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Abstract

The outbreak of coronavirus disease 19 (COVID-19), the disease caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), has shaken the world causing a global crisis in a completely
unexpected way not seen in years. The rapid spread and its severity have incited scientists all over
the world to investigate its causes, symptoms, treatments and effects, resulting in a huge number of
publications and articles in just a few months. This overwhelming amount of information complicates
access to proper investigations and facilitates the inclusion of non-relevant studies that can delay
critical activities. Our goal is to determine the best way to categorize documents, determining which
are the ones most relevant to different groups, such as policy-makers or biomedical community, to
advance in their investigations, overcoming information overload. We have proposed five classes for
a predefined COVID-related corpus (CORD-19), demonstrating that some of the articles included
have no connection with the subject, and that the relevance of each paper is highly dependent on the
specific area of study. Promising results were obtained making use of a simple model that combines
word embeddings, topic modeling, and a Support Vector Classifier.

1 Introduction

The outbreak of coronavirus disease 19 (COVID-19), the
disease caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has shaken the world caus-
ing a global crisis in a way not seen in years and completely
unexpected. The rapid spread and its severity have incited
scientists all over the world to investigate its causes, symp-
toms, treatments and effects, resulting in a huge number of
publications and articles in just a few months. To support
the investigation on COVID-19, Allen Institute for AI and
some researching groups have created the Open Research
Dataset (CORD-19) available on SemanticScholar, with
approximately 200 000 scholarly articles, creating a chal-
lenge in Kaggle [1] in which some tasks are asked to be
solved by means of Natural Language Processing (NLP).
These tasks are a list of initial questions related to what
is already known about COVID-19, for example making
tables that summarize risk factors or clinical studies.

However, the overwhelming amount of information com-
plicates access to proper investigations and facilitates ap-
pearance of non-relevant studies. For the creation of the
dataset, papers with keywords such as COVID or MERS-
CoV in their title, abstract or body are included; however

this search retrieves a heterogeneous collection of docu-
ments. In fact, some completely unrelated work appears,
and authors of [1] admit limitations, encouraging people
to “curate and publish such datasets”.

In the field of NLP, several attempts have been made to im-
prove automatic text classification. Most of them include
the representation of texts as bag of words (BoW), a sim-
plified representation composed of tuples (word, number
of appearances), or the representation of texts or words
as embeddings, which generally works better, but require
more computational power. Some of the most popular
applications in this regard are word predictions and senti-
ment analysis used typically in short texts such as tweets
or reviews where text is binary classified, either as positive
or negative opinion. For this, recent works such as [2, 3]
convert labels to vectors, making use of more information
than just text. Others [4, 5] combine recurrent neural net-
works (RNN) with topic models to obtain semantic and
syntactic features. A different approach is [6], modeling
the entire corpus as a graph. However, these texts are gen-
erally short, even just a few sentences, and make general
predictions like good-bad or differentiate between sports
and history. Recent investigations aim for extreme multi-
label text classification, to classify texts with thousands of



labels following a structured order [7–9]. These situations
are completely different from our case, where scientific
papers in the CORD-19 dataset may contain thousands of
words and address subjects as different as sociology and
physics, but it is also necessary to distinguish between
viral and bacterial infections.

Our goal is to establish the best way to categorize selected
documents, overcoming information overload, providing a
classification by distinguishing multiple text classes and
assessing performance of various classification methods.
It is possible to select or filter texts according to their po-
tential application in diverse areas. With this, it is expected
to help biomedical researchers advance in their investiga-
tions, but also some other specialized groups, such as fi-
nancial institutions to find groups that are worth funding or
policy-makers to evaluate social effects and consequences
of certain policies.

With the purpose of creating these tools for helping re-
searchers and other potential users of the CORD-19 dataset,
in this paper we propose a taxonomy with 5 different
classes depending on the kind of relation to the COVID-
19 disease, and manually label approximately 1000 doc-
uments so that the problem can be solved using machine
learning. Different classification models will be tested,
including different kinds of document representation and
classification algorithms. Apart from classification per-
formance, we will also discuss the potential benefits of
this approach when using topic models and graph-based
visualizations.

This paper is structured as follows. Section 2 explains
the information found and used in the dataset employed.
Section 3 presents the main tools that will be used in this
work. The evaluation tasks are introduced in Section 4.
Section 5 shows the experimental results and an analysis
of them. Finally, conclusions are drawn in section 6.

2 The CORD-19 dataset

As stated in Section 1, the dataset used in this work is
CORD-19, in particular, the version of the dataset is
22072020 (22 July 2020). The total number of articles
in the entire dataset is 197 412, a significant number of
COVID-related articles found in just seven months, and it
keeps increasing for new versions.

Dataset information This dataset contains some meta-
data, including title, publication date, authors, several IDs,
DOI and journal. Also, some text is provided for the arti-
cles, the abstract is available for 140 894 of them and full
body only for 63 023. It does not contain any type of label
or keyword to filter by themes. In our experiments, the
information kept is: CORD id, title, authors, publication

year, abstracts and full body text. Together with paper data,
the dataset includes pre-computed 768-dimensional docu-
ment embeddings. These embeddings are computed using
the paper titles and abstracts of the entire corpus; however,
to the author’s knowledge, the model used to create them
is not available and may change with each version of the
dataset. This data will be used as a reference to assess
other text representations, as it has been obtained using
the complete dataset and it is assumed to provide a better
representation.

Article classification One of the problems of this dataset
is the generic search made to obtain it where, in order not
to miss any relevant article, almost any paper containing
certain terms is retrieved. This produces a collection of
documents with diverse topics, such as medicine, veteri-
nary, economics or even optics. Some of the documents
whose main topics are these may actually be relevant, but
not all of them, as they can also be separated in many
subtopics. For this reason, a set of documents, called gold
dataset, has been created by manually labeling1 the corre-
sponding documents. Five classes 1 to 5 has been defined
and is assigned to documents based on the main themes
addressed in those documents, creating and employing the
following matrix:

Table 1: Class assignment table
Class Description Term examples

Number 

documents

1
Directly related to COVID-19 

disease and other coronaviruses
covid, sars 265

2
Other respiratory diseases and 

effects, virology, genetics

influenza, respiratory 

disease, virus, vaccine
265

3
Economic effects and policies 

application effects from COVID-19
project, public health 207

4
Psychological investigation on 

COVID-19

depression, 

confinement
62

5 Non-COVID-related articles
cybersecurity, bone 

fracture
206

The total number of articles that have been manually classi-
fied is 1005. The column term examples on Table 1 shows
some words expected to appear on articles belonging to
that class. Note some of the terms are characteristic of
one class but might be shared among different ones. Also,
some articles classified as belonging to class 5 may deal
with other medical conditions with no direct relation to
COVID-19; however, they are not included in any other
classes as their main themes are, for example, parasites in
plants. Finally, the number of documents assigned with
class 4 is lower, but they do not fit in any of the others
and appear in a sufficient quantity that they define a class
by themselves. This complicates the original manual clas-
sification and reduces performance on the experimental
execution.

A graph of the manually classified articles is shown in Fig-
ure 12. This graph is computed using the document cosine
similarity on a 300 dimension representation obtained with

1The assignment is done by just one person with no extensive knowledge in the field.
2An interactive representation is available at https://grarck.github.io/gephi-graph/network/
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model explained in Section 3.4. Each node is a document
and the size depends on its grade, the number of nodes
that are close; links between each pair of documents are
weighted according to their similarity. Finally, each color
is assigned to a class. In this figure, it can be seen that
all classes are distinguishable and form big clusters, with
more similarity between classes 1-2 and 3-4.

1

2
3

4

5

Figure 1: Document graph.

3 Natural Language Processing

The goal of NLP is getting machines to understand human
language. It is not possible to assign directly some mean-
ing to a word, instead the semantic assignment is given
by a set of rules and context, based on the appearance of
words hinging upon others. To make such computations
it is necessary to represent text into some kind of math-
ematical form, which usually includes at some point the
use of bag of words. This allows obtaining information
such as the relevance of a word in a corpus; however, it
just considers the number of appearances, order is lost.

This section introduces some of the most common text rep-
resentations currently used that are present in this project,
some of them based on bag of words.

3.1 Term Frequency-Inverse Document Frequency

One of the central tools in NLP is Term Frequency-Inverse
Document Frequency (TFIDF) presented in [10], which is
a statistic that shows the importance of a word in a partic-
ular document belonging to a set of documents. For this
reason, it has been used as a base in some search engines.

The term-frequency of a term t in a document d is repre-
sented in (1), where the numerator is the number of appear-
ances of the word in a document, while the denominator is

the total number of words in that document.

tf(t, d) =
ft,d∑

t′∈d

ft′,d
(1)

Inverse document frequency is a measure of the impor-
tance of a term t in the set of documents D. It is computed
as the inverse fraction of documents D that contain the
term t, where | · | represents the cardinality of a set, over
the cardinality of documents, this is the total number of
documents, logarithmically scaled:

idf(t,D) = log
|D|

|{d ∈ D : t ∈ D}|
(2)

Finally, the TFIDF value assigned to each word in each
document is computed in (3) as the product of (1) and (2),
obtaining a D ×N matrix.

tfidf(t, d,D) = tf(t, d) · idf(t,D)

=
ft,d∑

t′∈d

ft′,d
· log |D|

|{d ∈ D : t ∈ D}|
(3)

This representation weights each word in a document as
a function of its relevance in the entire corpus and the
document itself: if a word is very rare in the corpus, but
common in just a few documents, its value will increase,
however if it is common to all of them, it will be reduced.

3.2 Topic modeling

Latent Dirichlet Allocation (LDA) [11] is an unsupervised
generative statistical topic model used for extracting under-
lying topics of document collections. From the assumption
that a document is a sequence of N words drawn from
a multinomial distribution θ over topics or themes, and
topics are drawn from a multinomial distribution over a
vocabulary, it explains a set of latent variables given some
observations. For simplicity and some properties, these
distributions are assumed to be Dirichlet distributions, with
priors α and β. The generative process is the following:

1. Choose N ∼ Pois(ξ)

2. Choose θ ∼ Dir(α)

3. For each of the N words wn:
(a) Choose a topic zn ∼ Multinomial(θ)

(b) Choose a word wn from p(wn | zn, β)

The Poisson distribution is not critical and some other
may be used, it is also independent of all other generating
variables.

By just employing words, the only available information,
the objective of LDA optimization is finding the composing
topics, latent variables and soft topic-document relation.
However, LDA entails some problems as the number of
topics used must be selected prior to any calculation, and
the optimal number is not known so a general search must
be done, typically using perplexity or a likelihood method
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called coherence. Also, the structure of the words in the
text is lost. Some improvements have been made on this
subject integrating word embeddings to capture semantic
properties with Dirichlet distributions [12] or some other
distributions [13, 14].

3.3 Word embeddings

One of the techniques to fix the word-order loss and get se-
mantic properties of vocabulary is word embedding. Word
embedding is an NLP technique that consists on represent-
ing words as D-dimensional vectors. A popular model that
generates word embeddings from a corpus is word2vec,
which was developed in [15, 16] and revolutionized the
field. Unlike the other two methods, it takes semantics into
account as it works in a local scope by means of a sliding
window, in other words, word co-occurrence is important
within a given context of reduced terms, not globally. This
produces similar representations for words that appear nor-
mally in similar contexts, which allows computing similar-
ity between words. There are two architectures represented
in Figure 2:

1. Continuous Bag of Words (CBOW): target word
is predicted from context. It works better in small
datasets.

2. Skip-gram: surrounding context is predicted from
target word. Usually works better in larger
datasets and infrequent words.

INPUT PROJECTION OUTPUT

w(t)

SUM

w(t-2)

w(t-1)

w(t+1)

w(t+2)

(a) CBOW

INPUT PROJECTION OUTPUT

w(t)

w(t-2)

w(t-1)

w(t+1)

w(t+2)

(b) Skip-gram

Figure 2: Word2Vec model architectures.

The system implemented to obtain this representation con-
sists on a dense neural network of one hidden layer, with
number of neurons equal to the number of desired features,
so the output of the model are the weights of this layer for
each of the words in vocabulary. Some available pretrained
models are available online, such as GloVe3.

3.4 Mixed model combining word embeddings and
topic models

Following the idea of [12], where authors transform LDA
algorithm to obtain a vector representation of documents
based on their topics. In this section we propose a variant
with the same purpose. As in [12], the objective is repre-
senting documents in the word feature space, integrating
both local features with word embeddings and global fea-
tures with topic models. The original method has some
problems: it is outdated, only works in Python2 and re-
quires much more computation than simple LDA. On the
other side, our model does not require LDA modification,
and provides a fast document representation.

The method for document transformation into word fea-
ture space is shown in Figure 3. First it is required to
compute LDA topic models of the articles. In LDA all
topics are a distribution of words, so the embeddings of
these words are computed. With this, a dot product of
topic distribution of words and features of words produces
a topic feature representation. Finally, another dot product
of document topics and this matrix produces a document
feature representation.

Topics

0,2 0,2 0,6

Wordsx Features

Topicsx Words

Topicsx Features

WE+TM
Features

Figure 3: Document vector transformation.

4 Experimental setup

To train each of text representation models and obtain a
proper vocabulary, the body of 25 000 non-classified ar-

3https://nlp.stanford.edu/projects/glove/
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ticles were used, 40% of the total 63 023 as indicated in
section 2.

Preprocessing Prior to any approach, text is processed,
dropping all articles whose main language is not recog-
nized as English. Additionally, non-ascii characters and
stopwords from other common languages are removed.
This filtering is done because most articles are written in
English but there are some exceptions. These exceptions
add new vocabulary that, with the techniques used, can add
noise to the models, deteriorating them. Next, text inflec-
tion is removed by lemmatization (words are reduced to
lemmas by removing verb tenses or plural forms). Finally,
bigrams and trigrams are used to get better contextual in-
formation. The tools used to do all this processing can be
found in the Python library Gensim4.

Cross validation In order to get a fair assessment of the
different tested approaches, and because of the reduced
number of documents manually classified, corpus is split
in train, test and validation using 10 fold StratifiedShuffle-
Split (75% train, 15% test, 15% validation) proportional to
each class.

Figure 4: Coherence evolution with number of topics.

Text representations Text is represented using three dif-
ferent techniques:

• TFIDF: It is a basic model that just considers
top 30 000 terms ordered by frequency across the
whole corpus, previously removing very frequent
and rare words.

• Topic models: Computed with LDA. The values
selected for hyperparameters are the default ones
in the Mallet5 implementation. The optimal num-
ber of topics is selected by models’ Cv coherence
from Figure 4. The value increases rapidly up to
50 topics, but it stabilizes around 100-125. Based
on coherence behavior, we decided to use 150
topics, as using a larger number of topics does
not improve coherence significantly.

• Word embeddings and topic models: For the
word embeddings part, it is decided to com-

pute own vectors because of the specific and
widespread vocabulary. For this, Word2Vec is
used on the vocabulary obtained from topic mod-
els with algorithm CBOW, creating vectors of 300
features, as this is a widely used selection.

Classification models In our experiments, each of the
text representations is combined with the three following
automatic classification techniques:

• KNN: Two different distance measures are used
depending on the input features. For TFIDF, co-
sine similarity, a measure of similarity between
two vectors is used. For topic model distribu-
tions and word embeddings it is Jensen-Shannon
divergence, a method to measure the similarity
between two probability distributions. The num-
ber of neighbors selected is 25, selected by cross
validation exploring values from 5 to 60 and steps
of 5.

• DNN: Simple 3-layer dense neural network with
ReLU activation and dropout in intermediate lay-
ers and softmax activation in last layer. To pre-
vent overfitting, L2 regularization is also included.
The number of cells selected for each layer has
been selected by cross validation, exploring 2n

values, with n from 4 to 8, finally selecting 64
cells for the first layer and 32 for the second.

• SVM: OneVsRest classifier with linear SVM as
it has been found [17] to be more efficient in text
classification, where number of features and cor-
relation are high. The value of hyperparameter C
has been selected by cross validation, exploring
10n values, with n from −3 to 3, finally selecting
C = 0, 1.

Metrics Accuracy is the first metric used, computed as
the percentage of the total test set that has been classified
correctly, although this does not provide a complete char-
acterization of the classification models. Additionally, as
the objective is finding and classifying relevant documents,
the metrics used to assess the experiments are those typ-
ically used in information retrieval: precision, recall and
F1-score. These classifications are binary for each class,
this is, for each class either the document does or does not
belong to that class. Precision is the fraction of documents
whose class has been correctly predicted out of the total
number of documents predicted as belonging to that class.
Recall is the fraction of documents of the target class that
have been retrieved. F1-score is the harmonic mean of
precision and recall.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

4https://radimrehurek.com/gensim/
5http://mallet.cs.umass.edu/
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F1 = 2
Precision · Recall
Precision + Recall

(6)

Equation (4) represents the percentage of retrieved docu-
ments that are relevant, and (5) indicates the percentage of
relevant documents that are retrieved, where TP, FP, and
FN represent respectively, the number of true positives,
false positives and false negatives. Both results averaged
in (6), penalizing low values of precision and recall.

Precision and recall metrics are commonly plotted in a
graph that shows the tradeoff between them for different
thresholds. These measures depend on the threshold as it
indicates the number of documents that will be retrieved. If
the threshold is set very low, more articles will be retrieved,
therefore the probability of finding all correct articles will
be high (high recall), but many of the articles retrieved will
be of different class (low precision). The results obtained
for a high threshold value will be very few, but probably
correct (high precision, low recall). High precision and
recall values produce a high AUC and, therefore, accurate
results

In our case, these curves are binary computed for each
class, if a document is correctly classified as the given
class, it will be a 1, else it is a 0, ordering outputs by prob-
ability. This will produce for each class a vector of same
length as number of documents classified, where first few
values are likely to be the correct one, and last ones are
likely to be different. Precision-recall values are computed
over these vectors, gradually increasing the number of doc-
uments retrieved. Therefore, values of precision will be
high at the beginning and lower at the end, while values of
recall will be low at the beginning and higher at the end.

5 Results

A summary of the results obtained is shown in the follow-
ing figures: Table 2: performance breakdown by class, text
representation and classification method; Table 3: accuracy
performance by representation and classification method;
Table 4: composition of most relevant topics by class; Ta-
ble 5: confusion matrix; Figure 6: precision-recall curves
for most accurate methods in each text representation.

In addition to the enumerated text representations, doc-
ument embeddings provided in the dataset are included
as reference. In this section the following nomenclature
to refer to the different text representations is used: TM
as topic models; WE as word embeddings, following the
schema from Figure 3; DE as document embeddings, the
ones provided in the dataset.

All the classifiers have been optimized to obtain the mini-
mum error. In the named tables, results are shown for hard

decision, the most probable output is the selected one, it
is computed as the number of correct predictions over the
total 1510 test samples (151 test samples for each of the
10 folds).

Models Analyzing the results from Table 2 by columns,
and Table 3, it can be observed that KNN appears to be
the least accurate model, being significant the case of DE,
where class 2 is selected for almost all cases, thus obtain-
ing an accuracy roughly equal to the presence of that class.
Performance of DNN and SVM varies with each text rep-
resentation, where DNN is preferred with TFIDF and DE,
and SVM works better with vectors based on topics.

Table 3: Percentage of correctly classified documents.

KNN DNN SVM

TFIDF 70,27% 78,74% 77,35%

TM 72,19% 72,85% 72,98%

WE 59,60% 70,60% 75,10%

DE 26,49% 80,80% 77,95%

Text representation Tables 2 and 3 also provide some
information regarding the text representations used. The
representation with TFIDF generates a 30 000-dimension
vector for each text, producing robust representations,
hence showing best results in all models and classes on
average, being the closest to DE. TM and the proposed rep-
resentation combining topic models and word embeddings
produces much lower dimensionality vectors, only 150 and
300 respectively; nevertheless, this type of representations
takes up less space and can be computed relatively fast.
TM maintains similar performance across all classifiers,
far from being the best in both DNN and SVM. In con-
trast, WE presents worse results for KNN and DNN, but
improves significantly when employing SVM, being closer
to TFIDF. These results for WE indicate that these fea-
tures capture the discriminative information in the dataset,
though, at the same time, the underlying models can also
be interpreted for a better understanding of the dataset and
each particular class.

Classes Figure 5 represents document vectors in a 2D
space, similar to Figure 1, but with regions according to k
closest neighbors. The 2D map has been computed on TM,
as it provides best results with KNN classification, with
t-SNE6. Each symbol represents one of the classes defined
in Table 1.

6https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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Table 2: Summary of precision, recall and F1 results in all approaches.

Model KNN DNN SVM KNN DNN SVM KNN DNN SVM

Class

1 0,658 0,858 0,844 0,84 0,74 0,757 0,738 0,795 0,798

2 0,727 0,78 0,733 0,805 0,877 0,932 0,764 0,826 0,821

3 0,671 0,735 0,728 0,723 0,823 0,81 0,696 0,776 0,766

4 0,677 0,831 1 0,489 0,544 0,367 0,568 0,658 0,537

5 0,86 0,77 0,788 0,435 0,768 0,671 0,578 0,769 0,725

Model KNN DNN SVM KNN DNN SVM KNN DNN SVM

Class

1 0,743 0,801 0,809 0,688 0,723 0,688 0,714 0,76 0,743

2 0,721 0,731 0,678 0,762 0,838 0,873 0,741 0,781 0,763

3 0,677 0,641 0,685 0,871 0,816 0,855 0,762 0,718 0,76

4 0,667 1 0,833 0,644 0,022 0,556 0,655 0,043 0,667

5 0,788 0,752 0,784 0,587 0,713 0,526 0,673 0,732 0,629

Model KNN DNN SVM KNN DNN SVM KNN DNN SVM

Class

1 0,559 0,725 0,781 0,56 0,632 0,705 0,559 0,676 0,741

2 0,57 0,674 0,78 0,613 0,853 0,79 0,59 0,753 0,785

3 0,651 0,689 0,738 0,655 0,794 0,781 0,653 0,738 0,759

4 0,606 0,875 0,634 0,667 0,311 0,656 0,635 0,459 0,645

5 0,627 0,744 0,728 0,542 0,639 0,758 0,581 0,688 0,742

Model KNN DNN SVM KNN DNN SVM KNN DNN SVM

Class

1 0,265 0,834 0,785 0,1 0,815 0,823 0,145 0,824 0,803

2 0,265 0,835 0,817 0,9 0,845 0,825 0,409 0,84 0,821

3 0 0,733 0,73 0 0,787 0,697 0 0,759 0,713

4 0 0,699 0,677 0 0,644 0,7 0 0,671 0,689

5 0 0,852 0,802 0 0,819 0,771 0 0,836 0,786

DE

Precision Recall F1

F1Precision Recall

WE

TM

TFIDF

F1Precision Recall

F1Precision Recall

Categories Category 1 Category 2 Category 3 Category 4 Category 5

Figure 5: 2D scatter plot representation of TM+KNN clas-
sification with k = 25.

Table 5 displays the confusion matrix of WE+SVM, show-
ing the distribution of predicted classes compared with
the real classes. Figure 5 along with Table 5 allow us to

arrive at equivalent conclusions. Classes 1 and 2 are the
most similar ones and significantly overlap, being clearly
distinguishable from class 4, which is the one with fewer
documents. From Table 2 it can be observed that the recall
values for class 4 are very low, this is, number of retrieved
documents of this class is very low, but most of them will
be correct, as denotes the high precision. Class 5 does not
overlap significantly with any other class.

This difference in classification performance is better un-
derstood with Table 47. This table shows the top 5 terms
for the most important topics of each of the classes, the
ones that are most present and define them.

The defining terms for class 1 seem to be related to the dis-
ease itself and clinical environment: coronavirus, sarscov,
patient, etc. Top vocabulary of class 2 is closely related to
class 1, and many of the terms are expected to appear in
both classes, hence the overlapping. As the context of class
3 is also the disease, some of the terms are similar to class
1, but includes more social vocabulary. With class 4 occurs

7An interactive representation is available at https://grarck.github.io/gephi-graph/terms.html
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Table 4: Top 5 representative terms for most relevant topics of each class.

Class Top topic

1 sarscov coronavirus human sars coronaviruses

2 patient covid severe sarscov symptom

3 patient day included admission outcome

4 patient treatment clinical risk management

1 rsv respiratory_virus detected viral respiratory

2 increased potential difference response impact

3 viral host protein cell infected

4 human process approach development complex

1 country covid day lockdown pandemic

2 development process approach technology system

3 population model infected rate parameter

4 covid pandemic covid_pandemic care resource

1 mental_health stress anxiety individual symptom

2 participant survey respondent response knowledge

3 work family experience worker people

4 epidemic outbreak china day wuhan

1 algorithm problem set method step

2 human process approach development complex

3 feature training model dataset class

4 development process approach technology system

1

5

4

3

2

something similar, but related to mental health instead of
society. Last, characteristic vocabulary of class 5 is vaguer.
There is no defining key term, which is expected as any
non-covid related article should be included here.

Table 5: Class assignment distribution of WE+SVM.

1 2 3 4 5

1 282 40 43 10 25

2 37 316 11 0 36

3 30 10 242 12 16

4 7 0 13 59 11

5 5 39 19 12 235

Class assigned

Real 

class

Precision-recall Precision-recall curves for best classi-
fication models of all text representations are shown in
Figure 6. This image shows that, in most classes, preci-
sion values start close to 1 for low recall values, which
indicates that top documents retrieved are very likely to be
correct, and the more documents retrieved, the more errors
will appear, decreasing the precision to around 60 to 90%
(depending on the class, and for the best of the approaches)
as the recall gets close to 100%. It is observed that WE is,
on average, better than TM, although for some particular
classes and ranges it can be worse.

6 Conclusion

In this paper, different approaches for COVID-19 paper
classification have been explored. It has been shown that
the corpus can be split into several meaningful categories,
as the tested classification schemes were able to discrim-
inate between the predefined classes quite successfully.
Thus, the proposed 5 classes could be included as an addi-
tional metadata to enrich paper description and help users
of the CORD-19 dataset find the information they are look-
ing for.

We have proposed a method that combines word embed-
dings and topic models. This model has been proven to
achieve good results with the corpus used, improving the
performance of plain topic models when employing SVM
as classifier, but also preserving the topic features that al-
low model interpretability. The topic information is kept
and expanded, allowing, for example, mapping document
vectors to vocabulary by similarity.

The results obtained are consistent in all experiments and
show clear differences among papers previously consid-
ered as similar, where some conclusions can be drawn.
First, performance of classifiers is highly dependent on the
models, with the exception of TM, and being TFIDF the
one that yields the most robust results across all of them.
From the models computed, TFIDF+DNN is more confi-
dent in general. Finally, the mix model proposed achieves
better results than plain topic model when employing SVM
as classifier, however it does not perform that well on the
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(a) TFIDF (b) Topic models

(c) Word embeddings (d) Document embeddings

Figure 6: Precision-recall curves for best models of each text representation.

others. In this sense, more investigation is required, as it
can be clearly improved.

The initial five classes proposed are a suggestion; however,
results show overlap between some of the classes, making
it difficult to distinguish them, mostly with classes 1 and
2. Besides, during manual classification a few documents
were excluded due to the lack of knowledge on the subject,
generating a bias in the results.

It is expected that assigning an adequate category to doc-
uments will help researchers from various fields to over-
come the problems that arise from the information over-
load. Those interested can create more suitable categories
or even use the ones proposed, expanding the information
and labels. The creation of a semantic graph is also helpful
to identify relevant connected documents by similarity.

This paper illustrates the feasability of using automatic
classification and topic modeling as part of a methodol-
ogy to enrich the CORD-19 dataset, further research could
improve these results in a real case scenario, for example,
by having several experts make the class definition and as-
signment, oriented to specific problems, or combining the
proposals from several fields into a global better-defined

classification table. Last, this proposal has been applied
to scientific papers, but can be expanded to other types of
project where it is also important to distinguish between
classes.
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