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Abstract 

In this paper, a mathematical modeling with quantitative analysis of oscillatory MHD Couette flow between two parallel plates (upper 

plate is moving relative to fixed lower plate) has been performed by using perturbation technique. The key parameters of this quantitative 

analysis are velocity gradient, viscosity, magnetic field, amplitude of shear stress, phase lag of shear stress, and frequency of pulsating 

flow. The mathematical modeling analysis revealed that the amplitude of velocity gradient increases at lower plate comparative to upper 

plate with increasing magnetic field while the amplitude of shear stress decreases rapidly with increasing magnetic field and becomes 

constant beyond higher values. This mathematical modeling with quantitative analysis can be utilised in various engineering fields for 

instance magnetorheological dampers, magnetorheological finishing in optics, enhanced body armor in military and defense, automotive, 

aerospace, human prosthesis, magneto-hydrodynamics power generators and pumps, polymer technology, petroleum industry. 
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1. Introduction 

Over the past decade or so, the problem of time-dependent oscillatory flow in which fluctuating part of the motion 

is superimposed on mean steady parts was studied by several research group [1-4]. The magnetic analogue of Light 

hill's investigation led to an increase of the oscillatory flow based research on small harmonic oscillation in a channel 

of gap 'h'. The analysis of unsteady flow of the stream with its conjugate complex part concluded that the amplitude 

of the fluctuating velocity gradient varies with respect to transverse magnetic field [5-6]. 

In recent years, oscillatory free convective flow and heat transfer problem in the presence of a magnetic field 

through a porous composite or medium have attracted the attention of many researchers due to their possible 

engineering application [7-9]. In practice, cooling of porous structure is achieved by forcing the liquid or gas through 

capillaries of solid. Actually, they were used to insulate a heated body to maintain its temperature. Study of origin of 

flow through a porous medium is heavily based on Darcy’s experimental law. In view of Darcy’s law, Yamamoto and 

Yoshida, Hooper et al considered suction and injection flow with convective acceleration through a plane porous wall 

especially for the flow outside a vertex layer [10-12]. The oscillatory flow past a porous bed have presented the study 

of two-dimensional flow of viscous fluid through a porous medium bounded by a porous surface subject to a constant 

suction velocity by taking account of free convection currents [13-15]. 

A magnetorheological fluid is a smart fluid usually a type of oil. The magnetic field of electromagnets can control 

magnetorheological fluids filled in dampers for shock observer. A magnetorheological fluid has three main modes of 

operation: flow mode, shear mode and squeeze flow mode. This fluid between two parallel plates moving relative to 

one another and fluid between two plates moving in the direction perpendicular direction to their planes with 

perpendicular magnetic fields to their planes [16].  

The objective of this presented research work is to develop mathematical model for fluid flow in order to understand 

and predict the behavior of magnetorheological fluid. In this presented research work, a mathematical modeling with 

quantitative analysis of oscillatory MHD Couette flow between two parallel plates (upper plate is moving relative to 



fixed lower plate) has been performed in terms of constitutive parameters using perturbation theory. The dependency 

of constitutive parameters and its variations are mathematical calculated and analysed. 

2. Mathematical Analysis  

Consider a two – dimensional oscillating flow of an incompressible fluid with constant properties and magnetic 

field is applied between two parallel flat walls, one of which is at rest and other moving in its own plane with an 

unsteady low velocity as shown in Fig. 1. The restriction of this case is that the flow is independent of the distance 

along the wall and the velocity component normal to the wall is zero. 

 

Fig. 1. Systematic of two dimensional flow of an incompressible fluid. 

The momentum of fluid flow or inertial force of fluid can be neglected in comparison to the viscous force at low 

fluid velocity in the Navier-Stokes equation of motion. The Couette flow motion is introduced here due to the 

movement of the upper plate which can be represented as [17], 
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The fixed plate is along x-axis and y-axis is normal to it. Plates are at distance 'h' apart. The expression of unsteady 

velocity between the plates is given by [17], 
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Where  𝜔 is the frequency and 𝑈ℎ and t are constants. 

We considered the solution of equation (1) as [17], 
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Where  
h

y
  . On substituting equation (3) and (4) in equation (1) and equating steady and unsteady parts, we 

have [17], 
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The boundary conditions are [17],  
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where, 
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k   are magnetic and frequency parameters respectively.  

Equations (5) and (6) are simple linear differential equations, whose complementary and particular solutions are 

constituted as: 

 The solution of equation (5) is,   
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The solution of equation (6) is [17], 
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The magnitude of the fluctuating velocity gradient at lower wall is [17], 
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The magnitude of the fluctuating velocity gradient at mid plane is [17],  
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The magnitude of the fluctuating velocity gradient at upper wall is [17],       
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The shear stress at 0y is given by,  
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An expression of the amplitude of shear stress of lower wall is given by, 
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An expression of the phase angle of shear stress of lower wall is given by,   
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2.1.  Temperature Field 

Under the flow conditions, the equations for the temperature distribution with negligible heat generation due to 

Joule’s effect is [17],  
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In this case, x-denotes the distance along the wall, T is the temperature, K is the thermal diffusivity and C is the 

specific heat. 

The following boundary condition were used to solve equation, 
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With these boundary conditions the solution obtained is independent of x. In the present case, the heat transferred 

due to convection is negligible. Temperature distribution is caused only due to conduction and viscous dissipation. 

Thus, we have, 
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Looking for the solution of equation (19) in the form as, 
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Equating the harmonic coefficients to zero, we have 
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where
k

c
Pr


    is the Prandtle number,



 2h
k   is frequency parameter. 

The boundary conditions reduce to as,  
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The solution of equation (22) and (23) are  
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 The rate of heat transfer is given as,  
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The rate of heat transfer at lower plate is given by,  
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The rate of heat transfer at upper plate is given by, 
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3. Results and Discussion 

The significance of magnetic field is that it controls the flow of fluid between two parallel plates while frequency 

parameter of pulsating flow perturb the other constitutive parameters. The distribution of  the magnitude of fluctuating 

velocity gradient |𝑢1′|  are shown in Table 1 and figure 2 for several values of m and at fixed value of frequency 

parameter. Variation of the amplitude and phase lag of the shear stress at lower wall with respect to magnetic field 

parameter for fixed value of frequency parameter has been shown in Table 2 and variation of the amplitude and phase 

lag of the shear stress shown in figure 3. The amplitude of shear stress decreases rapidly between m=1 and m=2, then 

after it becomes constant with magnetic field parameter. 

Several values of frequency parameter for lower wall with fixed value of magnetic field parameter has been shown 

in Table 3. We observe that amplitude of the shear stress at lower plate increases with increasing frequency parameter 

for fixed magnetic field parameter while, phase lag increases with magnetic field parameter increases as shown in 

Figure 5 and Figure 4 respectively. Moreover, we observe that the phase lag decreases with increasing frequency 

parameter as shown in Figure 6. 

The amplitude and phase lag of rate of heat transfer at lower plate increases with increasing magnetic field 

parameter. However, the amplitude and phase lag of rate of heat transfer at upper plate is same at lower plate. These 

variations are shown in Table 4 and Table 5. 

 

Table 1. Variation of fluctuating velocity gradient with ɳ. For fixed value K = 1. 
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         ɳ 

 

|𝒖𝟏
′ | 

 

0.0 0.5 1.0 

0 0.09 0.25 0.20 

1 2.70 0.61 0.52 

2 3.33 0.94 0.73 

3 3.79 1.15 0.83 

4 4.20 1.98 0.95 

5 5.01 2.32 1.02 

6 5.98 3.01 2.31 

7 6.02 3.99 3.12 

8 6.99 4.20 4.05 

9 7.73 5.39 5.13 

10 8.08 6.17 6.09 



Table 2. Variation of amplitude and phase lag of the shear stress at lower wall. For fixed value m = 2. 

 

 

 

 

Table 3. Variation of amplitude and phase lag of the shear stress at lower wall. For fixed value K = 2. 

 

 

 

 

 

Table 4. Heat transfer variation at lower wall with respect to magnetic field parameter m. Pr =2, E = 10, K = 5.   

 

 

 

 

Table 5. Heat transfer variation at upper wall with respect to magnetic field parameter m. Pr =2, E = 10, K = 5. 

 

 

 

 

 

 

 

S.No. K |𝑨| Ψ 

1. 1 0.3880 72.8051 

2. 2 1.5694 60.6989 

3. 3 2.3435 52.8321 

4. 4 4.3413 49.3235 

5. 5 5.8898 40.3135 

S.No. m |𝑨| Ψ 

1. 1 43.2995 31.9641 

2. 2 4.8000 49.2559 

3. 3 1.8000 53.9830 

4. 4 1.6000 61.3257 

5. 5 1.6000 74.5323 

 

S.No. 

 

m 

𝑻𝟏
′ (𝟎)

𝑻𝒘 − 𝑻𝒉
 

 

|𝜷𝟏| 

 

 

∅𝟏 

1. 1 9.2631- i1.5032 9.3842 10.2416 

2. 5 5.2140+ i 10.5660 11.7824 70.8167 

3. 10 1.2315+ i 15.3216 15.3710 94.8940 

 

S.No. 

 

m 

𝑻𝟏
′ (𝟏)

𝑻𝒘 − 𝑻𝒉
 

 

|𝜷𝟐| 

 

∅𝟐 

1. 1 7.6567- i0.3548 7.6649 2.9478 

2. 5 10.5204+ i 8.6241 13.6034 43.7146 

3. 10 14.5109+ i 13.0990 19.5486 46.7473 
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 Fig. 2. The distribution of fluctuating velocity gradient verses ɳ. 

The Fig. 2. illustrates that the higher rate of increase in amplitude of fluctuating velocity gradient with increasing 

magnetic field parameter at lower plate than upper plate at fixed frequency parameter. A significant increase in velocity 

gradient occurs above magnetic field parameter m=4. 

0 2 4 6
0

5

10

15

20

25

30

35

40

45

50

M

IA
I

 

Fig. 3. The distribution of amplitude of shear stress with magnetic field parameter. 

The Fig. 3. shows that the amplitude of shear stress decrease rapidly with increasing magnetic field parameter 

between 0 to 2 value but, beyond the value m=3 becomes constant.   
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 Fig. 4. Variation of phase lag of shear stress with magnetic field parameter. 

The Fig. 4. indicates almost linear increment with increasing magnetic field parameter.  
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Fig. 5. Variation of amplitude of shear stress with frequency parameter. 

The Fig. 5. illustrates that amplitude of shear stress with increasing frequency parameter beyond the value of unity. 
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Fig. 6. Variation of phase lag of shear stress with frequency parameter. 

Fig. 6. illustrates a linear decrement of the phase lag with increasing frequency parameter.  



4. Conclusions 

This paper presents a mathematical modeling with quantitative analysis of oscillatory MHD Couette flow using 

perturbation theory.  A set of modeled expression of the amplitude and phase angle of shear stress of lower wall have 

been developed mathematically [Eq. (15) and Eq. (16)]. Moreover, mathematical modeled expression for the rate of 

heat transfer at lower plate and upper plate have been also developed [Eq. (27) and Eq. (28)]. It has been concluded 

that the amplitude of shear stress decreases rapidly between m=1 and m=2, then after it becomes constant with 

magnetic field parameter while, the amplitude of the shear stress at lower plate increases with increasing frequency 

magnetic field. However, phase lag increases with increasing magnetic field but, it decreases with increasing frequency 

parameter. The amplitude and phase lag of rate of heat transfer at lower plate increases with increasing magnetic field 

which is equal at upper and lower plate. This mathematical modeling with quantitative analysis can be utilised in 

various engineering fields for instance magnetorheological dampers, magnetorheological finishing in optics, enhanced 

body armor in military and defense, automotive, aerospace, human prosthesis, magneto-hydrodynamics power 

generators and pumps, polymer technology, petroleum industry. 

In future, these developed mathematical models can be analysed for validation in Nano-fluid dynamics, Polymer 

fluid dynamics, paraffin oil fluid dynamics, oil and paint technology, etc.   
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