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2nd Sören Vogel
Geodetic Institute

Leibniz Universität Hannover
Hanover, Germany

vogel@gih.uni-hannover.de

3rd Alexander Dorndorf
Geodetic Institute

Leibniz Universität Hannover
Hanover, Germany

dorndorf@gih.uni-hannover.de

4th Jan Jüngerink
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Abstract—Multi-Sensor-System (MSS) georeferencing is a chal-
lenging task in engineering that should be dealt with in the
most reliable way possible. The most straight forward way for
localizing a MSS is to rely on the Global Navigation Satellite
System (GNSS) and Inertial Measurement Unit (IMU) data.
However, these data might not be always reliable enough or even
available. Therefore, suitable filtering techniques are required
to deal with such problems and to increase the reliability of
the estimated states. In global localization and when it comes
to real scenarios, particle filters are proven to deliver more
realistic results than Kalman filter realizations. However, in
MSS georeferencing where multiple sensors are used, different
observation models are needed some of which could be of implicit
type. In such a case, the likelihood estimation is challenging due
to impossibility of estimating the observations by means of the
generated samples. Therefore, the current paper offers a new
particle filter methodology that can handle both implicit and
explicit observation models. Final results of this methodology,
which is applied on a simulated environment for georeferencing
a MSS, are shown to be satisfactory.

Index Terms—georeferencing, MSS, particle filter, implicit
observation model, 6 DoF, Monte Carlo simulation

I. INTRODUCTION

When various sensors are installed on a single platform, the
resulting system is generally referred to as a Multi-Sensor-
System (MSS). MSSs are of great importance and use in
engineering field for measuring an environment of interest
by using multiple sensors such as cameras, scanners, etc.
To combine the derived measurements for further analysis
purposes, it is important to have the MSS georeferenced.
Georeferencing means to have the pose of the MSS with
respect to a superordinate coordinate system. The MSS pose
– which is also referred to as the six Degrees of Freedom (6
DoF) – consists of its three positions and three orientations in
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a global frame. Furthermore, usually for kinematic MSSs, the
motion parameters such as velocity and acceleration are also
of interest to be determined.

In real applications and when it comes to localization,
the most straightforward way of georeferencing is to use
the Global Navigation Satellite System (GNSS) and Inertial
Measurement Unit (IMU) data. Nonetheless, using such data
is not always beneficial or even reliable enough. On the one
hand, as much as the GNSS measurements can be relied on
in rural areas, they are not trustworthy in urban environments
due to the existence of large buildings. The signal qualities
of the satellites are greatly affected by such buildings and
even in some cases a complete blockage of the signals is
possible. Generally, a good satellite geometry results in an
accuracy in meter range for the GNSS data; unless, differential
approaches are applied, which can increase the accuracy up to
decimeter or even centimeter level [1], [2]. On the other hand,
the IMU measurements are prone to drift over time caused by
different error sources and biases that are widely discussed in
literature [3]–[5]. A low-cost IMU can have a heading angle
accuracy of 0.8° and an accuracy of 0.1° for the roll and
pitch angles [2]. Consequently, depending on the application
and the required accuracy, the GNSS and IMU data cannot
always be the optimal solutions to the localization problems.
Instead, proper methodologies, that can well compensate for
any possible errors or gaps within these data sets, should be
developed.

One of the solutions to the aforementioned problem is to
apply the Linear Kalman Filter (LKF) by using only the GNSS
and IMU data. However, an optimal solution by means of such
a methodology could not be expected in challenging areas due
to a possible decreased number of observations. Therefore, as
discussed and processed in [6], to increase the localization
performance, different measurements derived from various



sensors as well as the map data could be combined. This would
not only increase the accuracy of the georeferencing solutions,
but also counts for their integrity, continuity and availability.
Such a sensor and map fusion for the MSS georeferencing
purpose is already encountered with in the developed Kalman
Filter (KF) frameworks by [2], [7], [8], which enable including
both implicit and explicit observation models – referred to
as Gauss-Helmert-Model (GHM) and Gauss-Markov-Model
(GMM), respectively – in the filtering procedure. In such
proposed KF-based methodologies, a suitable initial position
is assumed to be available. Having such a proper initialization
is the main distinction between the “position tracking” and the
“global localization” problems [9]. In the “position tracking”
problems, the prototype of the algorithms is Kalman Filter
[10], while in the “global localization”, common frameworks
such as Multi Hypotheses Localization, Histogram Filters
and Particle Filters are used [11]. When it comes to real
applications, having always a proper initial pose guess cannot
be guaranteed. Also, making simplifying assumptions such
as normally distributed noise values – which is the case in
KF realizations – might lead to estimated states that are not
realistic enough. Therefore developing an appropriate Particle
Filter (PF) framework that enables data fusion for MSS
geoereferencing seems to be a good alternative to the KF
methodologies. Consequently, the current paper has focused on
developing a PF framework that can handle both implicit and
explicit observation models and thus can be used for sensor
data fusion when it comes to MSS georeferencing.

The paper is organized as follows. In section II, the mostly
relevant researches to the current paper are summarized. In
section III, the mathematical models, which are the basis of
the developed methodology as well as the proposed framework
are explained. Section IV is dedicated to the application of the
proposed algorithm on a simulated Unmanned Aerial Vehicle
(UAV) environment. In section V, the paper is summarized
and the highlighted conclusions and the potential future work
in the same area are presented.

II. RELATED WORK

Depending on the measurement scenario e.g. the type,
number and accuracy of the installed sensors on the platform,
MSS georeferencing could be done by means of different
approaches [7]. In outdoor applications, georeferencing is
usually dealt with directly (sensor-driven), indirectly (target-
driven) or by using available reference data sets (data-driven)
[12], [13]. For indoor scenarios, different methodologies are
proposed that are presented by [14] in detail. The scope
of the current paper is outdoor scenarios and hence the
related georeferencing approaches to this kind are given in
the following.

In “sensor-driven georeferencing”, the GNSS [13] and IMU
[15] measurements are directly used to represent the 6 DoF
with respect to a superordinate coordinate system. In “target-
driven georeferencing”, already referenced targets with respect
to a certain superordinate coordinate system are used to derive
the MSS pose with respect to that specific frame. If instead

of targets, referenced data sets are used for localization, the
georeferencing is referred to as “data-driven”. Such data sets
could be 3D point clouds [16], digital surface models or 3D
city models [14], [17], [18].

Moreover, to deal with possible errors of sensor measure-
ments and hence to increase the reliability of the solutions,
filtering techniques are used. Among such methods, the KF
could be mentioned as one of the well-known methodologies
that is widely used in engineering navigation and deformation
analysis. In this filtering technique, the system state is se-
quentially estimated based on the information from the system
model as well as the external measurements derived from
different sensors [19]. If both the system and observation
models are linear and the process noise is Gaussian, the filter
is generally referred to as LKF, which is capable of delivering
the optimal solutions [20]. However, in real applications
where complicated systems equipped with multiple sensors
are studied, the system and observation models are usually
nonlinear and hence the LKF framework cannot be optimum.
Such nonlinear measurement equations can happen due to the
direct nature of the relation between the observations and state
parameters or due to the transformation of the observations
from a local coordinate system of the sensor to a certain
superordinate coordinate system, which is often the case in
navigation applications [19]. To deal with such nonlinear
models, a number of approximate nonlinear filters have been
proposed, e.g. by [21], [22]. Generally and not from detailed
aspects, [19] has categorized these methods into two groups
of “Gaussian Approximate Methods” and “Sequential Monte-
Carlo Methods”, which are explained in more detail in the
following.

A. Gaussian Approximate Methods

To overcome the nonlinear models in the KF methodology,
one of the well-known approaches is to linearize them by
means of Taylor series expansion around a certain state [23],
[24]. In such a case, the resulting KF realization is generally
referred to as the Extended Kalman Filter (EKF). However,
depending on the involved nonlinear functions, the lineariza-
tion could get complex and thus it can lead to an inefficient
filter. To fuse measurements of different sensors of a UAV,
[25] combines the GNSS and IMU data by means of the
EKF algorithm. Also, EKF is applied by [26] to increase the
accuracy of the pose estimations for collaboration of several
UAVs by combining multiple Simultaneous Localization And
Mapping (SLAM) algorithms. However, the first-order and
higher-order EKF diverges if the involved models in the filter
are highly nonlinear [27]. To deal with such a problem,
different approaches are proposed in literature among which
the Iterated Extended Kalman Filter (IEKF) could be pointed
out. In IEKF, a re-linearization around the recent updated state
is applied to overcome the linearization errors, which in [28]
is shown to be an application of the Gauss-Newton method for
approximating a solution. So far, the IEKF has widely been
used to overcome the nonlinear GMMs. In such models, the
observations are explicitly related to the unknown parameters.



However, in real applications due to the existence of multiple
sensors, the observations and unknowns might be related to
each other implicitly, yielding the GHM. References [29] and
[30] have used such models within the IEKF framework.
Nonetheless, in the navigation context and for the first time,
[8] has proposed an IEKF framework with implicit measure-
ment equations for the purpose of MSS georeferencing. The
proposed methodology is then further applied by [2], [31], [32]
to localize various MSSs in different scenarios.

B. Sequential Monte-Carlo Methods

An alternative to “Gaussian Approximate Methods” is the
Sequential Monte-Carlo (SMC) filter, which is also referred to
as PF. This methodology is a sub-optimal filter for the imple-
mentation of Bayesian filter by Monte-Carlo (MC) techniques
[27], [33]. Instead of approximating a Gaussian distribution for
the system states, in SMC the posterior Probability Density
Function (PDF) is estimated by using a set of randomly
generated samples, which are also referred to as particles.
Due to the capability of the PF methodology to handle highly
nonlinear models, it is widely used in literature for different
purposes. In [34], a good overview of the Bayesian filters is
given from both theoretical as well as practical aspects. In
[35] a particle filter methodology is developed to deal with
Ultra-Wide-Band (UWB) measurements for the matter of robot
localization. Furthermore, in [9] using different observation
models in PF localization methods is explored and two PF
strategies namely Sample Importance Resampling (SIR) and
Auxiliary Particle Filter (APF) are investigated. In [36], two
localization algorithms based on the Unscented Kalman Filter
(UKF) and PF framework are proposed and compared against
each other as well as against a previously developed EKF
algorithm for a robot in a simulated environment. Moreover,
a novel particle filter algorithm is proposed in [37] for vehicle
localization based on a map-matching strategy.

As much as the PF framework is used to deal with ap-
plications that have explicit observation models, its use in
conjunction with implicit measurement equations has yet not
been investigated. When it comes to real navigation appli-
cations, on the one hand no proper initial guess about the
MSS pose as well as a normally distributed process noise
could be guaranteed. On the other hand, in order to fuse
measurements of different sensors, implicit observation models
might be needed. Consequently, the current work is focused
on introducing a PF framework that can deal with both
explicit and implicit observation models. This newly developed
methodology is referred to as “Particle Filter with Implicit
Measurement Equations (PFI)” in the following.

III. METHODOLOGY

A MSS covers a broad range of sensors that could be
attached to a vehicle, a drone, a robot, etc. for the matter
of localization. The current paper has focused on a simulated
scenario for georeferencing a UAV that is equipped with a
GNSS, an IMU, and a Velodnye Puck 3D laser scanner, which
is explained in detail in section IV. The whole environment is

simulated in such a way to represent a case study with low-cost
sensors and a surrounding that represents an inner-city area.
Also, it is assumed that the sensors are timely synchronized
and their calibration with respect to the platform is error-free.
In the following the mathematical models related to this case
study as well as the proposed methodology to deal with its
localization are explained.

A. Mathematical Model

The main aim is to derive the states vector x at each epoch
k, by using the measurements l of different sensors in that
epoch. The state and observation vectors are as follows:

lk =
[
lLSk , lGk , l

I
k

]T
, xk =

[
xPk ,x

O
k ,x

V
k

]T
(1)

wherein, lLS , lG, and lI are the local laser scanner, GNSS, and
IMU observations, respectively. The GNSS observations lG

consist of the 3 MSS positions in the global frame GX ,GY ,GZ
and the IMU measurements lI are the MSS orientations ω,ϕ,κ.
As mentioned in [7], due to discontinuity and singularity
problems, the Euler angles suffer from instability and instead
quaternions are better to be used. However, in the current paper
to better interpret the simulation results, the quaternion repre-
sentation is avoided and instead the rotation matrices are used
to deal with the Euler angle challenges. xP , xO, and xV are
parameter vectors containing three translations tx,ty ,tz , three
orientations ω,ϕ,κ, and three directional velocities Vx,Vy ,Vz ,
respectively.

Generally, in filtering methods, the states vector with dimen-
sion nx, x ∈ IRnx could be described by a dynamic model as
follows:

xk = f(xk−1,uk−1,wk−1) , w ∼ N (0,Qww) (2)

wherein, f (·) is a known and generally nonlinear function,
k is the time index, u is a known deterministic vector of
control variables, and w is the process noise vector that is
considered to count for those environmental effects that cannot
be modelled by f (·) and have a known PDF with Variance-
Covariance-Matrix (VCM) of Qww. In the current paper,
instead of a nonlinear model, a linear system model is used
as follows:

xk = F x,k−1 xk−1 + ωk−1 , w ∼ N (0,Qww) (3)

wherein, Fx is the transition matrix:

F x =

I [3×3] 0[3×3] diag([∆τ,∆τ,∆τ ])

0[3×3] I [3×3] 0[3×3]

0[3×3] 0[3×3] I [3×3]

 (4)

I is an identity matrix and ∆τ is the time period between
two consecutive epochs, which in the current paper for the
simulated data is set to 1 second.

The VCM of the process noise is selected inspired by
the given principle of “Continuous White Noise Acceleration
Model” in [21] as follows:

Qww = Q · q̃ (5)



Q =

[
(∆τ)3

3 · I6×6 06×3

03×6 (∆τ) · I3×3

]
(6)

q̃ = diag(qT , qO, qV ) (7)

qT = [a, a, a] , qO = [b, b, b] , qV = [c, c, c] (8)

wherein, Q is derived based on the particular solution of the
superposition law that is applied to the system noise (cf. [21]),
and q̃ are the continuous-time process noise intensities that
appear as parameters to be designed, which are assumed to be
constant over time for all the states parameters as shown in
(8). In Table I, the considered values for the current paper are
given.

Generally, the sensor(s) measurements, with dimension nl
at epoch k and l ∈ IRnl , could be related to the states vector
by means of an observation model that in an explicit case can
be expressed as follows:

lk + vk = h(xk) , v ∼ N (0,Qvv) (9)

wherein, h is a known and generally nonlinear function, and
v is the measurement noise vector with a known PDF and
VCM of Qvv , that is considered to be mutually independent
from the process noise vector w. If the observations cannot
be explicitly related to the unknowns, an implicit measurement
equation holds, which could be expressed as follows:

h(lk + vk,xk) = 0 , v ∼ N (0,Qvv) (10)

As stated before, in the current paper, the simulated data
include the GNSS, the IMU, and the 3D scanner observations.
For the GNSS and IMU, explicit observation models as (9)
hold, which are:

lGk + vGk = xPk , lIk + vIk = xOk (11)

wherein, vG and vI are the measurement noise of GNSS and
IMU, respectively. To relate the simulated scanned data of
the 3D scanner to the unknown parameters, the main idea of
the proposed IEKF methodology of [8] is used. According
to this idea, which is also applied by [2] for the matter of
georeferencing, the scanned data of the scanner are related to
the buildings of the surrounding environment by using the 3D
city models. In such a case, an implicit observation model as
of (10) could be established, which is:

s = nxk ·Xk + nyk · Y k + nzk ·Zk − dk = 0 (12)

In this observation model, which is the Hesse normal form
of a plane, nx, ny , and nz are the planes’ normal vector
parameters in epoch k. d is the planes’ distance parameter
vector in the same epoch. These plane parameters are taken
from the 3D city model as additional information, which
are taken as deterministic known values. X , Y , and Z are
the transformed laser scanner 3D point cloud from local to
the global coordinate system. The transformation is done as
follows:

P glo,k = tk +RkP loc,k (13)

wherein, P glo,k are the transformed scanned points, tk and
Rk are the translation parameters vector and rotation matrix,
respectively, and P loc,k are the local scanned data in matrix
form. In this equation, tk and Rk are arranged according to
[2] and contain the 6 DoF, which are parts of the states vector
as given in (1).

B. Particle Filter with Implicit Measurement Equations

The generic PF, which was introduced by [11] could be
summarized as the following steps. These steps are also the
basis of Algorithm 1 in the current paper and hence the
corresponding lines are mentioned in the following:

1) M initial particle sets χ(i)
0 should randomly be generated

from a proposal PDF π(·), each a representative for the
states vector of the system (line 1).

2) The generated particles should then be propagated to the
next epoch by using the dynamic system model (2). This
yields the so-called “predicted” particles χ(i)

k,− (line 6).

3) The likelihood of the predicted particles L
(
χ

(i)
(k,−)

)
should be computed by using the observations in the
current epoch k and the measurement model (line 23)

4) To each particle set a weight should be assigned (cf.
[27] (line 25).

5) To avoid the “degeneracy” problem, the particles should
be resampled, meaning that randomly new particle sets
χ

(i)
k,+ should be generated based on the relative weights

of the previous step (line 28).
6) The states vector and its covariance are calculated based

on the resampled particles from step 5 and their normal-
ized weights (lines 30 and 31).

7) The resampled particles are then propagated to the next
epoch and the sequence is repeated from step 2 to 7 for
each epoch.

The basis for estimating the likelihoods in the generic particle
filter is to compare the estimated observations l̂k with the
original measurements lk. Such a comparison is only possible
if the observation model is of explicit type as (9). This way, the
measurements can be estimated by substituting the predicted
particles in the observation model and then the differences of
these estimations to the real sensor measurements v̂k = l̂k−lk
are used to calculate the likelihoods. However, if the obser-
vation model is of implicit type, such a likelihood estimation
based on the calculated residuals is no more possible. In such
a case, substituting the particles – which are states represen-
tatives – in (10) does not yield the estimated observations to
then be compared with the original measurements. Therefore,
a new strategy is required to estimate the likelihoods, which is
the main aim of the current paper. For that, the suggested idea
is to estimate the likelihood of each particle set by directly
using the implicit observation model. In the current paper, the
observation model is according to (12), which could be treated
as an indicator for the quality of the particle set when the laser
scanner observations are taken into account. In other words,
a particle set is more probable to be correct if s in equation
(12) is closer to zero, which in turn means that the transformed



3D points have properly lied on their corresponding assigned
building planes and thus have small so-called “misclosure”
values. Therefore, it is claimed that such misclosure values
in the observation model (12) carry comparable information
content for likelihood estimations as the residuals v̂k = l̂k−lk
in an explicit observation model as (9). In this paper, ŝj is
used to represent the estimated misclosure value of the jth

scanned point, whose likelihood is assumed to be normally
distributed with the expected value and standard deviation of
zero and σŝ, respectively. The estimated likelihoods of all the
misclosure values are then multiplied, so that to each particle
set one likelihood value is assigned based on the laser scanner
data according to the following formulae:

LLS
(
χ

(i)
(k,−)

)
=

m∏
j=1

p
(
ŝ(j,k)|χ

(i)
(k,−), σ

2
ŝ

)
(14)

wherein, m is the total number of the scanned 3D points
in epoch k. For calculating the likelihoods of the particle
sets based on the GNSS and IMU observations, the residuals
v̂Gk and v̂Ik are used, as for these measurements an explicit
observation model holds as shown in (11). Similar to (14), the
likelihood of each particle set based on the GNSS and IMU
observations could be computed as follows:

LG
(
χ

(i)
(k,−)

)
=

3∏
j=1

p
(
v̂G(j,k)|χ

(i)
(k,−), σ

2
v̂G

)
(15)

LI
(
χ

(i)
(k,−)

)
=

3∏
j=1

p
(
v̂I(j,k)|χ

(i)
(k,−), σ

2
v̂I

)
(16)

After deriving the likelihoods of each particle set based on
measurements of each individual sensor, they are combined
as follows:

L
(
χ

(i)
(k,−)

)
= LLS

(
χ

(i)
(k,−)

)
· LG

(
χ

(i)
(k,−)

)
· LI

(
χ

(i)
(k,−)

)
(17)

Since in practice due to large amount of points, such a
likelihood multiplication could lead to numerical issues, in
the current paper, the logarithm of the likelihoods is taken
into account. Algorithm 1 shows the general framework of
the suggested PFI. The selected σŝ, σv̂G and σv̂I values
for the current paper are given in Table I. These values
are claimed to be among design parameters that should be
selected by the user based on the application. In the current
paper, a sensitivity analysis is done for that purpose. Also, for
this work, the proposal distribution is always selected to be
Gaussian. Furthermore, the “Residual Resampling” technique
(cf. [38]) is used for resampling the particles based on their
importance weights. In the given algorithm, idx in line 27
represents a vector containing the indices of those particles
that are selected based on the used resampling technique.

IV. APPLICATION

In the current paper, the proposed particle filter algorithm is
applied on a simulated environment. To estimate the states by
means of this algorithm, a total amount of 1000 particle sets

Algorithm 1: The algorithm of Particle Filter with
Implicit Measurement Equations (PFI).

1 Initialization:
{
χ

(i)
(0)

}M

i=1
∼ N (x0,Qxx,0)

2 while k < K do
3 Prediction
4 for i = 1 . . .M do
5 wk−1 ∼ N (0,Qww)

6
{
χ

(i)
(k,−)

}
= F x ·

{
χ

(i)
(k−1,+)

}
+wk−1

7 Likelihood estimation
8 for i = 1 . . .M do
9 Likelihood based on the scanned data:

10 Using the 6 DoF from
{
χ

(i)
(k,−)

}
to derive tk and Rk

11 Calculating P glo,k based on Eq. (13)
12 Calculating ŝ based on Eq. (12)
13 LLS

(
χ

(i)
(k,−)

)
=
∏m

j=1 p
(
ŝj |χ

(i)
(k,−)

, σ2
ŝ

)
14 Likelihood based on the GNSS data:
15 Setting l̂

G
k to the translation parameters in

{
χ

(i)
(k,−)

}
16 v̂G = l̂

G
k − lGk

17 LG
(
χ

(i)
(k,−)

)
=
∏3

j=1 p
(
v̂Gj |χ

(i)
(k,−)

, σ2
v̂G

)
18 Likelihood based on the IMU data:
19 Setting l̂

I
k to the orientation parameters in

{
χ

(i)
(k,−)

}
20 v̂I = l̂

I
k − lIk

21 LI
(
χ

(i)
(k,−)

)
=
∏3

j=1 p
(
v̂Ij |χ

(i)
(k,−)

, σ2
v̂I

)
22 Fusing likelihoods of the sensors:

23 L
(
χ

(i)
(k,−)

)
=

LLS
(
χ

(i)
(k,−)

)
· LG

(
χ

(i)
(k,−)

)
· LI

(
χ

(i)
(k,−)

)
24 Assignment of the importance weights
25 W = 1

M
·L

26 Resampling of the particles based on [38]
27 idx = ResidualResampling(1 : M,W )

28
{
χ

(i)
(k,+)

}M

i=1
= χ

(idx)
(k,−)

29 State vector estimation and the corresponding VCM

30 x̂k = 1
M
.
∑M

i=1 χ
(i)
(k,+)

31 Q̂xx,k = 1
M−1

∑k=M
k=1

(
χ

(i)
(k,+)

− x̂k

)(
χ

(i)
(k,+)

− x̂k

)T
32 Particle regeneration for the next epoch

33
{
χ

(i)
(k,+)

}M

i=1
∼ N (x̂k, Q̂xx,k)

are generated in each epoch (index M in Algorithm 1 is 1000).
Also, to better see the performance of this new methodology,
both LKF and the IEKF algorithm given in [2] are also applied
on the same environment and the results are compared.

A. Simulated Environment

The simulated environment for this paper is selected to be
the one given in [2] and [7], in which a UAV is equipped with
a GNSS, an IMU, and a 3D laser scanner. The surrounding
environment, which is created by unreal building models and
a ground plane, represents a 3D city model from which the
additional information for the PFI and IEKF is extracted.
Figure 1 shows an overview of this environment in which the
UAV is assumed to cover a distance of 70 meters in the y-axis
in 70 epochs while ascending for 4 meters in the z-axis. The
dotted black lines in this figure show the scan lines of the
UAV that moves through the environment in y direction. In



Table I, the accuracy and noise values that are considered in
the simulated environment are given.

To ensure the functionality of the proposed methodology,
1000 Monte Carlo (MC) runs are performed and in each run
new GNSS and IMU observations are generated by adding
random noise to the true states and the three filters (PFI, IEKF
and LKF) are used to estimate the states vector.

Fig. 1. 3D view of the simulated environment.

TABLE I
APPLIED ACCURACY, DESIGN PARAMETERS q̃ OF THE SYSTEM NOISE

VALUES AND STANDARD DEVIATIONS OF THE LIKELIHOODS.

Initial state accuracy
σT,0 = 0.5 m
σO,0 = 0.2◦

σV,0 = 1 m/s

System noise

∆τ = 1 s
a = 0.12 m2/s3

b = 2.3× 10−6 rad2/s3

c = 0.01 m2/s3

Measurement noise
σLS = 0.02 m

σGNSS = 0.5 m
σIMU = 0.2◦

Standard deviations
σŝ = 0.5 m
σv̂G = 0.5 m
σv̂I = 0.2◦

B. Results
In the following, results of the three filters after performing

the MC runs are depicted, which are averaged in each epoch.
Also, in each MC run, to avoid high computation times only
20% of the laser scanner observations are considered, which
would mean a decrease from approximately 10000 measure-
ments to 2000. Such a random measurement subsampling in
a real case scenario could lead to a high loss of information
content; however, in the simulated environment of the current
paper, it is claimed not to have a significant effect.

Figures 2 and 3 show the average Root Mean Square
Error (RMSE) of the estimated translation and orientation
parameters, respectively in each epoch over the MC runs. The
RMSE value in each MC run for the translation parameters
is calculated as follows (same also holds for the orientation
parameters):

RMSEk =

√√√√ 1

N

k=N∑
k=1

(xPk − x̄Pk )2 (18)

wherein xPk and x̄Pk are the estimated translation parameters
vector in each epoch and their true values, respectively. N is

the number of epochs up to the current one. Average RMSE
over the MC runs is calculated according to (19).

RMSEk =
1

S

∑
RMSEk (19)

wherein S is the total number of MC runs, which is 1000 in
this paper.

As it could be seen from Figure 2, all the three algorithms
have a decreasing RMSE pattern over time, which means that
the estimations get closer to the ground truth values. Among
the three solutions, LKF always delivers the least satisfactory
results for both the estimated translations and orientations. The
reason is due to the considerably less number of observations
that is used in each epoch of this algorithm compared to the
other two where the laser scanner measurements are also taken
into account. Also, it could be seen that by the suggested
PFI methodology, the RMSE of the translation parameters lies
in the same range as of the IEKF algorithm. The maximum
difference between the estimated translation parameters by
IEKF and PFI in this scenario is around 1 meter. Also, the
translation parameters by PFI are estimated with a maximum
standard deviation of 20 centimeters, which is around 10 and
40 centimeters by the IEKF and LKF algorithms, respectively.

Fig. 2. Mean of RMSE for all translation parameters in all epochs over the
total MC runs.

On the other hand according to Figue 3, the RMSE of the
orientation parameters shows that PFI delivers solutions closer
to the LKF than IEKF. A possible reason for that is claimed
to lie in the fusion part of the sensors likelihoods (line 22
of Algorithm 1). Such a fusion without giving weights to the
likelihoods of each sensor could lead to resampled particle
sets that have an acceptable estimated mean for the translation
parameters, but the mean of their orientations diverges from
the true values. Moreover, the process noise values usually
play a significant role in the prediction step of particle filter.
Inappropriate choice of these values could lead to rejection of a
large amount of the particles in each epoch and thus deviating
from the true values. Therefore, finding a good tune between
the weights of the likelihoods from various sensors and the
process noise values is claimed to be an important aspect of the
PFI algorithm. In the current paper, this aspect is appropriately
fulfilled for the translation parameters only. The maximum
difference between the estimated orientation parameters by
IEKF and PFI in this scenario is around 0.006 radians.
Also, the orientation parameters by PFI are estimated with a



maximum standard deviation of 0.001 radians, which is around
0.0008 and 0.002 radians by the IEKF and LKF algorithms,
respectively. Combining the IEKF and PFI algorithms could
lead to better estimations of the orientation parameters, which
is going to be investigated in the future research activities.

Fig. 3. Mean of RMSE for all orientation parameters in all epochs over the
total MC runs.

Furthermore, the estimated parameters are also statistically
evaluated over the MC runs. In Figure 4, box plots for the
RMSE of translation parameters derived from the PFI are
depicted. Top and bottom of each box plot show the 25th and
75th percentiles, respectively and the middle horizontal line of
each box plot shows the median. The extended lines above and
below each box are the whiskers and the red crosses are the
outliers, which are more explained in [7]. It could be seen that
the boxes along with their corresponding medians are large in
the first epochs and they decrease over time. Having such a
decreasing pattern is due to the less number of observations
in the beginning, which increases as the UAV enters the space
between the buildings (cf. Figure 1). Therefore, the estimated
translation parameters are not accurate in the beginning, which
leads to larger box plots and vice-versa as more observations
are available. Moreover, having the median and mean of
RMSE values in the same range and in the middle of the
box plots represents a normal distribution with no skewness,
which means no systematic errors within the estimations of
the filtering algorithm. The same behavior is also seen for the
orientation parameters, which is not presented in the current
paper.

Fig. 4. Box plot of the mean of RMSE for all translation parameters in all
epochs over the total MC runs.

Figure 5 shows the time it takes in each epoch for the filters
to estimate the states. It could be seen that LKF has the shortest
time along all the epochs, which is due to the considerably less
number of observations that is used in this filter. As expected,
PFI has the longest computation time in all the epochs, which
is due to the state estimation principle of particle filter based
on a large number of samples. For 70 epochs, the PFI takes
approximately 45 seconds to run. In case of the IEKF and
LKF algorithms, the total run times are 30 seconds and 0.05
seconds, respectively.

Fig. 5. Duration of the filters.

V. CONCLUSIONS AND FUTURE WORK

The current paper has focused on introducing a newly devel-
oped particle filter algorithm, which can handle both implicit
and explicit observation models. The introduced methodology
is referred to as the PFI. The main idea of this algorithm
is to overcome the likelihood estimation difficulty in case
of implicit measurement functions by introducing a measure
that is taken directly from the observation models, which
could be used as the expected values. This new methodology
is applied on a simulated environment for georeferencing a
UAV that is equipped with a GNSS, an IMU and a 3D laser
scanner. To better evaluate the performance of the algorithm,
two KF-based methodologies are also applied on the same
environment. Results of 1000 MC runs show that the PFI
can estimate the translation parameters (position of the MSS)
reasonably. However, the estimation of the orientation param-
eters are shown to have room for improvement. Moreover, the
statistical behavior of the estimations of this new methodology
are evaluated and shown to be satisfactory. Overall, it is shown
that although this new algorithm takes a longer time to run
compared to the KF realizations, it can still be beneficial
for future applications due to its capability to handle implicit
observation models when it comes to the PF framework.

Further research will consider improving the estimation of
the orientation parameters by integrating a suitable weighting
procedure between likelihood estimations of different sensors.
Additionally, the computation time of the PFI is to be im-
proved by combining the current methodology with EKF to
increase the quality of the generated samples in each epoch
and thus to need less number of particles. Moreover, possibility
of including state constraints in the PFI is to be investigated.



Finally, the performance of the methodology in a real case
scenario is to be tested and evaluated.
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