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Abstract The Coalition Formation with Spatial and Temporal con-

straints Problem (CFSTP) is a multi-agent task allocation problem where
the agents are few and cooperative, the tasks are many, spatially dis-
tributed, with deadlines and workloads, and the objective is to find a
schedule that maximises the number of completed tasks. The current
state-of-the-art CFSTP solver, the Coalition Formation with Look-Ahead

(CFLA) algorithm, has two main limitations. First, its time complexity
is quadratic with the number of tasks and exponential with the number
of agents, which makes it not efficient. Second, its look-ahead technique
is not effective in real-world scenarios, such as open multi-agent systems,
where new tasks can appear at any time. Motivated by this, we propose
an extension of CFLA, which we call Coalition Formation with Improved

Look-Ahead (CFLA+). Since CFLA+ inherits the limitations of CFLA,
we also develop a novel algorithm to solve the CFSTP, the first to be
anytime, efficient and approximate, which we call Cluster-based Coalition

Formation (CCF). We empirically show that, in settings where the look-
ahead technique is highly effective, CCF completes up to 20% (resp. 10%)
more tasks than CFLA (resp. CFLA+) while being up to four orders
of magnitude faster. Our results affirm CCF as the new state-of-the-art
algorithm to solve the CFSTP.

Keywords: RoboCup rescue simulation · coalition formation · spatial
and temporal constraints · XD [ST-MR-TA] · anytime · efficient

1 Introduction

According to the Global Risks Report 2020 [27], natural disasters and human-
made environmental disasters are in the top 5 risks in terms of likelihood and in
the top 10 risks in terms of impact. The reason is that they are caused by and are
the cause of other crucial issues, such as extreme weather events, biodiversity loss
and ecosystem collapse, water and food crises, failure of climate-change mitigation
and adaptation, failure of regional or global governance, and profound social
instability. Therefore, a key component of modern society is disaster response [1],
that is, the act of reducing or eliminating the consequences of a disaster [4].

In the field of Multi-Agent Systems (MASs), one of the most important projects
promoting research on disaster response is the RoboCup rescue simulation [15].



2 L. Capezzuto et al.

By reproducing the aftermath of an earthquake in a city, this simulation allows
testing coordination approaches that could be enacted by first responders in such
situations. In this work, we are interested in a class of task allocation problems
that can be generated by the RoboCup rescue simulation, namely, those in
which ambulances have to find and rescue victims trapped under rubble, and fire
brigades have to extinguish fires. This class of problems has been characterised
in [25] as Coalition Formation with Spatial and Temporal constraints Problem

(CFSTP)1. In the CFSTP, agents (i.e., ambulances or fire brigades) have to
decide which sequences of tasks (i.e., victims or fires) they are going to execute
(i.e., save or extinguish). Their decision is influenced by how tasks are located in
the disaster area, how much time it is required to reach them, how much work
they require (e.g., how large a fire is) and their deadlines (e.g., estimated time
left before victims perish). Given these conditions, and considering that the
number of tasks is likely to be much larger than the number of agents, it is crucial
that agents cooperate with each other by forming coalitions [28] (i.e., grouping
together). Hence, the objective of the CFSTP is to schedule the right coalitions
(e.g., ambulances with the largest capability) to the right tasks (e.g., sites with
the most victims) to ensure that as many tasks as possible are completed.

In this paper, our interest is in algorithms that solve the CFSTP efficiently

(i.e, that are in the complexity class P [22]) and are anytime (i.e., which can
return partial solutions if they are interrupted before completion). The reason is
that being efficient and anytime is a desirable feature of real-world applications.
To date, approaches based on the distributed Max-Sum algorithm [8] have proven
to be among the most effective at solving the CFSTP, as well as many other
problems [9]. The variants relevant to our scope are Fast Max-Sum (FMS) [25],
Bounded Fast Max-Sum (BFMS) [21], and Binary Max-Sum (BinaryMS) [23].
FMS is anytime and provides optimal solutions in exponential time, but it
cannot solve general CFSTP instances. This limitation is removed in BFMS,
but at the cost of losing the anytime property, and providing only approximate
solutions. On the other hand, BinaryMS is efficient, but not anytime, and
it requires a pre-processing phase with exponential run-time to solve general
CFSTP instances. Other multi-agent approaches make use of social insects [7],
automated negotiation [10,12,31] and evolutionary computation [32], but without
considering the anytime property. In the field of multi-robot systems, the CFSTP
is also known as XD [ST-MR-TA] (cross-schedule dependent [XD] single-task [ST]
multi-robot [MR] time-extended assignment [TA]) [18]. To date, the approaches
proposed to solve this equivalent formulation utilise linear programming [2,16,17],
automated negotiation [19] and memetic algorithms [20]. However, like the above
multi-agent approaches that are not based on Max-Sum, they are not anytime.

Against this background, we focus on the current state-of-the-art algorithm
that solves the CFSTP, namely, the Coalition Formation with Look-Ahead (CFLA)

1 We use the definitions of coalition and coalition formation given by [14,26,28]. Hence,
a coalition is a flat and task-oriented organisation of agents, short-lived and dissolved
when no longer needed, while coalition formation is a consequence of the emergent
behaviour [11] of the MAS, rather than inter-agent coordination (as in game theory).
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algorithm [26]. Our rationale is that CFLA is anytime and, even though its
computational time is exponential in the worst case, thanks to its design [26,
Section 6] and the performance of current computers, on average it can solve
problems with hundreds of agents and thousands of tasks in minutes.

Our contribution includes: an explanation of CFSTP and CFLA that is
clearer, more concise and more detailed than [26]; an extension of CFLA that
minimises its limitations; a novel anytime, efficient and approximate algorithm
to solve the CFSTP, which outperforms both CFLA and our extension.

The rest of the paper is organised as follows. In Section 2, we formalise
the CFSTP model. Section 3 is dedicated to discuss and enhance the CFLA
algorithm, which culminates in the CFLA+ algorithm. Given that CFLA+ keeps
the core limitations of CFLA, Section 4 presents our novel algorithm. Section 5
reports our empirical evaluation, and Section 6 concludes.

2 The CFSTP model

In this section, we first give our terminology, then characterise coalition allocations
and values, and finally give the constraints and objective function of the CFSTP.

2.1 Basic definitions

Let V = {v1, . . . , vm} be a set of m tasks and A = {a1, . . . , an} be a set of n
agents2. Let LV and LA be respectively the set of all possible task and agent
locations, not necessarily disjoint. Hence, more than one agent or task can be
at the same location. Time t is discrete, that is, t ∈ N, each problem starts at
t = 0 and agents travel or execute tasks in measurable time units. The time
units needed by an agent to travel from one location to another are given by
ρ : A × (LA ∪ LV ) × LV → N. Unlike [26], we put A in the domain of ρ to
characterise agents with different speeds3. Task locations do not change over
time, while agent locations can. Each task v has a demand Dv = {wv, dv}, where
wv ∈ R

+ is the workload of v, or the amount of work required to complete v,
and dv ∈ N is the deadline of v, or the time until which agents can work on v.
Our notion of work will be clear in Section 2.3. Hence, workloads can only be
positive, and some tasks might have a deadline of zero4.

We denote the location of agent a at time t by lta ∈ LA ∪ LV , the times at
which a starts and finishes working on task v by sv

a ∈ [0, dv] and fv
a ∈ [sv

a, dv],
respectively, and the latest deadline by dmax = maxv∈V dv.

2.2 Coalition allocations

Agents are cooperative [30] and can work together to complete a task. Let
Part(A) be the set of partitions of A. A subset of agents C ∈ Part(A) is called a

2 Although not necessary, it is typically assumed that m≫ n.
3 In real-world scenarios, this avoids approximating different speeds to the same one.
4 In other words, a problem might have tasks that cannot be completed in time,

independently of the algorithm chosen to solve it.
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coalition. At time t, the rationale for allocating coalition C to task v is that C can
complete v in the lowest time possible. An agent allocation is denoted by τa→v

t

and represents the fact that agent a works on task v at time t. The set of all

agent allocations is denoted by T = {τa→v
t }a∈A, v∈V, t∈[0, dmax] and contains all the

combinatorially different agent allocations. A coalition allocation is denoted by
τC→v

t and represents the fact that coalition C works on task v at time t. The set of

all coalition allocations is denoted by Γ =
{

τC→v
t |C = {a | τa→v

t ∈ T}
}

. Similar
to T , Γ contains all the combinatorially different coalition allocations. Given a
set of agent allocations T ′ ⊆ T , the set of coalition allocations corresponding to

T ′ is denoted by ∆(T ′) =
{

τC→v
t |C = {a | τa→v

t ∈ T ′}
}

. An agent allocation

τa→v
t can also be denoted as a singleton coalition allocation τ

{a}→v
t .

2.3 Coalition values

Each coalition has a value, given by the function u : Part(A) × V → R
+.

Unlike [26], we put V in the domain of u to characterise the fact that the same
coalition may execute different tasks with different performances. Hence, given a
coalition allocation τC→v

t , the value u(C, v) expresses the amount of work that
coalition C does on task v at each time t. The workload wv decreases linearly
over time, depending only on u(C, v).

2.4 Constraints

There are three constraint types: structural, temporal and spatial. Structural
constraints require that each task v can be allocated to only one coalition at a
time. This is characterised by the following sets:

∀v ∈ V, Γv =
{

Γ ′ ⊆ Γ : τC1→v
t , τC2→v

t ∈ Γ ′ =⇒ C1 = C2

}

(1)

Temporal constraints require that each task v can be completed only within
its deadline dv. This is characterised by the function ∆ : V ×Γ → {0, 1}, defined
as follows:

∆(v, Γ ) =

{

1, if ∃ t ≤ dv :
∑

t′≤t, τC→v

t′
∈Γv

u(C, v) ≥ wv

0, otherwise
(2)

Equation 2 utilises Γv (Equation 1) to count only well-formed coalition allocations.
Spatial constraints require that an agent will not start working on a task

before reaching it. This is characterised as follows:

∀a ∈ A, ∀v ∈ V,∀t ≤ dv, s
v
a ≥ t+ ρ(a, lta, lv) (3)

∀a ∈ A,∀v1, v2 ∈ V, fv1

a + ρ(a, lv1
, lv2

) ≤ sv2

a (4)

A set of agent allocations T ′ ⊆ T such that ∆(T ′) satisfies Equation 2 is
called legal. A set of coalition allocations Γ ′ ⊆ Γ that satisfies Equations 2, 3
and 4 is called feasible. Consequently, at time t, if τC1→v1

t and τC2→v2

t are feasible
coalition allocations and lv1

6= lv2
, then C1 ∩ C2 = ∅.
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2.5 Objective function

The objective function of the CFSTP is to find a feasible set of coalition allocations
that maximises the number of completed tasks. More formally:

arg max
Γ ′⊆Γ

∑

v∈V

∆(v, Γ ′), subject to Equations 3 and 4 (5)

Since, for each agent a, we might need to consider all the possible task
allocations until dmax, the time complexity of Equation 5 is O(|A|·|V |!·(dmax)|V |).

A feasible set of coalition allocations Γ ′ ⊆ Γ is called a solution with degree k

if
∑

v∈V ∆(v, Γ ′) = k, with 0 ≤ k ≤ |V |. Moreover, Γ ′ is called a partial solution

if k > 0 and an optimal solution5 if k = |V |. Hence, the argument of the maxima
in Equation 5 is a solution with the highest degree.

In [26], it is proven that the CFSTP is NP-hard [22], and a generalisation of
the Team Orienteering Problem [3], which is a generalisation of the Travelling
Salesman Problem [29]. As we said in Section 1, CFLA is the current state-of-
the-art CFSTP solver. In the next section, we show how it can be improved.

3 Coalition Formation with improved Look-Ahead

We now present the Coalition Formation with improved Look-Ahead (CFLA+),
an extension of the CFLA algorithm [26]. More precisely, its look-ahead phase
(Section 3.4) has two modifications that, as we shall see in Section 5, enhance
the overall performance.

The concept of CFLA+ is the same as CFLA, but for completeness we briefly
report it in Section 3.1. After that, we detail the procedures that compose
CFLA+, explaining how they differ from the ones of CFLA. Finally, we list the
limitations that CFLA+ continue to keep from CFLA, which are the rationale
for our new algorithm in Section 4.

CFLA and CFLA+ have the same four phases, but [26] describes them in
three algorithms. For readability purposes, we describe them in four algorithms.

3.1 The concept of CFLA
+

CFLA+ is a centralised, anytime and greedy algorithm that approximates Equa-
tion 5 by maximising the working time of the agents and minimising the time
required by coalitions to complete tasks. It is divided into four phases:

1. Defining the legal agent allocations (Section 3.2).
2. For each task v, choosing the best coalition C (Section 3.3).
3. For each task v, doing a 1-step look-ahead (Section 3.4) to define its degree

δv, or the number of tasks that can be completed after the completion of v.
4. At each time t ∈ [0, dmax], allocating a task not yet completed and with the

highest degree (Section 3.5).

We detail them below.
5 Optimal solutions might not exist (see Footnote 4 in Section 2.1).
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Algorithm 1: getLegalAgentAllocations (Phase 1 of CFLA+)

Input: time t

Output: the set of legal agent allocations at time t

1 Lt ← ∅
2 for a ∈ At

free do // for each free agent a

3 for v ∈ Vunc do // for each uncompleted task v

4 if t + ρ(a, lt
a, lv) ≤ dv then // if a can reach v at t within dv

5 Lt ← Lt ∪ {τ
a→v
t′ }t+ρ(a,lt

a,lv)≤t′≤dv

Algorithm 2: ECF (Phase 2 of CFLA+)

Input: task v, a set of legal agent allocations Lt

Output: ECF coalition C

1 At
v ← define from Lt the agents that can reach v at t within dv

2 C∗
v ← ∅ // the ECF coalition

3 t∗
v ← dv + 1 // time at which C∗

v completes v

4 i← 1
5 while i ≤ |At

v| and C∗
v = ∅ do

6 for C ∈ all combinations of i agents in At
v do

7 if
∑

τC→v

t′
∈Γv , C′⊆C, t′∈[t,dv ]

u(C, v) ≥ wv then

8 tminmax ← mintmax

(

wv −
∑

τC→v

t′
∈Γv , C′⊆C, t′∈[t,tmax]

u(C, v)
)

9 if tminmax < t∗
v then

10 t∗
v ← tminmax

11 C∗
v ← C

12 i← i + 1

3.2 Phase 1: defining the legal agent allocations

At time t, Algorithm 1 determines which free agents6 (At
free) can reach which

uncompleted tasks (Vunc) before their deadlines. The resulting set of legal agent
allocations is denoted by Lt. This phase is identical in CFLA.

3.3 Phase 2: Selecting the best coalition for each task

Given a task v and a set of legal agent allocations Lt (computed by Algorithm 1),
Algorithm 2 returns the Earliest-Completion-First (ECF) [24] coalition C∗

v that
can be allocated to v. More precisely, the algorithm minimises both the size of
C∗

v and the time at which it completes v. This is achieved by iterating from the
smallest to the largest possible coalition size (line 5) and iterating through all the
possible coalitions of each size (line 6). When the procedure finds a coalition C

that can complete v within its deadline (line 7), then |C| is the minimum size of

6 That is, agents who neither are travelling to nor working on a task.
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Algorithm 3: lookAhead (Phase 3 of CFLA+)

Input: task v, its ECF coalition C∗
v , the set of all agent allocations T

Output: the degree δv of task v

1 δv ← 0
2 fv ← time at which C∗

v completes v

3 for v2 ∈ Vunc \ {v} do

4 if dv2
≥ dv then

5 A
fv

free ← agents that are free at fv // derived from C∗
v and T

6 Adv2 ← select from A
fv

free the agents that can reach v2 within dv2

7 i← 1

8 while i ≤ |Adv2 | do

9 for C ∈ all combinations of i agents in Adv2 do

// if C can complete v2

10 if
∑

τC′
→v

t
∈Γv , C′⊆C, t∈[fv,dv2

] u(C, v) ≥ wv then

11 δv ← δv + 1 + (1− ηv2
)

12 i← |Adv2 | // break external loop too

13 break

14 i← i + 1

the coalitions that can complete v. Hence, C∗
v is identified among the coalitions

that have size |C| (lines 8 − 11).
Algorithm 2 is more concise than the original formulation [26, Algorithm 2].

In particular, we clarify that the minimum coalition size has to be determined
by iterating through the subsets of the combinations7 of At

v, which is the set of
free agents that can reach v at time t.

3.4 Phase 3: defining the degree of each task

Given a task v, Algorithm 3 does a 1-step look-ahead8 to define its degree
δv (Section 3.1). Similarly to Algorithm 2, it checks how many tasks can be
completed after the completion of v (line 8).

Algorithm 3 differs from the original look-ahead phase [26, Algorithm 3]
in two points. First, it only considers uncompleted tasks that have a deadline
greater or equal to dv (line 4): this prevents from counting tasks that can be
completed before the completion of v. In fact, as defined in Section 3.1, δv

represents the number of tasks that can be completed only after the completion
of v, not also those that are completed before that. Second, at line 11, δv is
not just incremented by 1, but also by 1 − ηv2

, where ηv2
is the normalisation

of wv2
in the interval [wmin, wmax], with wmin and wmax being respectively the

7 The most efficient technique to enumerate all such combinations is the Gray binary
code [6, Section 7.2.1.1].

8 Which can be seen as a brute force phase.
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Algorithm 4: Overall procedure (Phase 4 of CFLA+)

1 t← 0
2 T ← {τa→v

t }a∈A, v∈V, t∈[0, dmax] // the set of all agent allocations

3 Vunc ← V // uncompleted tasks

4 repeat

5 δmax ← 0 // maximum task degree

6 v∗ ← nil // next task to allocate

7 C∗ ← ∅ // coalition to which v∗ is allocated

8 Lt ← getLegalAgentAllocations(t) // Algorithm 1

9 for v ∈ Vunc do

10 C∗
v ← ECF(v, Lt) // Algorithm 2

11 δv ← lookAhead(v, C∗
v , T ) // Algorithm 3

12 if δv > δmax then

13 δmax ← δv

14 C∗ ← C∗
v

15 if v∗ 6= nil and C∗ 6= ∅ then

16 Allocate C∗ to v∗

17 Vunc ← Vunc \ {v
∗}

18 Reduce T according to new agent locations and availability

19 if At
free = A then // all agents are free

20 break

21 t← t + 1

22 until Vunc = ∅ or t > dmax

minimum and maximum task workloads. Hence, δv is also a measure of how
much total workload is left after the completion of v. When δv is maximised (line
12 of Algorithm 4), it leads to the remaining tasks with the smallest workloads,
thus increasing the probability of completing more.

3.5 Phase 4: overall procedure of CFLA
+

Algorithm 4 shows the overall procedure. It runs in iterations until all tasks are
completed or the latest deadline is expired. At each time t, it updates the set
of legal agent allocations (line 8). Then, it determines which task to allocate to
which coalition (lines 9 − 18). If no other tasks can be allocated, the algorithm
stops early (line 19). Algorithm 4 can be seen as a myopic approach [25], in
which a long-term problem (to allocate all tasks) is divided into a number of
short-term problems (to allocate a task with the highest degree at each time t).

3.6 Analysis and discussion

Algorithm 1 iterates through all free agents and uncompleted tasks. Assuming
that line 4 requires constant time, the time complexity is α = O(|A| · |V |).
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Algorithm 2 iterates (line 5) from coalition size 1 to |At
v|, where At

v is the
set of agents that can reach task v at time t. This requires O(|A|) time. For
each s ≤ |At

v|, all possible coalitions of size s could be examined (line 6), which
requires O(2|A|) time in case At

v = A. Assuming that line 8 requires O(dmax)
time, the total time complexity is β = O(|A| · 2|A| · dmax).

Algorithm 3 iterates through all uncompleted tasks, which requires O(|V |)
time, and its loop at line 8 is computationally identical to line 5 in Algorithm 2.
Hence, the time complexity is γ = O(|V | · 2|A|).

Since it uses the previous algorithms, Algorithm 4 has a time complexity of

O (dmax · (α+ |V | · (β + γ))) = O
(

(dmax · |V |)2 · 2|A|
)

(6)

Therefore, despite having a lower complexity than an optimal CFSTP solver
(Section 2.5), CFLA+ has a run-time that increases quadratically with the number
of tasks and exponentially with the number of agents. This makes the algorithm
not efficient, hence not suitable for systems with limited computational resources.
Other limitations are as follows:

1. It can allocate only one task per time [26, Section 7]. More formally, at each
time, if one or more tasks are allocable, the worst- and best- case guarantee
of CFLA+ is to find a partial solution with degree k = 1.

2. In general, greedily allocating a task with the highest degree now does not
necessarily ensure that uncompleted tasks can all be successfully allocated
in future. This is particularly relevant in an open MAS9, where there is no
certainty of having further uncompleted tasks.

3. The more the tasks can be grouped by degree, the more the look-ahead phase
becomes a costly random choice. In other words, at time t, if some tasks
V

′

t ⊆ V have all maximum degree, then Algorithm 4 selects v∗ randomly
from V

′

t . Hence, the larger V
′

t is, the less relevant Algorithm 3 becomes.
4. In Algorithm 4, all tasks have the same weight. That is, tasks with earlier

deadlines might not be allocated before tasks with later deadlines. This is
independent of the order in which the uncompleted tasks are elaborated (line
9). In fact, the computation of δmax (line 12) would not be affected.

These limitations prevent CFLA+ from scoring higher percentages of com-
pleted tasks. Because of them, we decided to develop a new CFSTP solver that
is anytime, efficient and approximate. We present it in the next section.

4 Cluster-based Coalition Formation

The Cluster-based Coalition Formation (CCF) is a centralised, anytime and
greedy algorithm that operates at the agent level, rather than at the coalition
level. It is divided into two phases:

9 Here, we mean open as in open system [13]. Therefore, in an open MAS, at any time
agents can join in or out, and new tasks can appear.
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Algorithm 5: getTaskAllocableToAgent (used in Phase 1 of CCF)

Input: time t, agent a

1 vt
a ← (nil, nil) // array of indices 0 and 1

2 tmin ← (dmax + 1, dmax + 1) // like above

3 dmin ← (dmax + 1, dmax + 1) // like above

4 for v ∈ V do // for each uncompleted task

5 i← 0 // v is unallocated

6 if other agents are travelling to or working on v then

7 i← 1 // v is allocated but still uncompleted

8 tarr ← t + ρ(a, lt
a, lv)

9 if tarr ≤ dv and tarr < tmin[i] and dv < dmin[i] then

10 vt
a[i]← v

11 tmin[i]← tarr

12 dmin[i]← dv

13 if vt
a[0] 6= nil then // prioritise unallocated tasks

14 return vt
a[0]

15 return vt
a[1]

1. For each agent a, defining the closest and most urgent uncompleted task that
can be allocated to a.

2. For each task v, defining the minimum coalition of agents to which v has to
be allocated.

We describe Algorithm 5, which is used in the first phase, in Section 4.1 and
Algorithm 6, which does the two phases, in Section 4.2.

4.1 Selecting the best task for each agent

Given a time t and an agent a, Algorithm 5 returns the uncompleted task v

that is allocable, the most urgent and closest to a. By allocable we mean that a
can reach v before deadline dv, while most urgent means that v has the earliest
deadline. The algorithm prioritises unallocated tasks, that is, it first tries to find
a task to which no agents are travelling, and on which no agents are working
(vt

a[0]). Otherwise, it returns an already allocated but still uncompleted task such
that a can reach it and contribute to its execution (vt

a[1]). This ensures that an
agent becomes free only when no other tasks are allocable and uncompleted.

Algorithm 5 does not enforce constraints on the workloads. As we shall see
in Section 4.2, it is Algorithm 6 that does it, by allocating a task v to a coalition
C only when C has the minimum size and can complete v within dv.

4.2 Overall procedure of CCF

The overall procedure is described in Algorithm 6. The repeat-until structure
is the same as CFLA+, to preserve the anytime property. Phases 1 and 2 are
represented respectively by the loops at lines 5 and 16.
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Algorithm 6: Overall procedure of CCF (Phases 1 and 2)

Input: tasks V , agents A, task locations LV , initial agent locations LA, task
demands {Dv}v∈V

Output: A set of coalition allocations Γ ′

1 t← 0
2 Γ ′ ← ∅ // the partial solution to return

3 Vallocable ← ∅ // allocable tasks

4 repeat

5 for a ∈ A do // Phase 1
6 if a ∈ At

free then

7 v ← getTaskAllocableToAgent(t, a) // Algorithm 5

8 if v 6= nil then

9 if v 6∈ Vallocable then

10 Vallocable ← Vallocable ∪ {v}

11 At
v ← At

v ∪ {a}

12 else

13 Update a’s location
14 if a reached the task v it was assigned to then

15 Set a’s status to working on v

16 for v ∈ V do // Phase 2
17 Ct

v ← all agents working on v at time t

18 if v ∈ Vallocable then

19 Πt
v ← list of all agents in At

v sorted by arrival time to v

20 C∗ ← ∅
21 for i← 1 to Πt

v do

22 C∗ ← first i agents in Πt
v

23 λi ← arrival time to v of the i-th agent in Πt
v

24 ϕv ← 0 // amount of wv done at λi

25 for j ← 1 to i− 1 do

26 Cj ← first j agents in Πt
v

27 ϕv ← ϕv + (λj+1 − λj) · u(Cj ∪ Ct
v, v)

28 if (dv − λi) · u(C∗, v) ≥ wv − ϕv then

29 break // C∗ is the minimum coalition to complete v

30 Tv =
⋃

a∈C∗

{

τa→v
λa

}

// λa is a’s arrival time to v

31 Γ ′ ← Γ ′ ∪∆(Tv) // add ∆(Tv) (Section 2.2) to Γ ′

32 Vallocable ← Vallocable \ {v}

33 if Ct
v 6= ∅ then

34 wv ← wv − u(Ct
v, v)

35 if wv ≤ 0 then

36 Set free all agents in Ct
v

37 V ← V \ {v}

38 t← t + 1

39 until V = ∅ or t > dmax or all agents are free
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Phase 1 loops through all agents. Here, an agent a may either be free or
reaching a task location. In the first case (line 6), if an uncompleted task v can
be allocated to a (lines 7 − 8), then v is flagged as allocable (line 9) and a is
added to the set of agents At

v to which v could be allocated at time t (line 11). In
the second case (line 12), a is travelling to a task v, hence its location is updated
(line 13) and, if it reached v, it is set to working on v (line 14).

Phase 2 visits each uncompleted task v. If v is allocable (line 18), then it is
allocated to the smallest coalition of agents in At

v (defined in Phase 1) that can
complete it (lines 19 − 32). In particular, at lines 24 − 27, ϕv is the amount of
workload wv done by all the coalitions formed during the arrival to v of the first
i− 1 agents in Πt

v (defined at line 19). After that, if there are agents working
on v (line 33), its workload wv is decreased accordingly (line 34). If wv drops to
zero or below, then v is completed (lines 35 − 37). The algorithm stops (line 39)
when all the tasks have been completed, or the latest deadline is expired, or no
other tasks are allocable and uncompleted (Section 4.1).

4.3 Analysis and discussion

The approach of CCF transforms the CFSTP from a 1-k task allocation to a
series of 1-1 task allocations. In other words, instead of allocating each task to
a coalition of k agents, we have that coalitions are formed by clustering (i.e.,
grouping) agents based on the closest and most urgent tasks. Algorithm 5 runs
in ψ = O(|V |) time, assuming that the operation at line 8 has constant time. In
Algorithm 6, the time complexity of Phase 1 is O(|A| · ψ) = O(|A| · |V |), while

Phase 2 runs in O(|V | · |A|2) because: in the worst case, At
v = A and line 19 sorts

A in Ω(|A| · log |A|) time using any comparison sort algorithm [5]; the loop at

line 21 runs in O(|A|2) time. Since the repeat-until structure is executed at most

dmax times, the time complexity of Algorithm 6 is O(dmax · |V | · |A|2). CCF does
not have the limitations of CFLA+ because:

1. It can allocate at least one task per time. More formally, at each time, if one
or more tasks are allocable, CCF guarantees to find a partial solution with
degree 1 ≤ k ≤ |A|.

2. Each agent is always assigned to the allocable task that is closest and with
the earliest deadline.

3. It runs in polynomial time and does not have a look-ahead phase. Thus, it is
efficient and can be used in open systems.

Theorem 1. CCF is correct.

Proof. We prove by induction on time t.
At t = 0, a task v is selected for each agent a such that v is allocable, the

most urgent and closest to a (Section 4.1). This implies that the agent allocation
τa→v

0 is legal (Section 2.4). Then, Phase 2 of Algorithm 6 (Section 4.2) allocates
v to a only if it exists a coalition C such that |C| is minimum, τC→v

0 is feasible
(Section 2.4) and a ∈ C.
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At t > 0, for each agent a, there are two possible cases: a task v has been
allocated to a at time t′ < t, or a is free (i.e., idle). In the first case, a is either
reaching or working on v (lines 12 − 15 in Algorithm 6), hence τa→v

t is legal
and τC→v

t is feasible, where a ∈ C. In the second case, a is either at its initial
location or at the location of a task on which it finished working at time t′ < t.
Thus, as in the base case, if it exists a coalition C and a task v such that |C| is
minimum, τC→v

t is feasible and a ∈ C, then v is allocated to a.

As we said above, CCF can allocate between 1 and |A| tasks at each time.
However, its greedy approach does not allow to define the quality of the partial
solution it converges to10, independently of the problem being solved.

In the current literature, no algorithm that solves the CFSTP is simultaneously
anytime, efficient and approximate (Section 1). Consequently, CCF is the first to
have such properties.

5 Empirical evaluation

We implemented CFLA, CFLA+ and CCF in Java11, and replicated the ex-
perimental setup of [26] because we wanted to evaluate how well CFLA+ and
CCF perform in settings where the look-ahead technique is highly effective. For
each test configuration, we solved 100 random CFSTP instances and plotted the
average and standard deviation of: percentage of completed tasks; agent travel
time12; task completion time, or the time at which a task has no workload left;
problem completion time, or the time at which no other tasks can be allocated.

5.1 Setup

Let U(l, u) and U I(l, u) be respectively a uniform real distribution and a uniform
integer distribution with lower bound l and upper bond u. Our parameters are
defined as follows:

– All agents have the same speed.
– The initial agent locations are randomly chosen on a 50 by 50 grid, where

the travel time between two points is given by the Manhattan distance13.
– Tasks are fixed to 300, while agents range from 2 to 40, in intervals of 2

between 2 and 20 agents, and in intervals of 5 between 20 and 40 agents.
– The coalition values are defined as u(C, v) = |C| ·k, where k ∈ U(1, 2). Hence,

coalition values depend only on the number of agents involved, and all tasks
have the same difficulty.

– Deadlines dv ∈ U I(5, 600) and workloads wv ∈ U I(10, 50).

Unlike [26], we set the number of maximum agents to 40, instead of 20,
because it allows, in this setup, to complete all tasks in some instances.

10 That is, we cannot characterise the degree of the partial solution obtained by CCF
before running Algorithm 6.

11 https://git.soton.ac.uk/cmi/gopal/cfstp
12 See Section 2.1.
13 Also known as taxicab metric or ℓ1 norm.

https://git.soton.ac.uk/cmi/gopal/cfstp
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Figure 1. Tests on instances with 300 tasks and up to 40 agents.

5.2 Results

In terms of completed tasks (Figure 1a), the best performing algorithm for
instances with up to 18 agents is CFLA+, while the best performing algorithm
for instances with at least 20 agents is CCF. CFLA is outperformed by CFLA+

in all instances except those with 2 agents, and by CCF in instances with at
least 10 agents. The reason why the performance of CFLA and CFLA+ does
not improve significantly starting from instances with 20 agents is that the more
agents (with random initial locations) there are, the more tasks are likely to be
grouped by degree14. CFLA+ has a similar trend to CFLA because it has the
same limitations, but it performs better thanks to its improved look-ahead phase.

Regarding agent travel times (Figure 1b), it can be seen that CCF is up to three
times faster than CFLA and CFLA+. This is due to Algorithm 5, which allocates
tasks to agents also based on their proximity. To explain why agent travel times

14 See Limitation 3 described in Section 3.6.
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increase with all algorithms15, let us consider a toy problem with one agent a1 and
one task v. If we introduce a new agent a2 such that ρ(a2, l

0
a2
, lv) > ρ(a1, l

0
a1
, lv),

then the average travel time increases. In our scenario, this happens because the
initial locations of the agents are random.

In general, task completion times (Figure 1c) decrease because the more
agents there are, the faster the tasks are completed. The completion of task
v is related to the size of the coalition C to which v is allocated: the highest
the completion time, the smallest the size of C, hence the highest the working
time of the agents in C. Task completion times are inversely related to agent
travel times. Since CCF has the smallest agent travel times and allocates tasks
to the smallest coalitions, it consequently has the highest task completion times.
Therefore, in CCF, agents work the highest amount of times, and the number of
tasks attempted at any one time is the greatest.

The problem completion times (Figure 1d) are in line with the task completion
times (Figure 1c) since the faster the tasks are completed, the less time is needed
to solve the problem. The reason why the times of CFLA and CFLA+ do not
decrease significantly from 20 agents up is linked to their performance (see the
discussion on Figure 1a above). On the other hand, the fact that the times of
CCF decrease more consistently than those of CFLA and CFLA+ indicates that
CCF is the most efficient asymptotically. In other words, CCF is likely to solve
large-scale problems in fewer time units than CFLA and CFLA+.

In terms of computational times, CCF is significantly faster than CFLA and
CFLA+. For example, in instances with 40 agents and 300 tasks, on average16

CCF is 45106% ± [2625, 32019] (resp. 27160% ± [1615, 20980]) faster than CFLA
(resp. CFLA+). The run-time improvement of CFLA+ is due to line 4 of
Algorithm 3, thanks to which the look-ahead phase elaborates fewer tasks.

6 Conclusions

In this paper, we proposed two novel approximate algorithms to solve the CFSTP.
The first is CFLA+, an improved version of CFLA, and the second is CCF, which
is the first to be anytime and efficient. CFLA+ can be used in place of CFLA
for small or offline problems, while CCF provides a baseline for benchmarks with
large-scale problems. Given that it significantly outperforms CFLA and is more
applicable than CFLA+, we can consider CCF to be the new state-of-the-art
algorithm to solve the CFSTP.

The limitation of CCF is that it cannot define the quality of of its approxim-
ation (Section 4.3). In particular, the fact that it maximises the agent working
times (Section 5) implies that some agents may take longer to complete some
tasks and therefore might not work on others. Thus, if an optimal solution exists,
CCF cannot guarantee to obtain it.

15 This behaviour is also reported, but not explained, in [26].
16 On a machine with an Intel Core i5-4690 processor (quad-core 3.5 GHz, no hyper-

threading) and 8 GB DDR3-1600 RAM.
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Future work aims at developing the first anytime and optimal algorithm to
solve the CFSTP. We also want to create distributed versions of CCF and our
future algorithm, to define a large-scale benchmark from real-world datasets and
to test on hard problems generated with the RoboCup rescue simulation.
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