, making them difficult to verify us-
ing automated tools. In this paper, we present a formal, machine-checked
proof of a C implementation of FEC based on Reed-Solomon coding. The
C code has been actively used in network defenses for over 25 years, but
the algorithm it implements was partially unpublished, and it uses cer-
tain optimizations whose correctness was unknown even to the code’s
authors. We use Coq’s Mathematical Components library to prove the
algorithm’s correctness and the Verified Software Toolchain to prove that
the C program correctly implements this algorithm, connecting both us-
ing a modular, well-encapsulated structure that could easily be used to
verify a high-speed, hardware version of this FEC. This is the first end-
to-end, formal proof of a real-world FEC implementation; we verified all
previously unknown optimizations and found a latent bug in the code.

* * K
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1 Introduction

As part of a larger project of ensuring reliable networks, we are applying for-
mal functional-correctness verification to network components: machine-checked
proofs that C programs (and, eventually, P4 programs and FPGAs) satisfy their
high-level functional specs. When attackers may gain access to the source code
and analyze it for bugs and vulnerabilities, we want something stronger than
software testing or conventional static analysis: we want a proof that the soft-
ware works no matter what input is provided, no matter how dastardly. And we
want a proof that the program works correctly, not merely that it does not crash.

One key to reliable networking is forward erasure correction (FEC): in a
portion of the network in which packets are being lost, add extra parity packets
that allow reconstruction of lost packets without retransmission. We use an FEC
algorithm and C program that have been in active use for over 25 years. The
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program does many clever and not-so-clever things, and comments indicate that
some parts are not fully trusted even by its original authors.

This FEC is a particularly intriguing target for verification because its high-
level correctness depends on fairly intricate mathematics—we must reason about
polynomials, matrices, and finite fields. Meanwhile, the C implementation’s cor-
rectness relies on C programming features and careful manipulation of pointers
in memory. Thus, we need a tool that can reason at both of these levels. We use
the Coq proof assistant, utilizing the Mathematical Components [10] (Math-
Comp) library for the high-level reasoning and the Verified Software Toolchain
[6] (VST) for the C program verification.? Our VST specs are written using
separation logic, in which we specify precisely what memory is read from and
written to as well as all external effects (I/O, system calls, etc.). This gives us
a blanket containment property: the C function is guaranteed to only interact
with the outside world (memory, OS, etc.) in ways stated in the spec.

Contributions

1. We show that formal verification can prove functional correctness for a C
program that uses both intricate mathematics and clever C programming
tricks. This is the first formally verified FEC instance that connects a high-
level mathematical specification with an efficient, optimized implementation.

2. We formally prove the correctness of a particular version of Reed-Solomon
erasure coding, parts of which were unpublished. Further, we prove that an
optimization in the C code, a heavily restricted form of Gaussian elimination,
is sufficient for this application; this was unknown to the code’s authors.

3. For the first time, we utilize both MathComp and VST in the same project.
The two libraries differ greatly in types, tactics, and styles of proof; we use
both by separating our functional specification into two layers in a process
that we expect can be automated.

4. We demonstrate our methods on a real-world C program, verified as is,
except for two tiny changes, one of which is to fix a latent bug that we
discovered.

1.1 Forward Erasure Correction

When transmitting data over a noisy channel, one can use an error-correcting
code—adding generalized “parity” bits, sending the data across the channel, and
then decoding to recover the data if any errors occurred; this technique is known
as forward error correction. In an erasure code, the locations of the missing data
are known to the decoder; this allows correction of more errors.

FEC is useful in any network where non-congestion-related packet loss is
frequent and retransmission is infeasible or expensive. For instance, wireless net-
works are especially prone to packet loss due to interference or jamming. More

1 Our Coq proofs and an appendix with expanded definitions, specs, and proofs can
be found at github.com/verified-network-toolchain/Verified-FEC /tree/cav22,


https://github.com/verified-network-toolchain/Verified-FEC/tree/cav22

Verified Erasure Correction in Coq with MathComp and VST 3

generally, errors in network devices due to firmware bugs, misconfiguration, or
malware can lead to dropped packets. In these cases, retransmission with TCP
is not desirable, because TCP will incorrectly interpret these losses as conges-
tion, grinding the network to a halt. Similarly, applications such as video or
audio streaming, often run over UDP, cannot handle retransmission without ad-
ditional work; moreover, the latency of retransmitting is often too high. Thus,
FEC continues to be important in ensuring network reliability.

The algorithm we consider is based on Reed-Solomon [24] coding; it groups
the input bits into symbols representing elements of a finite field and interprets
the data as a polynomial over this field. Reed-Solomon codes are particularly
useful for correcting burst errors—errors that occur sequentially—since n + 1
consecutive bit errors can only affect at most 2 symbols of length n. Reed-
Solomon decoders can be quite complex, both in theory and implementation;
many mechanisms have been developed for this purpose. Nevertheless, these
codes have been heavily used in applications such as CDs, DVDs, Blu-Ray disks,
hard drives, and satellite communications [27].

In the early 1990’s, there was a flurry of activity in Reed-Solomon erasure
coding. McAuley described [18] and patented [19] a method for FEC based on
Reed-Solomon coding for use in network transmission. Rabin [23] described an
alternate technique for information dispersal, which was further developed by
Preparata [22], Schwarz [25], and others, mainly for use in RAID storage sys-
tems; Plank [21] provides a tutorial and explanation. McAuley later wrote a
C implementation of FEC for network packets based on this second technique
with several further modifications. We will refer to the algorithm implemented
by McAuley’s C code as the Reed-Solomon Erasure (RSE) code.

Bellcore (now Peraton Labs) has employed this FEC algorithm (and im-
plementation) successfully in numerous networking projects to support resilient
communication, most recently in the DARPA EdgeCT program. McAuley’s im-
plementation includes many optimizations and modifications to the core algo-
rithm, including some whose correctness was unknown to the code’s authors
(85.2). It had one bug that we corrected (§6.6). We have produced a formal,
machine-checked proof that this FEC implementation correctly recovers data in
the presence of erasures—we proved the algorithm correct and proved that the
program correctly implements it.

1.2 Coq and VST

We use the Coq interactive theorem prover, in which the user states and proves
theorems in a higher-order dependently typed logic. These theorems are me-
chanically checked by the Coq kernel. Proofs can be (semi)automated by Coq’s
built-in tactics and by user-defined tactic programming.

Coq has been widely used in program verification and formalized mathemat-
ics. One particularly important verification effort is CompCert [15], an optimiz-
ing C compiler written and proved correct in Coq. That is, CompCert comes
with a formal proof that the assembly code generated by the compiler preserves
the semantics of the input C program.
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VST is a program logic and set of proof automation tools that enables the
verification of C programs in Coq. Using VST, one can write a specification
for each C function, stating its preconditions (properties that must hold before
the function is run) and postconditions (properties that must hold when the
function finishes). These properties can involve both C-specific assertions (e.g.,
about the contents of memory) and arbitrary statements in Coq’s logic. Then,
using custom tactics and proof automation included with VST, the user can
prove in Coq that the C function satisfies its specification.

VST’s program logic is proved sound, with a machine-checked proof in Coq.
When we prove that McAuley’s RSE correctly reconstructs missing packets, the
soundness proof guarantees that the assembly-language program generated by
the CompCert C compiler really has that behavior. VST is formally proved
sound for CompCert, but not for gcc or clang. VST is intended (and believed)
to be sound for gcc/clang; its program logic has stricter rules than would be
necessary only for soundness w.r.t. CompCert. For example, for signed integer
arithmetic, where CompCert is (unfortunately) a refinement of C11 (CompCert
wraps while C11 is u.b.), VST imposes the (more abstract) C11 spec. Thus,
VST proofs about C programs also provide useful (though less foundational)
assurance about programs compiled with other compilers.

While conventional separation logics have spatial conjuncts that are pred-
icates just on memory resources, VST’s separation logic has spatial conjunct
predicates on both memory locations and the outside world, which one might
affect by performing IO or making a system call [17, Section 3]. In our project,
none of the VST funspecs mention the outside world in the precondition or
postcondition; this means, like any Hoare triple in separation logic, that those
functions can neither access nor modify that resource.

Proving that a C program satisfies a specification is quite challenging. We
must prove low-level correctness properties (the program does not crash, all
memory accesses are valid, etc.) and provide loop invariants and intermediate
proofs to prove high-level properties (that the function satisfies its spec). Though
VST’s proof automation is able to hide some of this complexity, many parts must
still be done manually. Dealing with heavily optimized C code that was never
intended to be verified makes these tasks substantially more complicated.

Section 2 describes the RSE algorithm, which differs in several ways from
the technique described by Rabin, Preparata, and Schwarz. §3 explains the dif-
ferent verification tasks, including defining a functional model of the algorithm
and showing with VST that the C code implements this model. §4 describes the
functional model, §5 discusses the verification of this functional model, includ-
ing the proof that the algorithm correctly reconstructs missing packets, and §6
discusses the proofs about the C code. §7 and §8 give related and future work.

2 The RSE Algorithm

Like all Reed-Solomon codes, the algorithm treats input symbols as elements
of a finite field and interprets the input sequence of words as the coefficients



Verified Erasure Correction in Coq with MathComp and VST 5

of a polynomial over this field. However, both the C implementation and the
RSE algorithm are more naturally described using linear algebra and matrix
operations.

Let D be the input data, which consists of k packets, each of length at most
c bytes. If any packets are smaller, fill in the missing entries with zeroes so that
D is a k x ¢ matrix. Let h be the number of parity packets we wish to append.
We will be able to reconstruct up to h total packet-drops.

Let kppae and hyp,q, be (fixed) parameters such that k& < k. and b < hpgp.
Let nmaz = Pmas + kmae (maximum number of packets per batch) and let F' be
a field such that |F| > nmaz-

2.1 Initialization

First, we generate a Vandermonde matrix of size hypaz X Ninae; that is, take np,q4
distinct nonzero elements of F, denoted as ai,aq,...,qn,,,,, and generate the
following matrix:

1 1 e 1
a1 (6%} e Op o
Oé2 012 «
V = 1 2 e Nmax
Rmaz—1 hmaz—1 h —1
aq (e} cee Qe

Then, we run Gaussian elimination (see §4.2) on this matrix to get the row-
reduced form, which consists of the identity matrix followed by W, the hypqe X
kmaz weight matriz:

e .

2.2 Encoding

The encoder receives as input the data D, a k x ¢ matrix. Let W’ be the submatrix
of W consisting of the first h rows and the first £ columns. The encoder computes
P = W'D, an h x ¢ matrix. These are the parity packets that are sent (along
with the original data) to the receiver.

k
—

| w

W P=W'D (1)

2.3 Decoding

The decoder is significantly more complicated. However, if no packets are lost,
the decoder simply returns the first k packets; only if packets are dropped does
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the following algorithm need to be invoked. To give some intuition, we will first
present the decoder for a special case before giving the full algorithm.

Since this is an erasure code, we know the locations of the missing packets;
we also require that the total number of missing packets is at most h.

For a special case, suppose that the last h data packets were lost and all
parity packets were received. We can think of the original data D as a block
matrix consisting of Dy, the (k — h) x ¢ matrix of the received data, and Da,
the h x ¢ matrix of the lost data. Similarly, we can split the h X k matrix W’
(from the encoder) into W7, consisting of the first k — h columns of W', and W3,
consisting of the rest.

k—h h c
S PPN
n{ | wiowg " D
W = D=
: : .. h Do

P=W'D=W|Dy +WjD,

From this, the missing data Ds can be computed using P, D1, and the parts of
W', all of which are known:

Dy = (W)~ (P — W{D1) (2)

The general case is similar, but we need to define the relevant submatrices more
carefully. Let zh be the number of missing data packets. We must have received
at least zh parity packets (or else the total number of missing packets is more
than h). Let P’ be the submatrix of P consisting of the first xh received parity
packets. This time, we let W] be the zh x (k — zh) submatrix of W’ whose rows
consist of the locations of the xzh found parity packets and whose columns consist
of the k — zh locations of the received data. Let W3 be the zh x zh submatrix
of W’ whose rows consist of the locations of the zh found parities and whose
columns consist of the locations of the missing data. Finally, D; and D, are still
defined such that D; contains the received rows and Dy contains the missing
rows. This time, these rows need not be contiguous. These definitions reduce to
the previous ones in the special case considered above.

By the definitions of the above submatrices, Equation 2 still holds (except
that we replace P with P’), so we can find the missing data Dy by computing
(W3)~'(P" = W{Dy).

This decoder is only well defined if W73 is invertible. W3 is dynamically chosen
based on the found parities and missing data, so we must show a stronger claim
that any square submatrix up to size h x h of W is invertible. Proving this was
the crucial step in the functional model verification, described in §5.1.

As noted in §1.1, this algorithm is a modified version of the technique de-
scribed by Rabin, Preparata, Schwarz, and others. The main difference is the use
of the static weight matrix in RSE; all the others assume that the Vandermonde
matrix has dimensions h X (k 4+ h) and exactly h packets are lost. Thus, their
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needed correctness property is weaker; it requires only that any h x h submatrix
of W is invertible.

3 Verification Structure

The verification consists of two distinct tasks: we prove that the RSE algorithm
is correct (i.e., the decoder recovers the original data in the presence of errors)
and that the C program truly implements this algorithm. These two tasks are
quite different; the first is purely mathematical and involves proofs about linear
algebra, while the second involves implementation details and C-language veri-
fication conditions. To separate these tasks and make the proofs more modular,
we define a functional model, a purely functional program written in Coq that
implements the RSE algorithm. This functional model is inefficient but easy to
reason about in Coq. Then we use VST to prove that the C program refines this
functional model. Finally, we compose these two parts to produce a formal proof
that the C implementation of this erasure code is correct.

Separating the functional specification and the VST proofs is a common
paradigm; it has been used to verify SHA-256 hashing [4], HMAC-DRBG crypto-
graphic random number generation [28], and floating-point numerical program-
ming [5]. This approach provides a clear formal specification independent of
any implementation; we can reuse the same functional model and its correct-
ness proofs to verify another implementation of this algorithm (for instance, an
FPGA version). It makes verification more flexible; we can prove further prop-
erties later simply by adding additional lemmas about the functional model. It
makes the proofs shorter and clearer; we can tell which parts are needed for the
core correctness proofs and which are implementation-specific. Finally, it per-
mits a separation of expertise: the person who proves mathematical theorems
about the functional model need not know anything about C programming or
VST verification, and the person who proves C refinement in VST need not know
why the functional model accomplishes the high-level goals.

Our functional model was written in Gallina, the functional programming
language embedded in Coq, using the Mathematical Components (MathComp)
library for formalized mathematics. MathComp contains definitions and theo-
rems about groups, rings, fields, vector spaces, matrices, polynomials, graphs,
and other mathematical objects.

In fact, we define two functional models—a high-level version uses Math-
Comp’s abstract and dependent types of matrices, polynomials, and the like,
while a low-level version uses concrete types such as list (list byte), which VST
can use to represent memory contents. Translating between these types is non-
trivial (because of all the dependent types in MathComp), so we separate the
type conversion proofs from both the high-level mathematical reasoning and
the low-level VST refinement proof. This makes the proofs more modular and
helps to improve the readability of the resulting formalization. The translation
is largely mechanical and we expect that it could be automated; we focus on the
high-level functional model and the VST refinement proofs.
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4 Functional Model

4.1 The Encoder and Decoder

We translate Equation 1 into the language of Coq/MathComp:

Definition encoder (h k ¢ max_h max_n : nat) (Hh: h <max_h) (Hk: k <max_n)
(weights : '"M[F] (max_h, max_n)) (input : '"M[F] (k, ¢)) :=
(mxsub (fun (x : 'l _h) = widen _ord Hh x)
(fun (x : '1_k) = rev_ord (widen ord Hk x)) weights) *m input.

'M[F]_(x, y) denotes a matrix of size x x y over field F' and *m denotes matrix
multiplication. The type 'l n represents an ordinal, a natural number in the
range [0, n —1]. The encoder takes in the parameters h, k, ¢, himaz, and npq, (all
defined as in §2), the hpqe X Nnae weight matrix, the kx ¢ data matrix, and proofs
that h and k are bounded appropriately. mxsub creates a submatrix from an input
matrix by selecting rows and columns via user-specified functions. widen ord is
needed to handle some dependent type casting; it has no computational content
and can be ignored. Finally, rev_ord selects the “opposite” ordinal; for x : 'l _k,
rev_ord x = k — x — 1. Therefore, this function selects the first A rows and the
last k& columns (in reverse order) of the weight matrix and multiplies this by the
input. This differs from the algorithm in §2.2, which selects the first k columns.
The overall algorithm’s correctness is not affected as long as we choose the
matrices W] and W} in the decoder to be consistent, but this change makes the
model consistent with the C implementation (see §6.2).

The decoder (Equation 2) can be similarly translated into MathComp; we
omit the full definition, but note that we defined the decoder more generally
than needed: it is defined over any field and over any Vandermonde matrix on
distinct elements of that field.

4.2 Gaussian Elimination

Gaussian elimination, or row reduction, is a well known algorithm in linear alge-
bra for solving systems of linear equations, finding matrix inverses, and calculat-
ing determinants. The C code includes an implementation of Gaussian elimina-
tion, used to row-reduce the Vandermonde matrix to produce the weight matrix
and to invert W3 in the decoder. Thus, we need to define a corresponding func-
tional model.

Gaussian elimination proceeds by applying a sequence of elementary row
operations—swapping two rows, multiplying a row by a scalar, and adding a
scalar multiple of one row to another row—to a matrix until it is in row-echelon
form, which for full-rank matrices (including all relevant matrices in this appli-
cation) means that the left hand side becomes the identity matrix. Crucially,
these row operations preserve invertibility because each corresponds to left mul-
tiplication by an (invertible) elementary matrix.

The order of the row operations may vary; Algorithm 1 describes one concrete
implementation of Gaussian elimination (we use 0-indexing to be consistent with
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ALGORITHM 1: GAUSSIAN ELIMINATION

On input A, an m X n matrix:
r<0; c+0
while » < m and ¢ < n do
if for all ¢ such that » <i <m, A4; . =0 then
c+c+1
else
i < the first index s.t. 7 <¢ <m and A; . #0
Swap rows r and @
For all 0 < j <m, if A;. # 0, multiply row j by A;g
For all 0 < j <m, j #r,if A; . # 0, subtract row r from row j
r<—r+1; c<c+1
end if
end while
forr=0tor=m—1do
Let ¢ be the index of the first nonzero entry in row r if one exists
Multiply row r by A; !
end for

MathComp). While translating this into MathComp is largely straightforward, it
turns out that the C program does not actually implement Algorithm 1. Rather,
rows are never swapped and at each iteration, all entries in column ¢ must be
be nonzero.

The following excerpt from the C code, with the original comments, shows
the error checks to ensure this condition. The code is mainly interesting for the
error checks and comments, but we briefly detail how it works: the while guard
value never changes; instead for current column k, the code iterates through
rows w. The second conditional checks if matrix element (w, k) is nonzero for
swapping (but returns an error because swapping is not implemented), while the
first conditional breaks out of the loop with an error when w has reached the
last row.

while (x(q — k) == 0){ /« if zero %/
if (++w ==1i_max){
return (FEC_ERR_TRANS_FAILED); /x failed /

}
if (x(p + (w#*]j _max) +j max — 1 — k) I=0){
/* swap rows */
return (FEC_ERR_TRANS_SWAP_NOT_DONE); /* Not done yet! %/

}
¥

The “swap rows” and “Not done yet!” messages suggest that the authors
intended to (eventually) implement the full algorithm. The error checks indicate
that the authors were not sure if these errors could be triggered.
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We will call this algorithm “Restricted” Gaussian elimination (Algorithm 2).
Once again, defining this function in MathComp is not difficult, but proving
that this limited form of Gaussian elimination suffices was a major part of the
functional model verification (§5.2).

ALGORITHM 2: RESTRICTED GAUSSIAN ELIMINATION

On input A, an m X n matrix:

r<+ 0
while r < m do
For all 0 < j <m, if A;, = 0, return ERROR
For all 0 < j < m, multiply row j by A;i
For all 0 < j < m, j # r, subtract row r from row j
r—r+1
end while
forr=0tor=m—1do
Multiply row r by A, 1
end for

4.3 Field Operations

The encoder, decoder, and Gaussian elimination work over any field, but the C
implementation uses the field GF(2®%), which we must define. Mathematically,
this field is isomorphic to Fa[z]/(1 4+ 2% + 23 + 2% + 2®). That is, the elements of
this field are polynomials of degree at most 7 with coefficients in Fy (the field of
two elements), and all operations are performed modulo 1 + 22 + 23 4+ 2* 4 8.
The choice of Fy is important; it allows us to represent polynomials as sequences
of bits. Since the polynomials are of degree at most 7, all field elements can be
represented as bytes.

This field and its construction are well understood; while MathComp did not
include the construction of finite fields via quotients, we were able to define and
prove general results about primitive polynomials and the finite field’s construc-
tion without much issue. Then, we can prove correct the method the C code uses
to populate the lookup tables used to compute in this field (§6.4).

One difficulty in using this field is the difference between the polynomials we
used to define the field and the bytes that we would like to represent as field
elements. To avoid manually converting everywhere, we defined another field
structure directly on the byte type and used Coq’s Canonical Structures.
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5 Verifying the Functional Model

5.1 Decoder Correctness

To prove the RSE algorithm correct, we need to prove that the decoder actually
reconstructs the original packets. That is, if the data and parity packets that
were marked as ‘“received” are correct and there are at most h missing packets,
then running the decoder on the received packets should recover the original
data. We state this in Coq below:

Theorem decoder correct: V (h xh : nat) (Hh: xh <h) (data : '"M[F]_(k, c))
(input: "M[F] (k, c)) (parities: '"M[F] (h, c)) (missing_packets : seq 'l k)
(found _parities : seq 'l _h) (Hhh: h <max_h) (x_h : 'l _h),

(* Only the rows in [missing _packets] are incorrect *)
(V (x:'1_k) (y: "I _c), x \notin missing_packets — data x y = input x y) —
(= All found parlty packets were produced by the encoder )
(VY (x: 'l _h) (y:'1_c), x \in found _parities —
parities x y = (encoder Hhh k _leq_n weights data) x y) —
(* We have xh unique missing packets and found parities *)
uniq missing__packets —
uniq found _parities —
size missing__packets = xh —
size found _parities = xh —
(* Then, the decoder recovers the original data *)
decoder xh input parities missing__packets found _parities Hhh x _h = data.

This theorem is expressed entirely in terms of MathComp matrices and opera-
tions; it does not rely on the C implementation at all. Its proof requires two main
tasks: showing that W3 is invertible and proving that the sequence of operations
in the decoder is sufficient to recover the original data. The second task is fairly
straightforward; we compare the matrices elementwise. Thus, the main challenge
comes from proving the invertibility of the submatrix WJ.

Proving the Invertibility of W, Recall that W; is a dynamically chosen
submatrix of W, the right submatrix of the row-reduced Vandermonde matrix
V. Therefore, we want to prove the following theorem (any submx_ unitmx):

Theorem 1. Let V be an m x n row-reduced Vandermonde matrixz on distinct
elements. Let m < n and z < min(m,n —m). Let Y be the submatriz of V
formed by taking z rows of V and z of the last (n —m) columns of V.. Then'Y
is invertible.

Formally proving this theorem in Coq is quite complicated, partly because Math-
Comp does not include many of the definitions and results that we need. Namely,
we need to define and prove properties about row operations and Vandermonde
matrices, including the following well-known property (vandermonde unitmx):

Theorem 2. Let V be an n x n Vandermonde matriz on distinct nonzero ele-
ments. Then V is invertible.
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The proof relies on the fact that a degree n polynomial with n + 1 zeroes is
identically zero, a fact already included in MathComp. This marks the only
direct use of polynomial properties (other than in the finite field construction);
the rest of the results are purely based on linear algebra.

Note that the only property we required of the weight matrix W was that
every z X z submatrix is invertible. Row-reduced Vandermonde matrices satisfy
this property, but any other matrix that satisfies this property could be used,
and the encoding-decoding scheme would still be correct.

5.2 Gaussian Elimination

Proving full Gaussian elimination (Algorithm 1) correct is fairly standard (though
nontrivial to formalize completely in Coq), since the algorithm is very well-
understood.

The real challenge is to determine the conditions under which RGE (Algo-
rithm 2) will return the same result as Algorithm 1. It is easy to see that if the
ERROR case is never reached, then the two algorithms are equivalent. But it is
not at all obvious how to avoid triggering the error. Invertibility is a necessary
but quite insufficient condition; for instance, the restricted algorithm fails on
diagonal and triangular matrices. Therefore, we had two tasks: determine the
class of matrices for which RGE works correctly and prove that the matrices
used in the RSE algorithm are in this class.

For the first task, we needed to determine when certain elements will be
zero or nonzero at a given step in Gaussian elimination. This is difficult, since
the elements are constantly changing; instead, we transformed the condition
into a statement about the invertibility of certain submatrices, since Gaussian
elimination preserves invertibility.

During the rth step of Gaussian elimination (assuming no error was reached),
the r x r upper-left submatrix is a diagonal matrix with nonzero elements along
the diagonal; all other elements in the first r columns are zero. With this, we
defined the submatrix C}, (for k < r) as the submatrix of A consisting of the first
r rows and the first r + 1 columns except column k. Then, for k < r, Ag, # 0
exactly when C7 is invertible (we prove this by showing that the rows of C},
are linearly independent). We can do something similar for k > r; this time we
consider R}, defined to be the submatrix of A consisting of the first 741 columns
and rows {0,1,...r — 1, k}. Similarly, R} is invertible iff Ay, # 0. We will say
that A is strongly invertible if, for all 0 < r < m, CJ is invertible for all k < r
and R} is invertible for all £ > r. Finally, we prove that RGE is equivalent to
full Gaussian elimination iff input A is strongly invertible.

Note that this condition requires a particular set of m? submatrices of the
input m X n matrix to be invertible, quite a difficult condition to satisfy. How-
ever, in this application, Gaussian elimination is applied to only two kinds
of matrices: the matrices W4 in the decoder and a Vandermonde matrix on
atmaee=2 2 2 1 (where x is the primitive element of the field). The strong
invertibility of each ultimately follows from properties of Vandermonde matrices:
the result for the first matrix follows from Theorem 1, while the result for the
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second is harder to show, but ultimately follows from repeated applications of
Theorem 2 and use of the fact that the field elements are consecutive powers of
the primitive element. With this, we proved the previously unknown result that
RGE suffices for this application and that the errors shown in §4.2 are never
reached.

6 Verifying the Implementation

The C code consists of five primary functions with the following signatures:

// Populate the field lookup tables
void fec_generate_math _tables(void)
// (Restricted) Gaussian elimination on the i _max X j max matrix p
int fec__matrix__transform(unsigned char *p, unsigned char i _max,
unsigned char j _max)
// Generate weight matrix (row—reduced Vandermonde matrix)
void fec _generate weights(void)
// Encode the data by appending h parity packets to the k data packets in pdata.
// plen is an array of the lengths of the data packets.
// pstat is a flag, all are initially FEC_FLAG KNOWN.
int fec_blk _encode(int k, int h, int c, unsigned char xxpdata, int xplen, char xpstat)
// Decode the packets in pdata. The ith flag in pstat is FEC_FLAG_WANTED if
// the ith packet is missing, otherwise FEC FLAG KNOWN
int fec_blk _decode (int k, int c, unsigned char *xpdata, int xplen, char *pstat)

Each of these functions has a corresponding VST specification. We first describe
key implementation differences and verification challenges, then discuss the specs
for selected functions in §6.4 and §6.5.

6.1 Implementation Differences from Algorithm

Broadly, the C code implements the RSE algorithm from §2 with the parameters
kmaz = 127 and hy,q. = 128 (as well as a bound of 16000 on ¢, but this does
not affect the correctness). However, neither this algorithm nor the functional
model precisely align with the C implementation. Instead, the implementation
makes a few changes, and we must prove that these changes do not modify the
algorithm’s behavior:

— The code uses Restricted Gaussian Elimination rather than Gaussian elimi-
nation; see §5.2.

— The encoder described in §2.2 takes W’ to be the submatrix consisting of
the first h rows and the first & columns. But the implementation takes the
last k columns in reverse order (and likewise for the decoder) because of how
the weight matrix is arranged in memory.

— In the decoder, rather than computing P — W{D; with a multiplication
followed by a subtraction, the implementation does this via a single larger
multiplication, taking advantage of the fact that the left hand side of the
weight matrix is the identity. The result of the computation is equivalent
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(though this is not completely trivial), but it is unclear why the authors
chose this.

— Due to the representation of matrices in memory, the decoder computes
the last matrix multiplication by implicitly reversing the rows of the first
matrix and the columns of the second one. Equivalence with standard matrix
multiplication is not too hard to prove thanks to MathComp’s utilities for
iterated summations.

— The code takes as input a sequence of variable-length packets, and we want to
recover the original data once the decoder has finished. The RSE algorithm
only describes how to generate the recovered packets, but the implementation
has to put each packet pointer in its correct position in the packet array
and ensure that the length for each packet is correct. The functional model
includes filling in missing packets, but it uses matrices of uniform length.

6.2 Implementation-Specific Verification Challenges

Aside from differences between the algorithm and implementation, the C code,
first written 25 years ago and last modified over 15 years ago, does several things
that make it poorly suited to verification:

— Matrices are represented in memory very inconsistently: as pointers, global
2D arrays, local 2D arrays treated as though they were 1D arrays, and ar-
rays of pointers to each row. The C code freely converts between these types;
therefore, we had to prove several general results in VST to improve support
for 2D arrays and pointer arithmetic. For example, to convert between 1D
and 2D arrays, we prove that a 2D array in memory containing Coq list-of-
lists | is equal to storing a 1D array containing concat I, all of the inner lists of
| concatenated together. This lemma is generic and will be added to VST for
future use. For dealing with arrays of pointers, we used VST’s iter sepcon,
which represents iterated separating conjunction over a collection of pred-
icates, and we proved lemmas allowing us to extract and modify a single
element of the collection. Additionally, we needed several smaller lemmas
and tactics for handling the resulting pointer-equality proof obligations aris-
ing from these type conversions and for simplifying the pointer comparisons
in loop guards, which we plan to contribute to VST in order to improve the
handling of pointer arithmetic.

— Field multiplication is frequently called in a loop, so it was written as a
macro rather than a function. VST’s front end expands macros, so we would
have to prove the correctness of multiplication every time it is used. To avoid
this, we changed the macro to a function. This did not have any effect on
performance; at gcc optimization level O2 and O3, the performance was the
same, and at level O3, the function was inlined.

— The C function for the decoder includes about 30 local variables (including
stack-allocated arrays with tens of thousands of elements) and several layers
of nested loops; VST became quite slow due to the extremely large context.
This required significant proof engineering to make verification feasible, in-
cluding the use of opaque constants to stop giant arrays from being unfolded
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and heavy use of the frame rule, which allows one to “frame out” parts of
the context which are not needed and recover them later, to verify each loop
independently.

— The code accesses memory using an inconsistent mix of pointer arithmetic,
array indexing, and combinations of both. The VST proof obligations are dif-
ferent in these cases, and we need some auxiliary assertions about equality of
memory locations and pointer arithmetic to reason about these dereferences.

6.3 VST Specifications

A C specification in VST looks like:

DECLARE f
WITH ¢
PRE [ param__typs |
PROP(p1) PARAMS(params) GLOBALS(globs) SEP(s1)
POST [ ret_ty ]
PROP(p2) RETURN(ret) SEP(s2)

where f is the function name, param__typs are the C function parameter types,
ret__ty is the C return type, params are the (symbolic) values of the function
parameters, globs are the global variables, and ret is the (symbolic) return value.
The entire PRE block represents the precondition, which must hold before the
function is run. The POST block is the postcondition, which is true after the
function finishes. p! and p2 are propositions in Coq’s logic, while s1 and s2 are
propositions in separation logic—they describe the contents of memory. Finally,
the variables ¢ in the WITH clause are logical variables, abstract mathematical
values to which the precondition and postcondition can refer.

6.4 Verifying fec_generate _math _tables

The first C function is fec_generate _math _tables, the function that generates the
power, logarithm, and inverse tables for the field elements. This function, like the
others, is interesting because of how it modifies memory, not because of what
it returns; thus the interesting part of the VST spec is the SEP clause. The
precondition’s SEP clause says that the global array fec 2 index (the power
table) initially stores fec n zeroes. In the postcondition, this global array now
stores the Coq list byte pows, which we define as the powers of field element
x (the ith entry contains z¢). We have similar Coq lists and pre- and post-
conditions for the log table and inverse table.

Proving that the field table generation is correct is largely straightforward,
given the field definitions described in §4.3. However, there were two main com-
plications. The first comes from the method of populating the tables: compute
x' for all 0 < i < 256 by repeatedly multiplying the result by x in each iter-
ation (this can be implemented efficiently as a bitwise shift left and an xor).
The correctness of this method relies on the fact that the modulus polynomial is
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primitive (i.e., the smallest n such that the modulus polynomial divides 2™ — 1
is 255), and is not trivial to show in Coq.

Separately, although in the functional model we prove results for arbitrary
fields and irreducible polynomials, here we need to show that several specific
polynomials are irreducible and primitive (several field sizes are allowed by the
code, although only one is used). Both of these conditions require showing that
a polynomial is not divisible by a set of polynomials, so the easiest way to
show this is by direct computation along with a proof that this computation
is sufficient. However, MathComp polynomials are opaque and not computable
(dividing two MathComp polynomials results in a hanging computation), so we
needed to define concrete, computable polynomials and operations and relate
them to their MathComp equivalents. Then, we can prove that the particular
polynomials that the C code uses satisfy all needed properties.

6.5 Verifying fec_blk decode

The function spec for fec blk decode is quite long; it consists of many tedious
preconditions to ensure that the input packets are stored correctly in memory,
that the length and packet status arrays correspond to the actual packets in
memory, and that the various integer parameters are within their correct bounds.
The list of preconditions is long; however, these functions are called by client
functions that do packet-handling and buffer management, and the verification
of those functions will check that they do indeed set up their inputs correctly
(see §8).

We focus on a key part of the spec: the precondition’s SEP clause includes
the predicate iter sepcon arrays packet ptrs packets, which states that the Coq
list packets is stored in memory at the given pointers. In the postcondition’s SEP
clause, this becomes iter sepcon _arrays packet ptrs (decoder list k ¢ packets parities
stats lengths parbound). In other words, after the function is run, the contents of
the packet memory are represented by the low-level functional model of the
decoder (the version that uses concrete types that VST can understand rather
than opaque MathComp types).

Our decoder _correct theorem (§4.1) states that the high-level functional model
correctly reconstructs the missing packets that were originally given to the en-
coder. Lemma decoder list_correct lowers that result to the low-level functional
model, using some injectivity results between the two models.

Thus, a client of the code can compose the VST spec and the correctness
theorem to prove that, after fec blk decode is run, as long as the received packets
and parities were correct, the missing data is recovered and the original data is
now stored in memory (see §8).

6.6 Implementation Bug

While verifying fec_matrix_transform, we discovered a bug in the following code:

g=(p+ (i*j max) +j max — 1);
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m=q — j_ max;

for(n=q;n>m; n—) {
//loop body

}

Here, i ranges from 0 to i _max, and p is a pointer to the input matrix. The
problem is, when 7 = 0, q points to p + j max — 1 and thus m points to p — 1.
By the C standard and the semantics of CompCert C, the comparison n > m is
undefined behavior. In fact, in C11, even the line g — j _max is undefined behavior
[12, Section 6.5.6, #8].

This may seem harmless, but 21st-century C compilers optimize under the
assumption that the program does not exhibit undefined behavior. A compiler
can assume that m=q—j max cannot be reached when i=0, and it may mangle
the loop body “knowing” that i#0. This has caused problems for systems code
[26], and the solution is to avoid writing C programs with undefined behavior.

Fortunately, VST’s machine-checked proof of soundness makes it impossible
to prove a C program correct that contains undefined behavior (unless ruled out
by a function precondition). The loop test n>m cannot be verified in VST, since
undefined behavior cannot be ruled out.

Without formal methods, this type of bug is quite difficult to find: it depends
on subtle C semantics, today’s static analyzers won’t catch it?, and testing can-
not catch it until (in some future year) an optimizing C compiler gets more
aggressive. VST provides blanket assurance against this entire class of errors.

Moreover, because VST uses separation logic, we specify exactly what effects
the code is allowed to have. Thus, in principle, this kind of verification is 100%
resistant to adversarial attacks that try and put exploits into code provided that
those exploits can be defined as a functional property of the C code (such as
which memory addresses it accesses, what system calls it makes, etc.). But our
methods cannot defend against side-channel attacks.

7 Related Work

Verification of Network Middlebozes. Through several recent efforts, verification
of network functions running in the dataplane has become increasingly feasible.
Software dataplane verification [9] uses symbolic execution to prove certain low-
level properties (such as memory safety) about programs written with Click, a
popular framework for configuring routers and writing network functions. Gravel
[31] uses symbolic execution and SMT solvers to verify many middlebox-specific
properties of Click programs, including functional correctness. VigNAT [30] uses
a mix of symbolic execution and proof checking to verify a Network Address
Translation (NAT) implementation in C; this approach requires the use of a

2 “Conceptually, this undefined-behavior optimization bug is possible to trigger with
STACK’s approach [26]. But, as for the current implementation of STACK, the
answer is likely no, because it depends on LLVM to do loop unrolling/inlining . .. and
I doubt LLVM would do either ....” (Xi Wang, e-mail of May 23, 2022).
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specialized data structure library and annotations on the C program but is quite
automated overall. Vigor [29] builds on VigNAT to extend similar methods to
more general network function verification. It uses a simpler but less expressive
specification language, enabling fully automatic verification. Vigor and VigNAT
use Verifast [13], a separation-logic-based tool for verifying C programs that is
more automated than VST but is not connected to a proof assistant; this makes
functional model proofs much more difficult.

These tools are considerably more automated than our work, but face signif-
icant restrictions on the type of code they can verify: none can verify code with
arbitrary unbounded loops, pointer arithmetic, or use of complex data struc-
tures. More importantly, none could handle the mathematical reasoning needed
to prove the correctness of the functional model and ensure that the FEC cor-
rectly reconstructs packets.

Verification of Error-Correcting Codes. Since error-correcting codes are both
ubiquitous and quite complex to implement correctly, there has been a long
line of research in formalizing various codes. Most of these efforts take the form
of either automated hardware verification of digital circuits or recent efforts to
create formalized libraries of error-correcting codes. We believe that our work
is the first to connect a high-level, mathematical specification with an efficient
implementation.

Error-correcting codes are hard to verify with automated methods such as
model checking and BDDs because of the large state space and the complexity of
the algorithms. Some recent efforts [8] have used automated hardware verification
tools to verify (non-Reed-Solomon) ECCs, but they can handle very few bit
errors. BLUEVERI [16] is a tool for verifying hardware implementations of finite
field operations and was applied to Reed-Solomon codes. It can handle more
errors (up to almost a dozen bits), but requires extensive manual effort and
knowledge of hardware implementation details.

In a separate vein, several recently-developed libraries of formalized coding
theory are similar to the functional model in our work, but are not connected
to an efficient implementation. Most notably, Affeldt, Garrigue, and Saikawa
have developed a Coq library for error-correcting codes, including Hamming and
acyclic LDPC [1], Reed-Solomon [2], and BCH [3] codes. This library is built atop
MathComp, and includes many theoretical results about each of these codes as
well as specific encoders and decoders. Ideally, we would have liked to use this
library as part of our functional model, but the implementation we verified differs
significantly from standard Reed-Solomon coding, which corrects errors rather
than erasures. Their library’s Euclidean-algorithm-based decoding is extremely
different from the decoder in RSE.

In Lean, a coding theory library called Cotoleta was developed and used
to prove results about Levenshtein distance [14] and Hamming(7,4) codes [11].
Separately, Hamming(7,4) and %—rate convolutional codes were verified in the
ACL2 theorem prover [20] with a particular focus on correcting memory errors;
these codes were verified against a particular memory model. Both of these
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projects focused on verifying concrete-sized codes; thus they did not require the
same level of abstraction or general mathematical reasoning as our work.

8 Future work

In a real system, the encoder and decoder verified in this work are called by
clients who handle receiving packets, assigning them to batches, and maintaining
various data structures. We are currently working to verify a real-world version
of such a system. This will permit a single, clean, end-to-end correctness result;
right now, we have separate results for the decoder’s correctness and the C pro-
gram refinement which must be composed together. However, the specification
of such a system introduces new challenges; it must reason about packet streams
and network-specific features such as headers, timeouts, and packet reordering.
This C implementation of RSE has been useful in several projects at Bell-
core/Telcordia/Peraton even though it cannot run at modern packet bit rates.
We believe that a line-rate FPGA implementation of the finite-field matrix-
multiply partial step is possible, and we are designing an API by which this
could be controlled by a C program or a P4 program. Such an FPGA could
be proved correct by a layered proof. The top layer would be our MathComp
proof with no changes. The bottom layer could be proved using a Coq tool for
hardware synthesis and functional-correctness verification, such as Koika [7].

9 Conclusion

We have presented an efficient, real-world C implementation of Reed-Solomon
forward erasure correction that we formally verified using the Coq proof assistant
and the Verified Software Toolchain. The code was verified with only minor
changes; one macro was turned into a function for ease of verification and one bug
that caused undefined behavior was fixed. While the code has been in use for over
25 years, the correctness of certain parts of the underlying algorithm, a modified
form of Reed-Solomon erasure coding, were still ill-understood, including a very
restricted form of Gaussian elimination. We were able to use Coq’s Mathematical
Components library to completely verify the correctness of this algorithm and
VST to prove that the C code, with its various optimizations and modifications,
correctly implements this algorithm. This demonstrates that tools like VST allow
us to verify real-world, dusty-deck programs in C, even those whose correctness
depends on a broad base of mathematics and those with numerous low-level
optimizations. We believe this can be a viable approach to connect efficient
low-level code with sophisticated high-level reasoning, enabling reliable software
components for networks and other systems.

Appendix

The appendix to this paper can be found in our git repo (see footnote 1) in
doc/Appendix.pdf.
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