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Abstract. This paper presents results on time series forecasting using
a quantum recurrent neural network called Quantum Long Short-Term
Memory, known by its acronym QLSTM. In this study, we present exper-
imental results about the forecasting on a financial closing price dataset
(S&P/BMV IPC), where the data is analyzed to determine its correla-
tion dimension to validate whether the time series exhibits non-linear
behavior.
To assess the performance of the QLSTM, the mean squared error met-
ric is calculated to underscore the advantages of this quantum vari-
ant compared to its classical counterpart, the LSTM. It is noteworthy
that this work represents the first publication in non-linear time series
prediction applied to a Mexican stock index using quantum comput-
ing.https://github.com/JordiFGonzalezC/QLSTM

Keywords: QLSTM · Quantum Finance · Quantum Time Series Fore-
casting · Non-Linear Systems.

1 Introduction

1.1 Background

Our study builds on the QLSTM [1], proposed by Samuel Yen-Chi Chen, Shinjae
Yoo, and Yao-Lung L. Fang in 2020 in their article ”Quantum Long Short-Term
Memory”. They introduced an architecture for the QLSTM which implements
Variational Quantum Circuits (VQC) instead of using classical artificial neural
networks to reinterpret the classical LSTM into a quantum computational neural
model.

As outlined in [1], the proposed architecture enables the encoding of arrays
of numbers into a quantum state, essentially mapping these values to an angular
value within a qubit. The aim is to predict non-linear time series, experiments
that could validate the decrease in the mean square error of quantum circuits
in making predictions about real-world systems. In this case, estimating closing
values in the stock market for S&P/BMV IPC index with a better simulation

https://github.com/JordiFGonzalezC/QLSTM
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performance and with a faster decrease in the mean square error than the clas-
sical computing algorithms.

S&P/BMV IPC, also known as the Mexican Stock Exchange (Bolsa Mexicana
de Valores or BMV), is one of the major stock exchanges in Mexico. IPC (́Indice
de Precios y Cotizaciones) is the main stock market index in Mexico, and it
represents a selection of the most actively traded stocks on the BMV.

Therefore, knowing those future values is of great interest to the Mexican
financial sector.

The paper is structured as follows: Introduction, this section reviews the QL-
STM architecture and showcases its main components. It characterizes the data
that will be used and concludes on why these data are considered non-linear. In
the subsequent section, Experimental Development, we delve into the method-
ology employed to address the forecasting problem using QLSTM. Additionally,
experimental results regarding error during training are presented. Finally, in the
Results section, we analyze and compare the prediction outcomes of the QLSTM
against the LSTM and we highlight the improvements achieved by employing a
quantum algorithm for time series forecasting.

1.2 QLSTM architecture

The Quantum Long Short-Term Memory (QLSTM) architecture is an innovative
variant of the classical Long Short-Term Memory (LSTM) recurrent neural net-
work that incorporates principles of quantum computing. In QLSTM, quantum
gates and quantum-inspired mechanisms are integrated into the architecture to
enhance its computational power and memory capabilities.

Fig. 1: QLSTM architecture [1]

Like traditional LSTM, its quantum version is designed to process sequential
data, making it well-suited for tasks like natural language processing and time
series analysis. However, QLSTM leverages quantum properties such as super-
position and entanglement to perform certain operations more efficiently than
classical counterparts, potentially offering advantages in tasks that involve com-
plex temporal dependencies or large-scale data. Basically the QLSTM architec-
ture is kind of same structure than its classical counterpart, with the difference
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that the classical neural networks (where usually synaptic weights are trained)
are changed for variational quantum circuits as is shown in the architecture in
the Fig.1.

1.3 Data categorization usaing Grassberger-Procaccia algorithm

Financial markets exhibit complex and often non-linear behavior [23], making it
crucial for analysts and traders to employ sophisticated tools to grasp the inher-
ent unpredictability. The use of the Grassberger-Procaccia algorithm to estimate
the correlation for the analysis of time series and dynamical systems to quantify
complexity and fractal structure is a common tool used in the literature [25].

The correlation dimension of the time series will be discussed as the result
obtained after applying the Grassberger-Procaccia algorithm as D2.

The correlation dimension, originally developed in the field of nonlinear dy-
namics and chaos theory [25], have found a unique and increasingly important
role in the realm of finance. These mathematical constructs offer a quantitative
framework for assessing the sensitivity of financial systems to initial conditions,
shedding light on the intricate interplay of factors that drive market fluctuations.
By examining the correlation dimension of financial time series data, analysts
can gain valuable insights into the underlying dynamics of asset prices, market
volatility, and risk.

To find the correlation dimension, it is necessary to apply the following math-
ematical expression [27] to the financial data source [2], to simplify the calcula-
tions for the Grassberger-Procaccia algorithm, a Github code implementation is
used [26].

The Grassberger-Procaccia algorithm is a technique used in time series anal-
ysis to estimate the correlation dimension, a measure of the complexity and
fractal structure of the underlying system. This algorithm is particularly useful
for detecting the presence of chaos in a time series.

Phase Space Reconstruction First, the phase space is reconstructed from the
one-dimensional time series using the method of time delay. Vectors of embedding
dimension m and a time delay τ are created. For a time series x(t), the vectors
in the phase space are:

X(t) = (x(t), x(t+ τ), x(t+ 2τ), . . . , x(t+ (m− 1)τ))

Calculation of Distances in Phase Space Next, the Euclidean distance
between all pairs of points in the reconstructed phase space is calculated:

dij = ∥X(i)−X(j)∥

Correlation Function The correlation function C(r) is then defined, which is
the fraction of pairs of points whose distance is less than a threshold r:

C(r) =
2

N(N − 1)

∑
i<j

H(r − dij)



4 González-Contreras, J. F. et al.

where H is the Heaviside step function, N is the total number of points in the
series, and dij is the distance between points i and j.

Estimation of the Correlation Dimension The correlation dimension D2

is estimated by observing how C(r) changes as r varies:

D2 = lim
r→0

logC(r)

log r

In practice, this is done by performing a linear regression of logC(r) against
log r over a range of r where this relationship is approximately linear.

This algorithm helps researchers better understand the nature of time se-
ries data and identify patterns that are not evident through traditional linear
methods. [27].

Estimation of correlation dimension for S&P/BMV IPC time series.
It is feasible to estimate certain metrics that indicate its non-linear nature. In
2021, a comprehensive analysis was conducted to characterize the non-linearity
of the S&P/BMV IPC [28]. This involved examining the trends in behavior
and memory of the prices of the shares comprising the S&P/BMV IPC index
in the Mexican stock market, as well as the evolution of returns over time. To
assess the normality of returns, the Jarque-Bera test was employed, revealing
non-normality in the generated returns from the stations. Notably, the Hurst
exponent was utilized as a measure of memory in prices. The findings from these
analyses led to the conclusion that the index exhibits a persistent behavior [28].

(a) S&P/BMV IPC time series (b) Correlation dimension

Fig. 2: Correlation dimension for S&P/BMV IPC time series

Using correlation function, the obtained value for D is shown in the graph
(2b) for different candidate embedding dimensions (1 to 40), this measure pro-
vides information about the complexity and structure of the underlying time
series. A correlation dimension decreasing suggests a more complex or non-linear
structure in the dynamic system [27], but as it is inconclusive, the definition of
persistent time series will be employed [28].
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2 Experimental development

2.1 Methodology

As a result of our modifications in the classical LSTM [9], the trainable parame-
ters are now primarily the rotational parameters embedded within the quantum
circuits. This transformation has given birth to a hybrid quantum-classical neu-
ral network layer, with the optimization process relying on classical techniques.
Our research, outlined in the QLSTM paper, provides compelling evidence that
QLSTM outperforms traditional LSTM networks. QLSTM exhibits an excep-
tional ability to gather an abundance of information right from the start of the
training process, and its loss decreases consistently and rapidly compared to its
classical counterpart. Consequently, our primary objective in this study is to
substantiate the superior capabilities of QLSTM in terms of the error and the
speed of its decrease.

In our adaptation, we have made specific adjustments to align the model
with the Variational Quantum Circuit (VQC) illustrated in the next section.
Additionally, we’ve leveraged the Pennylane [6] simulator, which is integrated
into our setup, to execute these VQCs. Pennylane seamlessly integrates quan-
tum computing with classical machine learning frameworks like TensorFlow and
PyTorch, enabling efficient development of hybrid algorithms. Its robust autod-
ifferentiation capabilities and extensive documentation make it ideal for optimiz-
ing variational circuits, while its flexibility and active community support foster
innovation and ease of use.

In the following section, our primary goal is to train a QLSTM model tailored
for forecasting non-linear time series. This work serves as a proof for showcas-
ing that QLSTM not only holds potential for time series prediction but also
surpasses its classical counterpart in various aspects. Our chosen configuration
includes 4 qubits, a single variational layer, and a learning rate set at 0.05. The
choice of 4 qubits was driven by our desire to demonstrate QLSTM’s effectiveness
even with a limited number of qubits [1]. We determined the latter parameters
through experimentation over multiple training epochs to identify the settings
that produced the most favorable results.

2.2 Training the Variational Quantum Circuit (VQC)

The process of training a Variational Quantum Circuit (VQC) using Torch [10], a
robust deep learning framework, is a sophisticated undertaking that combines the
domains of quantum computing and machine learning. It commences by encoding
the specific problem of interest into a quantum circuit, typically represented as
a sequence of quantum gates. This parameterized VQC then becomes the focal
point for Torch’s involvement, which is employed to optimize these parameters
utilizing classical machine learning techniques.

The VQC consists of three layers. The first layer, known as the encoding
layer, is where a mapping from real numbers (classical) to angular rotations on
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Fig. 3: Variational Quantum Circuit for QLSTM [1]

the qubit is performed. This is achieved using Hadamard gates (H) and rota-
tional operators (Ry, Rz) along the y, z axes. In the Fig.3, it is shown that each
element in the time series is mapped to each qubit using the arctan function.
The subsequent layer is the variational part, where qubits are entangled and
rotated by certain angles (α, β, γ) around each x, y, z axis, respectively. These
angles represent hyperparameters that need to be tuned using established tech-
niques, such as gradient descent, to optimize predictions. Finally, there is the
measurement layer, which maps the qubit’s value to a classical bit.

2.3 Training loss metrics for LSTM and QLSTM

To evaluate the training progress over epochs in the field of Machine Learning,
it is common to use mean squared error (also known as loss metric) to determine
whether the training is improving or deteriorating. This is done in order to know
when to stop the training and avoid the overtraining zone. This is crucial because
training further can lead to gradient explosion and an increase in error instead
of a decrease.

As seen in Fig.4, in a) represents the mean squared error for the training
of 100 epochs for the LSTM. As evident from epoch 100 to later, the error
stabilizes and exhibits a trend that converges around zero. It is noteworthy
that, even though they may appear similar, the training of the quantum model
significantly accelerates the error reduction rate. According to the graphs, the
error diminishes up to ten times faster in the quantum version compared to the
classical one.

On the other hand, for its quantum counterpart, in Figure b) the QLSTM
displays a similar behavior as the error approaches zero. However, it’s note-
worthy that this has been executed on a classical computer using the Pennylane
simulator [6]. A quantum version of a QLSTM algorithm executed on a quantum
computer could offer significant advantages in terms of efficiency, exploration ca-
pability, and modeling of quantum correlations, provided challenges associated
with error correction and efficient implementation on quantum hardware are
overcome.

Table 1 provides a comparison of the hyperparameters used in the code to
ensure similar and as fair conditions as possible for determining which of them
would achieve improved performance. Since both are recurrent neural networks



S&P/BMV IPC forecasting using QLSTM 7

Fig. 4: Training: a) LSTM loss vs. epoch , b) QLSTM loss vs. epoch

with a single layer, the Adam optimizer from the Torch library was utilized to
obtain optimal values for the necessary parameters in both neural networks. In
both cases, the output of the neural network represents the next value in the
series.

Table 1: Hyperparameters comparison for LSTM vs. QLSTM
Hyperparameter Classical Quantum

Learning rate 1× 10−4 5× 10−2

Number of sensors 16 16
Number of layers 1 1
Number of qubits N/A 4

The two loss metric graphs illustrate a similar trend after epoch 10, with one
representing the results of a classical LSTM algorithm and the other its quantum
counterpart.

In the classical LSTM graph, there is a noticeable and swift decrease in loss
after epoch , indicating effective learning and adaptation to the training data.
This aligns with the expected behavior of a well-tuned LSTM, showcasing its
ability to capture sequential dependencies and patterns.

Surprisingly, the quantum counterpart graph exhibits a comparable trend
in the loss metric, despite the fundamentally different approach of quantum
computing. The rapid decrease in loss suggests that the quantum model is also
effectively learning and adapting to the training data, starting from epoch 8. This
parallel behavior implies that the quantum model, with its unique computational
principles, is achieving results similar to its classical counterpart.

The commonality in the loss reduction patterns after epoch 10 between the
classical LSTM and its quantum counterpart underscores the effectiveness of
the quantum model in utilizing its distinct computational capabilities, the error
values for both neural networks in the training zone behaves in the same order
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Table 2: Error values during training at epoch 100
Classical Quantum

Test error 1.2× 10−4 1.6× 10−4

error around 1e−4 (Table 2). This observation highlights the potential of quan-
tum machine learning to provide effective solutions, even in situations where
classical algorithms have traditionally excelled.

3 Results

The financial time series graphs of the S&P/BMV IPC span from 2010 to 2022,
showcasing an overlay of the real data, the results of a classical LSTM, and a
QLSTM. The dashed blue region starting from 67% of the data represents the
testing zone.

Fig. 5: S&P/BMV IPC prediction results LSTM vs. QLSTM. Both recurrent
neural networks behave similarly, its highlighted that even if the training didn’t
considers the pick around 3000 day, both could predict this increment in the
time series without issues.

In Figure 5, is possible to note the comparison between the LSTM vs. the
QLSTM predictions, corresponding to the S&P/BMV IPC time series that rep-
resents the historical fluctuations of the index. The curve of the classical LSTM
closely follows the real data in graph, as expected, the QLSTM curve behaves
very closely to the real data. While the performance of the QLSTM is very
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similar to that of the LSTM, a slight superiority of the classical version may
be noticeable, suggesting a potentially higher predictive capacity in this specific
context.

It is crucial to note that the QLSTM was executed on a classical computer
with a simulator, which could have influenced its performance. Emphasis is
placed on the possibility that the quantum version could significantly improve if
run on a real quantum computer, surpassing the classical version. However, it is
underscored that overcoming challenges associated with running on a real quan-
tum computer, such as noise and qubit topology, is essential to fully leverage the
potential of quantum computing in finance.

To reinforce the notion that the quantum version of the LSTM may perform
equally or even better, we can examine the prediction results in the testing zone.
In the first graph a), there is a smoother error reduction as it approaches zero,
followed by stabilization. In contrast in graph b), the error reduction in the
quantum version is highly accelerated and abrupt, rapidly reaching zero and
immediately stabilizing around it.

Fig. 6: Testing: a) LSTM loss vs. epoch , b) QLSTM loss vs. epoch

The error values for both neural networks in the testing zone were in the same
order error around 1e−4 (Table 3), the values are close but it must be noted that
the quantum algorithm was executed in a quantum computer simulator, so the
results obtained from the QLSTM could be improved by making an adequate
implementation in a real quantum computer. Although, due to current hardware
limitations, perhaps it is most likely that it will have worse performance than
its classic version.

Table 3: Error values during testing at epoch 100
Classical Quantum

Test error 1.2× 10−4 1.5× 10−4
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4 Conclusion

This work represents a continuation of the exploration into the application of
Quantum Long Short-Term Memory (QLSTM), a concept introduced by Samuel
Yen-Chi Chen, Shinjae Yoo, and Yao-Lung L. Fang in their 2020 article ”Quan-
tum Long Short-Term Memory.” The proposed architecture utilizes Variational
Quantum Circuits (VQC) instead of classical artificial neural networks in a con-
ventional LSTM, aiming to predict non-linear time series, particularly closing
values in the S&P/BMV IPC stock market index.

An achievement of this work is demonstrating the possibility of matching the
performance of the most effective classical algorithms with quantum computing.
In the metrics presented, it was observed how the quantum version showed no
distinction from the classical one. Evaluations were conducted under the most
equitable conditions for both approaches. Furthermore, the application of these
methods for time series prediction demonstrates their effectiveness even in the
case of non-linear time series, which, in theory, pose a significant challenge for
analysis and prediction. This serves as a clear example of the capabilities quan-
tum machine learning has in predicting systems that, in principle, cannot be
forecasted from a deterministic or stochastic perspective.

Our application of the QLSTM, focusing on rotational parameters embedded
within quantum circuits, led to the development of a hybrid quantum-classical
neural network layer. The trainable parameters became predominantly the ro-
tational parameters, transforming the traditional LSTM into a QLSTM. Our
research suggests that QLSTM outperforms traditional LSTM networks, show-
casing an exceptional ability to rapidly gather information and decrease loss
consistently from the outset of the training process.

The training process involves a Variational Quantum Circuit (VQC) using
Torch, a robust deep learning framework. This intricate process combines the
realms of quantum computing and machine learning, encoding the problem into
a quantum circuit and optimizing parameters using classical machine learning
techniques.

The three-layer variational quantum circuit includes an encoding layer, a
variational part, and a measurement layer. The encoding layer maps real num-
bers to angular rotations on qubits, the variational part entangles and rotates
qubits using hyperparameters, and the measurement layer converts qubit values
to classical bits.

The comparison of financial data graphs from 2010 to 2022, featuring actual
data, classical LSTM results, and QLSTM results, suggests that both models
perform similarly. While the classical LSTM may exhibit a slight advantage, it’s
essential to consider that the QLSTM was executed on a classical computer with
a simulator. The potential for significant improvement exists if the QLSTM runs
on a real quantum computer, surpassing the classical version. As future work,
we aim to implement the algorithm on a real quantum computer to further
explore its capabilities and overcome the challenges associated with noise and
qubit topology in quantum computing for finance.
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