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Abstract. Detection of relationship between two time series is so important in environmental and 

hydrological studies. Several parametric and non-parametric approaches can be applied to detect 

relationships. These techniques are usually sensitive to stationarity assumption. In this research, a new 

copula- based method is introduced to detect the relationship between two cylostationary time series with 

fractional Brownian motion (fBm) errors. The numerical studies verify the performance of the introduced 

approach.  
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1. Introduction 

The ways of modeling dependency between two time series has always been one of the main 

focuses in practice. The choice of the better model depends on the dependency structure of 

obligators and is crucial part of the modeling. The applied methods in previous studies include 

Pearson’s correlation coefficient [1-6], Spearman’s correlation coefficient [7-10], Kendall’s 

correlation coefficient [11-14], Sen’s slope [15-17], cross-correlation function [18-20] and 

copula [21-26]. When we face with the relationship of two stationary time series, cross-

correlation function and copula are suggested. Cross-correlation function, as same as Pearson’s 

correlation, is somewhat sensitive to abnormality of datasets and existence of outliers. In other 

words, for abnormal populations or when we face with outliers, cross-correlation function may 

not work well. An efficient way to model dependency is to use new modeling mechanism of 

Copula Theory which helps understand the correlation beyond linearity. In contrast, Copula is a 

function which transfers the multivariate distribution function to its marginal distribution 

function by quantiles. It is a great tool for modeling dependency where correlation follows the 

random distribution. Copula technique is most efficient for stationary time series and may not 
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work well for non-stationary time series such as cyclostationary time series. To solve this issue, 

in this research, we introduce a copula-based regression technique. The ability of the proposed 

approach to detect relationship between two cyclostationary time series with fBm errors is 

studied. For this purpose, numerous datasets from two cyclostationary time series with fBm 

errors are produced and analyzed.  

 

2. Methodology 

2.1. Copula 

Copula was first introduced by Sklar [27] as a statistical mechanism to transfer the joint 

distribution into its marginals and copula as a model to show the dependency between the 

marginals.  

Copulas are functions link marginal distributions to the multivariate distributions which have 

well-defined properties [28]. Assume 𝑋 and 𝑌 are two continuous random variables with a joint 

distribution function  

𝐻(𝑥, 𝑦) = 𝑃𝑟(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦), 

and marginals 

𝐹(𝑥) = 𝑃𝑟(𝑋 ≤ 𝑥), 

and 

𝐺(𝑦) = 𝑃𝑟( 𝑌 ≤ 𝑦). 

According to Sklar’s theorem [27], there is a copula for all 𝑥 and 𝑦 in [−∞, ∞] satisfies the 

following equation: 

𝐻(𝑥, 𝑦) = 𝐶(𝐹(𝑥), 𝐺(𝑦)). 

The theorem indicates that copula is joint distribution function, and joint distribution function 

can be also presented as copula given its marginal distributions. Thus, Schweizer [29] discussed 

that joint distribution modeling can be reduced to copula modeling. Since copula represents the 

variables’ dependence, it’s also named dependence function. 
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One of the main advantages of copulas is allowing to identify tail dependence across the multiple 

distributions. There are several Copulas that can be selected. The choice of most appropriate 

Copula has been an important issue. In practice, independent and perfectly correlated variables 

are naturally inapplicable for copulas. Due to its familiarity, Gaussian Copula [30] was the most 

famous one among others, however it failed to capture asymmetry, non-linearity and heavy tail 

dependency.  

Therefore, alternative copulas have been used to model joint dependences. Several papers have 

been implied Copula families in modeling joint default dependencies in hydrology. Gumbel 

copula [31] is able to capture right tail dependence which is a particularly explored aspect of 

default dependency. Clayton copula [32] is defined to have left tail dependence. Student’s 𝑡 

copula [33] captures symmetric tail dependence with equally right and left tail dependence while 

Gaussian and Frank copulas [34] are defined as symmetric dependence without any tail 

dependence.  

2.2. Cyclostationary Time Series 

Stationarity is an important condition in classical time series analysis. But because of 

existence of cyclic rhythm in many practical situations such as hydrology and climatology, the 

stationarity assumption is not satisfied. As a suitable alternative, cyclostationary (CS) time series 

[35-36] are employed to describe the cyclic rhythms of rhythmic processes.  

A time series 𝑋𝑡, is CS with cycle T (CS-T), if T is the minimum natural number so that 

 𝑚(𝑡) ≔ 𝐸(𝑋𝑡) = 𝑚(𝑡 + 𝑇),  

and 

𝑅(𝑠, 𝑡): = 𝐶𝑜𝑣(𝑋𝑠 , 𝑋𝑡) = 𝐸[(𝑋𝑠 − 𝑚(𝑠))(𝑋𝑡 − 𝑚(𝑡))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] = 𝐶𝑜𝑣(𝑋𝑠+𝑇 , 𝑋𝑡+𝑇), 

for all integers s and t.  

The cyclic correlation can be detected by employing the coherent statistics [36]. These statistics 

were defined by  



4 | P a g e  
 

|𝛾(𝑝, 𝑞, 𝑀)|2 =
|∑ 𝑑𝑋(𝜆𝑝+𝑚)𝑑𝑋(𝜆𝑞+𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑀−1

𝑚=0 |
2

∑ |𝑑𝑋(𝜆𝑝+𝑚)|
2

∑ |𝑑𝑋(𝜆𝑞+𝑚)|
2𝑀−1

𝑚=0
𝑀−1
𝑚=0

,      𝑝 > 0, 𝑞 ≤ 𝑁, 

where  

𝑑𝑋(𝜆) = 𝑛−1 2⁄ ∑ 𝑋𝑡𝑒𝑖(𝑡−1)𝜆

𝑛

𝑡=1

 , 𝜆 ∈ [0,2𝜋),                                    

denotes the discrete Fourier transform (DFT) of 𝑋1, … , 𝑋𝑛, M refers to the the smoothness 

parameter, and 

(𝜆𝑖, 𝜆𝑗) ∈ ⋃ {(𝜆𝑖, 𝜆𝑗) ∈ [0,2𝜋)2: 𝜆𝑗 = 𝜆𝑖 +
2𝜋𝑘

𝑇
}

𝑘∈ℤ

. 

Since the spectral domain of CS-T time series is supported on the lines 

𝑇𝑗(𝑥) = 𝑥 ±
2𝜋(𝑗 − 1)

𝑇
, 𝑗 = 1, … , 𝑇, 

therefore, we expect the coherent statistics plot of a CS process emphasis these lines. 

Because of cyclic rhythms in CS processes, using usual copula regression to compute the 

relationship of two CS-T time series is somewhat wrong. To solve this issue, in this research, a 

new approach is employed to evaluate relationship of two CS-T time series.  

2.3. Fractional Brownian Motion 

A fractional Brownian motion (fBm) with Hurst index 𝐻 ∈ (0,1), is defined by 

𝐵𝐻(𝑡) =
1

Γ (𝐻 +
1
2)

∫(𝑡 − 𝑠)𝐻−
1
2𝑑𝐵(𝑠),

𝑡

0

 

where 𝐵 and Γ are a Brownian motion process and gamma function [37-38], respectively. The 

auto-covariance function of the processes 𝐵𝐻(𝑡) and 𝐵𝐻(𝑠) are given by 

𝛾(𝑠, 𝑡) ≔ 𝐶𝑜𝑣(𝐵𝐻(𝑠), 𝐵𝐻(𝑡)) =
1

2
(|𝑡|2𝐻 + |𝑠|2𝐻 − |𝑡 − 𝑠|2𝐻). 
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2.4. Copula for Cyclostationary Time Series 

As previously discussed, the copula technique is most efficient for stationary time series and may 

not work well for non-stationary time series such as cyclostationary time series. To solve this 

issue, in this research, we introduce a copula-based regression technique.  

Assume  𝑋𝑡 and 𝑌𝑡  are two CS-T time series. Let {𝑥1, … , 𝑥𝑛} and {𝑦, … , 𝑦𝑛} (𝑛 = 𝑚𝑇, 𝑚 ∈ 𝑁) 

are a path of 𝑋𝑡 and 𝑌𝑡, respectively. The outline as our procedure as following: 

(i) Split {𝑥1, … , 𝑥𝑛}, {𝑦1, … , 𝑦𝑛} and {(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)} into T partitions {𝑥(1), … , 𝑥(𝑇)}, 

{𝑦(1), … , 𝑦(𝑇), } and {(𝑥, 𝑦)(1), … , (𝑥, 𝑦)(𝑇)}, where 

𝑥(𝑖) = {𝑥𝑖, 𝑥𝑖+𝑇 , … , 𝑥𝑖+(𝑚−1)𝑇}, 𝑖 = 1, … , 𝑇, 

𝑦(𝑖) = {𝑦𝑖, 𝑦𝑖+𝑇 , … , 𝑦𝑖+(𝑚−1)𝑇}, 𝑖 = 1, … , 𝑇, 

and 

(𝑥, 𝑦)(𝑖) = {(𝑥𝑖, 𝑦𝑖), (𝑥𝑖+𝑇 , 𝑦𝑖+𝑇), … , (𝑥𝑖+(𝑚−1)𝑇 , 𝑦𝑖+(𝑚−1)𝑇)}, 𝑖 = 1, … , 𝑇. 

 (ii) Let 𝐹𝑖, 𝐺𝑖 and 𝐻𝑖 as the distribution function of the members of 𝑥(𝑖), 𝑦(𝑖), and (𝑥, 𝑦)(𝑖), 

respectively. Define the copula of 𝑥(𝑖) and 𝑦(𝑖) by 

𝐶i = 𝐶(𝐹i, 𝐺i), i = 1, … , T, 

and estimate the copula of 𝑥(𝑖) and 𝑦(𝑖) by 

�̂�i = �̂�(𝐹i, 𝐺i), i = 1, … , T. 

(iii) Apply copula regression to find the regression equation of 𝑦(𝑖) based on 𝑥(𝑖), 

�̂�𝑗 = 𝑏0,𝑖 + 𝑏0,𝑖𝑥𝑗 , 𝑖 = 1, … , 𝑇, 𝑗 = 𝑖, 𝑖 + 𝑇, 𝑖 + (𝑚 − 1)𝑇. 

(iv) Combine the regression equations to next uses such as prediction or goodness of fit tests. 

Remark 1: If 𝑋𝑡 and 𝑌𝑡  are respectively 𝐶𝑆 − 𝑇1 and 𝐶𝑆 − 𝑇2 time series, let 𝑇 = 𝑙𝑐𝑚( 𝑇1, 𝑇2), 

where lcm refers to smallest common multiple of  𝑇1 and  𝑇2. 

 

3. Simulation 
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In this section, the ability of the proposed method to detect relationship between two CS time 

series is studied. For this purpose, numerous datasets from two CS time series 𝑋𝑡 and 𝑌𝑡 are 

produced and analyzed.  

The simulation procedure is as following: 

Step 1: For fixed 𝑛 ∈ {120, 240, 480,1200}, 𝐻 ∈ {0.25,0.75} and 𝑇 ∈ {1, 2, 3,4}, separate paths 

of size 𝑛 from two CS-T time series 𝑋𝑡 and 𝑌𝑡 are produced. Numerous CS time series with 

different parameters are considered. 

Step 2: The simulated dataset are split into T partitions {𝑥(1), … , 𝑥(𝑇)} and {𝑦(1), … , 𝑦(𝑇)}. Then 

the copula of 𝑥(𝑖) and 𝑦(𝑖) is estimated by  

�̂�𝑖 = �̂�(𝐹𝑖, 𝐺𝑖), 𝑖 = 1, … , 𝑇. 

In this study, we apply five different copula families, namely Gaussian, Student’s t copula and 

three Archimedean copulas; Clayton, Gumbel and Frank. We capture symmetric dependence 

without tail dependence with Gaussian and Frank copulas, symmetric dependence with upper 

and lower tail dependence with t copula, left (lower) tail dependence with Clayton copula, right 

(upper) tail dependence with Gumbel copula.  

3.1. Gaussian Copula 

Gaussian (normal) copula, as the name implies, assumes joint distribution follows bivariate 

standard normal distribution. Gaussian copula is the most commonly applied copula in practice 

due to its convenient properties. The bivariate Gaussian copula is presented by: 

𝐶(𝑎, 𝑏) = 𝑀𝑛(Φ−1(𝑎), Φ−1(𝑏);  𝜃), 

where 𝑀𝑛 is the joint bivariate cumulative standard normal distribution with 𝜃 ∈ [−1,1], as the 

correlation of the bivariate normal distribution and Φ−1 is the inverse of a univariate standard 

normal distribution. 

3.2. 𝒕  Copula 

The bivariate Student’s 𝑡  copula is represented by: 
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𝐶(𝑎, 𝑏) = 𝑇𝜃,𝑣(𝑡𝑣
−1(𝑎), 𝑡𝑣

−1(𝑏)), 

where 𝑇𝑅,𝑣 is the standardized bivariate Student’s 𝑡 distribution with covariance 𝜃 ∈ [−1,1] and 

𝑣 degree of freedom. 𝑡𝑣
−1(𝑢𝑛)  indicates the inverse of Student’s 𝑡 cumulative distribution 

function. The main advantage of Student’s 𝑡 copula over Gaussian copula is assuming a non-zero 

tail dependence even if correlation is zero.  

3.3. Clayton copula 

To estimate the lower tail dependency, the Clayton copula, is mostly suggested. The bivariate 

Clayton copula is represented by: 

                                               𝐶(𝑎, 𝑏) = (𝑚𝑎𝑥(𝑎−𝜃 + 𝑏−𝜃 − 1, 0))
−1/𝜃

,                                      

where 𝜃 (𝜃 ≥ −1, 𝜃 ≠ 0) is the copula. The parameter 𝜃 is related to Kendall’s tau rank 

correlation 𝜏 as following: 

                                                                   𝜏 =
𝜃

𝜃+2
.                                                                  

3.4. Gumbel copula 

To capture weak lower tail dependence and strong upper tail dependence, the Gumbel copula is 

developed. The bivariate Gumbel copula is given by: 

                                             𝐶(𝑎, 𝑏) = exp ( −((− log a)𝜃 + (− log b)𝜃)
1

𝜃),              

where 𝜃 ≥ 1 is the copula parameter. The Gumbel copula represents just independent and 

positive dependence.  

The parameter 𝜃 is related to Kendall’s tau rank correlation 𝜏 as following: 

                                                                     𝜏 = 1 − 𝜃−1.                                                       

3.5. Frank copula 

The bivariate Frank copula is given by: 
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                                     𝐶(𝑎, 𝑏) = −
1

𝜃
log (1 +

(𝑒𝑥𝑝(−𝜃a)−1)(𝑒𝑥𝑝(−𝜃b)−1)

𝑒𝑥𝑝(−𝜃)−1
),                               

where 𝜃 ≠ 0 is the copula parameter. Unlike the Gumbel and Clayton copulas, Frank copula 

allows both negative and positive dependence in data. The parameter 𝜃 is related to Kendall’s tau 

rank correlation 𝜏 as following: 

                                                     𝜏 = 1 +
4[𝐷1(𝜃)−1]

𝜃
,                

where 

𝐷𝑘(𝛼) =
𝑘

𝛼𝑘
∫

𝑡𝑘

exp(𝑡) − 1
𝑑𝑡

𝛼

0

, 𝑘 = 1,2. 

                          

Step 3: For each copula, the regression analysis is applied to estimate the equation of 𝑦(𝑖) based 

on 𝑥(𝑖), 

�̂�𝑗 = 𝑏0,𝑖 + 𝑏0,𝑖𝑥𝑗 , 𝑖 = 1, … , 𝑇, 𝑗 = 𝑖, 𝑖 + 𝑇, 𝑖 + (𝑚 − 1)𝑇. 

Step 4: For each copula, the estimated copula regression equations are used to estimate T 

partitions  {𝑦(1), … , 𝑦(𝑇)} by  {�̂�(1), … , �̂�(𝑇)}. 

Step 5: Different goodness of fit measures including Correlation coefficient (r), Willmott’s Index 

(WI) and Nash-Sutcliffe coefficient (NS) are computed by 

𝑟 =
∑ (𝑦𝑖 − �̅�)(�̂�𝑖 − �̅̂�)𝑛

𝑖=1

√∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

√∑ (�̂�𝑖 − �̅̂�)
2𝑛

𝑖=1

, 

𝑊𝐼 =
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

∑ (|𝑦𝑖 − �̅�| + |�̂�𝑖 − �̅�|)2𝑛
𝑖=1

, 

and 

𝑁𝑆 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (�̂�𝑖 − �̅̂�)
2𝑛

𝑖=1

. 
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Step 6: Steps 1 to 5 are repeated 1000 times. 

Step 7: For each parameter setting, the means of 𝑟, 𝑊𝐼 and 𝑁𝑆 of all 1000 runs and five copulas 

are computed. 

We consider first order periodic autoregressive with fBm error (PARFBM(1)) time series.  

Assume the process 

𝑋𝑡 = 𝜙(𝑡)𝑋𝑡−1 + 𝐵𝐻,   

and 

𝑌𝑡 = 𝛼𝑋𝑡 + 𝑊𝑡, {𝑊𝑡}~𝐼𝐼𝐷𝑁(0,1), 

where 

𝜙(𝑡) =
1+𝜙cos (2𝜋𝑡/𝑇)

2
. 

Tables 1 and 2 summarize the computed values of goodness of fit indices, for different 

parameter settings and 𝐻 = 0.25 and 𝐻 = 0.75, respectively. The results show that the values of 

goodness of fit indices are close to one. In other words, proposed method is robust to detect 

relationship between two cyclostationary time series. 

 

Table 1: Testing performance of the Periodic Copula Model to detect relationship between two PARFBM(1)  time series (𝐻 =

0.25), in terms of the Correlation Coefficient (r), Nash-Sutcliff (NSE) and Willmott Index (WI) 

Copula 𝑇 𝜙 𝛼 

N 

120 240 480 1200 

𝑟 𝑊𝐼 𝑁𝑆 𝑟 𝑊𝐼 𝑁𝑆 𝑟 𝑊𝐼 𝑁𝑆 𝑟 𝑊𝐼 𝑁𝑆 

Gaussian 

1 

0.3 0.3 0.980 0.992 0.989 0.978 0.991 0.988 0.978 0.983 0.990 0.998 0.995 0.980 

0.3 0.7 0.977 0.989 0.998 0.985 0.992 0.992 0.970 0.978 0.998 0.983 0.997 0.997 

0.7 0.3 0.994 0.985 0.999 0.981 0.990 0.973 0.996 0.977 0.996 0.989 0.994 0.990 

0.7 0.7 0.984 0.989 0.991 0.988 0.998 0.987 0.983 0.986 0.985 0.983 0.986 0.976 

2 

0.3 0.3 0.992 0.987 0.973 0.994 1.000 0.976 0.987 0.983 0.994 0.977 0.993 0.987 

0.3 0.7 0.984 0.976 0.995 0.984 0.991 0.995 0.987 0.990 0.984 0.973 0.992 0.972 

0.7 0.3 0.997 0.986 0.999 0.998 0.981 0.989 0.992 0.987 0.986 0.987 0.975 0.990 

0.7 0.7 0.970 0.972 0.978 0.988 0.992 0.979 0.982 0.993 0.985 0.971 0.986 0.978 

3 

0.3 0.3 0.978 0.983 0.982 0.996 0.983 0.982 0.979 0.976 0.976 0.996 0.994 0.987 

0.3 0.7 0.970 0.984 0.975 0.981 0.992 0.975 0.975 1.000 0.987 0.983 0.982 0.971 

0.7 0.3 0.981 0.992 0.997 0.976 0.980 0.989 0.980 0.994 0.989 0.977 0.984 0.981 

0.7 0.7 0.979 0.971 0.982 0.992 0.991 0.989 0.998 0.995 0.990 0.980 0.999 0.992 

4 

0.3 0.3 0.992 0.986 0.972 0.985 0.975 0.984 0.986 0.970 0.980 0.997 0.971 0.990 

0.3 0.7 0.983 0.982 0.970 0.972 0.994 0.978 0.985 0.983 0.978 0.970 0.996 0.972 

0.7 0.3 0.985 0.977 0.978 0.982 0.977 0.982 0.987 0.994 0.987 0.981 0.993 0.995 

0.7 0.7 0.989 0.989 0.980 0.977 0.972 0.983 0.972 0.989 0.996 0.993 0.972 0.997 

 1 0.3 0.3 0.996 0.971 0.996 0.978 0.971 0.996 0.991 0.978 0.986 0.998 0.979 0.975 
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T 

0.3 0.7 1.000 0.978 0.998 0.996 0.979 0.991 0.999 0.984 0.989 0.973 0.981 0.997 

0.7 0.3 0.974 0.996 0.990 0.979 0.986 0.976 0.993 0.986 0.974 0.988 0.975 0.976 

0.7 0.7 0.985 0.985 0.999 0.984 0.976 0.972 0.979 0.998 0.973 0.988 0.975 0.983 

2 0.3 0.3 0.978 0.971 0.985 0.983 0.997 0.973 0.976 0.973 0.985 0.994 0.998 0.979 

0.3 0.7 0.994 0.990 0.986 0.984 0.975 0.999 0.994 0.987 0.973 0.984 0.995 0.999 

0.7 0.3 0.983 0.970 0.997 0.981 0.983 0.999 0.993 0.972 0.987 0.971 0.970 0.995 

0.7 0.7 0.984 0.991 0.978 0.972 0.988 0.992 0.983 0.973 0.991 0.998 0.994 0.980 

3 0.3 0.3 0.993 0.979 0.978 0.983 0.992 0.993 0.979 0.978 0.985 0.977 0.998 0.971 

0.3 0.7 0.979 0.993 0.996 0.989 0.993 0.995 0.989 0.999 0.996 0.971 0.980 0.984 

0.7 0.3 0.999 0.975 0.982 0.979 0.994 0.996 0.977 0.996 1.000 0.997 0.993 1.000 

0.7 0.7 0.986 0.986 0.991 0.970 0.992 0.978 0.978 0.992 0.997 0.976 0.986 0.978 

4 0.3 0.3 0.997 0.976 0.979 0.970 0.992 0.976 0.974 0.970 0.980 0.998 0.999 0.979 

0.3 0.7 0.977 0.975 0.979 0.994 0.989 0.980 1.000 0.994 0.974 0.970 0.984 0.982 

0.7 0.3 0.986 0.983 0.984 0.992 0.980 0.976 0.978 0.987 0.981 0.973 0.982 0.986 

0.7 0.7 0.993 0.971 0.992 0.998 0.996 0.999 0.992 0.984 0.998 0.996 0.976 0.982 

 

 

 

 

 

 

 

 

Clayton 

1 0.3 0.3 1.000 0.979 0.985 0.977 0.987 0.984 0.980 0.991 0.986 0.991 0.987 0.986 

0.3 0.7 0.981 0.999 0.999 0.996 0.996 0.998 0.992 0.993 0.981 0.984 0.986 0.989 

0.7 0.3 0.973 0.995 0.997 0.992 0.979 0.990 0.971 0.996 0.990 0.988 0.972 0.980 

0.7 0.7 0.986 0.986 0.979 0.994 0.977 0.996 0.989 0.998 0.983 0.992 0.976 0.982 

2 0.3 0.3 0.982 0.996 0.993 0.988 0.975 0.990 0.986 0.983 0.980 0.972 0.997 0.990 

0.3 0.7 0.984 0.975 0.981 0.986 0.983 0.985 0.977 0.970 0.974 0.975 0.999 0.982 

0.7 0.3 0.989 0.992 0.978 0.981 0.971 0.995 0.995 0.975 0.994 0.982 0.971 0.987 

0.7 0.7 0.993 0.988 0.976 0.982 0.991 0.987 0.996 0.986 0.987 0.997 0.973 0.970 

3 0.3 0.3 0.988 0.978 0.975 0.987 0.989 0.994 0.995 0.982 0.972 0.984 0.989 0.983 

0.3 0.7 0.973 0.998 0.980 0.980 0.980 0.988 0.982 0.981 0.983 0.993 0.975 0.991 

0.7 0.3 0.995 0.999 0.989 0.992 0.985 0.993 0.999 0.990 0.979 0.979 0.990 0.978 

0.7 0.7 1.000 0.991 0.971 0.992 0.998 0.992 0.972 0.981 0.978 0.988 0.987 0.971 

4 0.3 0.3 0.981 0.989 0.983 0.975 0.997 0.995 0.989 0.991 0.981 0.993 0.996 0.978 

0.3 0.7 0.975 0.984 0.971 0.987 0.983 0.970 0.972 1.000 0.981 0.989 0.987 1.000 

0.7 0.3 0.971 0.988 0.981 0.975 0.971 0.999 0.996 0.977 1.000 0.991 0.997 0.992 

0.7 0.7 0.971 0.996 0.980 1.000 0.972 0.977 0.987 0.973 0.975 0.993 0.985 0.998 

 

 

 

 

 

 

 

 

Gumbel 

1 0.3 0.3 0.997 0.990 0.983 0.979 0.985 0.982 0.987 0.983 0.997 0.979 0.993 0.983 

0.3 0.7 0.972 0.974 0.984 0.971 0.972 0.997 0.989 0.983 0.997 0.978 0.997 0.985 

0.7 0.3 0.988 0.974 0.999 0.979 0.996 0.974 0.979 0.985 0.973 0.987 0.980 0.993 

0.7 0.7 0.987 0.987 0.992 0.988 0.998 0.993 0.975 0.973 0.978 0.970 0.987 0.990 

2 0.3 0.3 0.996 0.996 0.988 0.991 0.980 0.985 0.986 0.973 0.988 0.996 0.995 0.997 

0.3 0.7 0.998 0.998 0.973 1.000 0.983 0.972 0.996 0.981 0.986 0.973 0.976 0.998 

0.7 0.3 0.971 0.979 0.974 0.982 0.997 0.992 0.974 0.995 0.990 0.974 0.977 0.986 

0.7 0.7 0.975 0.993 0.995 0.980 0.992 0.987 0.994 0.984 0.972 0.997 0.970 0.971 

3 0.3 0.3 0.977 0.979 0.977 0.995 0.996 0.993 0.978 0.975 0.997 0.987 0.982 0.999 

0.3 0.7 0.983 0.999 0.975 0.995 0.984 0.992 0.993 0.971 0.974 0.998 0.970 0.972 

0.7 0.3 0.989 0.972 0.988 0.970 0.976 0.999 0.993 0.972 0.982 0.996 0.981 0.986 

0.7 0.7 0.983 0.999 0.977 0.993 0.973 0.975 0.972 0.971 0.990 0.998 0.979 0.985 

4 0.3 0.3 0.970 0.982 0.984 0.974 0.974 0.973 0.975 0.974 0.974 0.977 0.981 0.993 

0.3 0.7 0.992 0.974 0.974 0.971 0.994 0.982 0.986 0.981 0.996 0.976 0.986 0.984 

0.7 0.3 0.996 0.973 0.977 0.972 0.974 0.991 0.999 0.981 0.988 0.973 0.998 0.973 

0.7 0.7 0.981 0.981 0.984 0.995 0.990 0.991 0.973 0.979 0.976 0.983 0.978 0.979 

 

 

 

 

 

 

 

 

Frank 

1 0.3 0.3 0.983 0.997 0.989 0.987 0.999 0.985 0.984 0.972 0.989 0.999 0.980 0.984 

0.3 0.7 0.975 0.976 0.974 0.979 0.995 0.981 0.980 0.979 0.991 0.972 0.970 0.997 

0.7 0.3 0.982 1.000 0.995 0.972 0.999 0.978 0.974 0.999 0.974 0.986 0.974 0.992 

0.7 0.7 0.998 0.973 0.973 0.973 0.994 0.993 0.992 0.993 0.982 0.987 0.991 0.976 

2 0.3 0.3 0.997 0.971 0.972 0.972 0.976 0.992 0.988 0.981 0.971 0.994 0.995 0.986 

0.3 0.7 0.998 0.985 0.970 0.982 0.998 0.971 0.998 0.978 0.985 0.976 0.993 0.999 

0.7 0.3 0.979 0.984 0.991 0.990 0.975 0.999 0.970 0.977 0.999 0.973 0.983 0.986 

0.7 0.7 0.983 0.995 0.993 0.973 0.989 0.994 0.999 1.000 0.971 0.986 0.979 0.993 

3 0.3 0.3 0.994 0.988 0.978 0.984 0.978 0.982 0.996 0.978 0.971 0.997 0.975 0.992 

0.3 0.7 0.991 0.990 0.984 0.989 0.976 0.987 0.972 0.973 0.994 0.976 0.985 0.994 

0.7 0.3 0.994 0.977 0.996 1.000 0.978 0.995 0.976 0.996 0.976 0.983 0.995 0.990 

0.7 0.7 0.980 0.978 0.971 0.989 0.979 0.991 0.980 0.988 0.993 0.972 0.987 0.986 
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4 0.3 0.3 0.981 0.971 0.988 0.979 0.990 0.981 0.990 0.987 0.972 0.994 0.982 0.996 

0.3 0.7 0.988 0.987 0.973 0.976 0.980 0.992 0.976 0.990 0.985 0.976 0.992 0.978 

0.7 0.3 0.975 0.979 0.970 0.997 0.975 0.994 0.978 0.990 0.977 0.994 0.971 0.999 

0.7 0.7 0.986 0.985 0.990 0.994 0.979 0.984 0.976 0.998 0.987 0.990 0.996 0.983 

 

 

 

Table 2: Testing performance of the Periodic Copula Model to detect relationship between two PARFBM(1)  time series (𝐻 =

0.25), in terms of the Correlation Coefficient (r), Nash-Sutcliff (NSE) and Willmott Index (WI) 

Copula 𝑇 𝜃 𝛽 

n 

120 240 480 1200 

𝑟 𝑊𝐼 𝑁𝑆 𝑟 𝑊𝐼 𝑁𝑆 𝑟 𝑊𝐼 𝑁𝑆 𝑟 𝑊𝐼 𝑁𝑆 

Gaussian 

1 

0.3 0.3 0.990 0.996 0.981 0.982 1.000 0.980 0.986 0.998 0.989 0.977 0.992 0.994 

0.3 0.7 0.975 0.978 0.981 0.997 0.992 0.990 0.971 0.981 0.996 0.990 0.971 0.978 

0.7 0.3 0.990 0.997 0.984 0.995 0.997 0.973 0.974 0.999 0.992 0.983 0.985 0.974 

0.7 0.7 0.995 0.999 0.983 0.996 0.994 0.974 0.998 0.986 0.972 0.977 0.971 0.996 

2 

0.3 0.3 0.985 0.985 0.997 0.992 0.979 0.992 0.999 0.978 0.985 0.999 0.971 0.980 

0.3 0.7 0.971 0.999 0.988 0.995 0.996 0.983 0.993 0.975 0.991 0.970 0.988 0.983 

0.7 0.3 0.999 0.971 0.983 0.979 0.993 0.994 0.984 0.988 0.972 0.976 0.983 0.991 

0.7 0.7 0.994 0.985 0.993 0.971 0.979 0.976 0.971 0.985 0.989 0.996 0.994 0.987 

3 

0.3 0.3 0.992 0.993 0.992 0.971 1.000 0.991 0.995 0.985 0.994 0.988 0.982 0.994 

0.3 0.7 0.996 0.997 0.977 0.981 0.991 0.975 0.991 0.980 0.987 0.995 1.000 0.982 

0.7 0.3 0.998 0.976 0.980 0.974 0.974 0.982 0.984 0.979 0.996 0.993 0.971 0.975 

0.7 0.7 0.988 0.985 0.983 0.976 0.993 0.993 0.985 0.985 0.995 0.989 0.994 0.978 

4 

0.3 0.3 0.995 0.996 0.990 0.991 0.989 0.996 0.999 0.990 0.978 0.993 0.987 0.980 

0.3 0.7 1.000 0.988 0.990 0.993 0.970 0.972 0.993 0.982 0.977 0.999 0.985 0.972 

0.7 0.3 0.983 0.980 1.000 0.993 0.977 0.972 0.998 0.978 0.998 0.973 0.970 0.993 

0.7 0.7 0.991 0.977 0.985 0.994 0.983 0.973 0.983 0.975 0.990 0.983 0.982 0.990 

 

 

 

 

 

 

 

 

T 

1 0.3 0.3 0.990 0.996 0.981 0.974 0.971 0.998 0.992 0.989 0.982 0.972 0.980 0.974 

0.3 0.7 0.972 0.987 0.990 0.993 0.996 0.998 0.986 0.972 0.994 0.992 0.978 0.975 

0.7 0.3 0.977 0.984 0.997 0.974 0.999 0.996 0.996 0.989 0.986 0.992 0.995 0.980 

0.7 0.7 0.973 0.989 0.974 0.981 0.973 0.982 0.992 0.979 0.985 0.994 0.980 0.973 

2 0.3 0.3 0.996 0.975 0.999 0.976 0.995 0.979 0.978 0.985 0.979 0.984 0.999 0.990 

0.3 0.7 0.977 0.979 0.995 0.995 0.976 0.981 0.973 0.974 0.983 0.989 0.976 0.979 

0.7 0.3 0.996 0.971 0.977 0.983 0.981 0.989 0.972 0.998 0.984 0.980 0.990 0.981 

0.7 0.7 0.994 0.990 0.997 0.997 0.992 0.980 0.987 0.978 0.987 0.992 0.986 0.974 

3 0.3 0.3 0.980 0.986 0.992 0.979 0.973 0.998 0.997 0.988 0.975 0.988 0.981 0.992 

0.3 0.7 0.978 0.999 0.984 0.990 0.986 0.993 0.978 0.980 0.977 0.972 0.979 0.987 

0.7 0.3 0.983 0.986 0.983 0.993 0.986 0.987 0.971 0.992 0.980 0.972 0.985 0.979 

0.7 0.7 0.998 0.988 0.991 0.987 0.984 0.977 0.980 0.993 0.997 0.985 0.989 0.985 

4 0.3 0.3 0.980 1.000 0.994 0.990 0.988 0.982 0.980 0.986 0.997 0.996 0.987 0.973 

0.3 0.7 0.989 0.978 0.984 0.987 0.979 0.976 0.985 0.995 0.989 0.972 0.974 0.986 

0.7 0.3 0.975 0.978 0.982 0.982 0.990 0.993 0.977 0.981 0.972 0.985 0.999 0.993 

0.7 0.7 0.985 0.995 0.974 0.986 0.995 0.993 0.972 0.990 0.994 0.996 0.991 1.000 

 

 

 

 

 

 

 

 

1 0.3 0.3 0.986 0.985 0.998 0.980 0.974 0.978 0.992 0.978 1.000 0.971 0.984 0.975 

0.3 0.7 0.986 0.973 0.977 0.984 0.980 0.993 0.986 0.971 0.999 0.979 0.980 0.980 

0.7 0.3 0.995 0.979 0.987 0.975 0.977 0.972 0.981 0.994 0.975 0.982 0.977 0.980 

0.7 0.7 0.995 0.984 0.974 0.973 0.995 0.975 0.987 0.974 0.987 0.993 0.976 0.978 

2 0.3 0.3 0.987 0.999 0.983 0.991 0.974 0.989 0.979 0.972 0.996 0.994 0.996 0.981 

0.3 0.7 0.981 0.980 0.973 0.989 0.975 0.995 0.995 0.976 0.974 0.981 0.980 1.000 

0.7 0.3 0.978 1.000 0.977 0.970 0.994 0.993 0.985 0.971 0.975 0.974 0.978 0.989 

0.7 0.7 0.992 0.980 0.972 0.973 0.974 0.981 0.973 0.980 0.975 0.994 0.986 0.975 
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Clayton 3 0.3 0.3 0.995 0.987 0.974 0.988 0.989 0.989 0.986 0.976 0.992 0.992 0.991 0.981 

0.3 0.7 0.972 0.987 0.999 0.984 0.988 0.991 0.991 0.974 0.987 0.978 0.981 0.977 

0.7 0.3 0.997 0.985 0.998 0.987 0.978 0.973 0.979 0.972 0.983 0.994 0.977 0.974 

0.7 0.7 0.996 0.989 0.999 0.998 0.980 0.996 0.975 0.970 0.983 0.996 0.976 0.986 

4 0.3 0.3 0.978 0.981 0.987 0.980 0.979 0.988 0.983 0.989 0.974 0.975 0.991 0.992 

0.3 0.7 0.994 0.976 0.993 0.970 0.983 0.999 0.980 0.976 0.986 0.975 0.981 0.992 

0.7 0.3 0.991 0.999 0.977 0.981 0.979 0.992 0.976 0.971 0.989 0.995 0.978 0.971 

0.7 0.7 0.978 0.977 0.981 0.976 0.988 0.989 0.979 0.977 0.979 0.985 0.985 0.988 

 

 

 

 

 

 

 

 

Gumbel 

1 0.3 0.3 0.981 0.986 0.982 0.973 0.971 0.970 0.982 0.999 0.986 0.994 0.983 0.999 

0.3 0.7 0.991 1.000 0.991 0.977 0.980 0.987 0.976 0.996 0.993 0.979 0.990 0.975 

0.7 0.3 0.997 0.971 0.975 0.990 0.986 0.994 0.972 0.983 0.996 0.994 0.972 0.994 

0.7 0.7 0.987 0.988 0.993 0.977 0.993 0.994 0.997 0.995 0.977 0.977 0.981 0.982 

2 0.3 0.3 0.983 0.982 0.983 0.971 0.985 0.979 0.979 0.985 0.972 0.975 1.000 0.977 

0.3 0.7 0.997 0.975 0.970 0.996 0.987 0.976 0.983 0.981 0.982 0.995 0.980 0.973 

0.7 0.3 0.985 0.990 0.974 0.999 0.989 0.996 0.999 0.994 0.989 0.985 0.983 0.971 

0.7 0.7 0.994 0.995 0.999 0.999 0.993 0.981 0.994 0.985 0.970 0.996 0.990 0.994 

3 0.3 0.3 0.972 0.979 0.985 0.974 1.000 0.974 0.976 0.992 0.995 0.981 0.982 0.986 

0.3 0.7 0.975 0.977 0.985 0.971 0.976 0.995 0.992 0.981 0.975 0.976 0.986 0.978 

0.7 0.3 0.973 0.994 0.999 0.992 0.991 0.988 0.997 0.988 0.999 0.986 0.980 0.992 

0.7 0.7 0.982 0.993 0.982 0.999 0.979 0.976 0.997 0.988 0.996 0.987 0.993 0.991 

4 0.3 0.3 0.974 0.999 0.990 0.982 0.994 0.970 0.998 0.988 0.994 0.976 1.000 0.993 

0.3 0.7 0.977 0.986 0.991 0.990 0.997 0.981 0.984 0.997 0.986 0.987 0.972 0.975 

0.7 0.3 0.999 0.976 0.986 0.972 0.976 0.986 0.998 0.995 0.991 0.977 0.971 0.979 

0.7 0.7 0.973 0.996 0.997 0.977 0.988 0.997 0.994 0.990 0.978 0.988 0.988 0.984 

 

 

 

 

 

 

 

 

Frank 

1 0.3 0.3 0.990 0.981 0.979 0.998 0.987 0.993 0.973 0.983 0.999 0.976 0.979 0.989 

0.3 0.7 0.984 0.989 0.990 0.985 0.990 0.999 0.978 0.987 0.980 0.987 0.972 0.982 

0.7 0.3 0.984 0.996 0.971 0.979 0.988 0.998 0.980 0.988 0.982 0.984 0.979 0.991 

0.7 0.7 0.992 0.977 0.986 0.992 0.997 0.996 0.991 0.974 0.972 0.987 0.972 0.996 

2 0.3 0.3 0.986 0.992 0.974 0.989 0.973 0.982 0.997 0.976 0.979 0.981 0.978 0.971 

0.3 0.7 0.993 0.971 0.982 0.977 0.991 0.981 0.980 0.988 0.983 0.991 0.973 0.987 

0.7 0.3 0.973 0.982 0.989 0.985 0.975 0.986 0.983 0.998 0.982 0.976 0.992 0.972 

0.7 0.7 0.984 0.974 0.988 0.980 0.978 0.989 0.981 0.983 0.987 0.997 0.997 0.979 

3 0.3 0.3 0.970 0.987 0.970 0.979 0.995 0.992 0.979 0.994 0.988 0.986 0.999 0.997 

0.3 0.7 0.976 0.995 0.976 0.999 0.986 0.994 0.980 0.996 0.988 0.984 0.982 0.984 

0.7 0.3 0.996 0.992 0.987 0.976 0.979 0.984 0.982 0.990 0.998 0.992 0.993 0.990 

0.7 0.7 0.987 0.990 0.975 0.974 0.998 0.978 0.988 0.972 1.000 0.994 0.987 0.973 

4 0.3 0.3 0.997 0.981 0.994 0.993 0.985 0.979 0.986 0.991 0.985 0.996 0.984 0.987 

0.3 0.7 0.975 0.987 0.980 0.978 0.971 0.987 0.998 0.990 0.997 0.992 0.985 0.993 

0.7 0.3 0.987 0.975 0.973 0.995 0.981 0.973 0.993 0.970 0.978 0.983 0.982 0.995 

0.7 0.7 0.984 0.987 0.998 0.999 0.982 0.996 0.983 0.988 0.996 0.992 0.986 0.991 

 

4. Conclusion 

The analysis of hydrological and climatological datasets often requires the detection of 

relationships between different variables. When we face with the relationship of two time series, 

cross-correlation function and copula models are suggested. Cross-correlation function is 

somewhat sensitive to abnormality of datasets and existence of outliers. An efficient way to 

model dependency is to use new modeling mechanism of Copula Theory which helps understand 

the correlation beyond linearity. Copula technique is most efficient for stationary time series and 

may not work well for non-stationary time series such as cyclostationary time series. To solve 
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this issue, in this research, we introduced a copula-based regression technique. The ability of the 

proposed approach to detect relationship between two cyclostationary time series with fractional 

Brownian motion errors was studied. For this purpose, numerous datasets from two 

cyclostationary time series with fractional Brownian motion errors were produced and analyzed. 

The results indicated that the values of goodness of fit indices were close to one, and 

consequently, the proposed method was robust to detect relationship between two 

cyclostationary time series with fractional Brownian motion errors. 
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