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Abstract— The convolutional neural network methodologies 

have been a fundamental deep learning solution to smart grid 

applications. It is essential to investigate and evaluate the 

progress of this method in the smart grid. Consequently, a 

comprehensive investigation with the aid of PRISMA had 

been conducted. The PRISMA standard queries including the 

convolutional neural networks and its abbreviation forms of 

ConvNet or CNN reveal a significant increase in the 

popularity of this deep learning method in smart grid 

applications. This research identifies 2200 pieces of literature 

in the field. After considering the PRISMA guideline the 

most relevant and fundamental application had been reduced 

to 46 documents where the single and hybrid methods had 

been identified. The investigation showed that hybrid 

methods delivered a better performance with higher accuracy. 

It is expected that more hybrid methods will have emerged in 

the smart grid application. 
Keywords— Convolutional Neural Network, Smart Grid, 

PRISMA, Hybrid Methods.        

I. INTRODUCTION  

Recent developments in cutting-edge monitoring, 

information, and communication technology used in the 

smart grid, intended to make energy delivery more 

dependable, economical, and sustainable, will enable electric 

power systems to respond to various customer demands more 

effectively [1]. Daily load forecasting is emerging as a very 

interesting area in the smart grid as it covers the daily load 

curve for residential and commercial electricity usage. This 

includes the dynamic price incentives on the demand 

responses [2]. This helps to take into account the main 

cyclical features in the power system, like holidays and 

special days adjustment, and temperature effects that directly 

influence the electricity demand [3].  Dynamic pricing aids in 

lowering the system's peak load [4]. Information technology, 

which enables local control, distributed energy resource 

collaboration, and global energy markets, is one of the key 

elements of smart grids. Our power system is projected to 

become more reliable, "green," and efficient thanks to smart 

grids, a challenge that the automobile sector could only meet 

by integrating digital controls into engines [5]. One 

application area that is still developing is smart grids. The last 

ten years have seen the emergence of numerous smart grid 

projects using various multi-agent system interpretations as 

new control concepts. Although the term "agent" has several 

theoretical definitions, there is a lack of practical 

comprehension that may be remedied by clearly separating 

agent technologies from other cutting-edge control 

technologies [6]. Furthermore, the communication systems 

still need to improve in the smart grid to integrate generated 

power from solar, wind, and other renewable energy 

resources [7]. 

 

 
Fig. 1   Short-view of smart grid. 

Recently, machine learning approaches like Extra Tree, Least 

Squares Support Vector Machine, and Gaussian Process 

Regression have significantly improved several science and 

technology disciplines. This can be used to forecast whether 

underground natural gas storage sites will be available in time 

to support sustainable development goals [8]. The random 

forest, decision tree, support vector regression, and artificial 

neural network algorithms can be employed to determine the 

pore pressure. This can evaluate the geomechanically 

parameters of the reservoir. It is essential for developing oil 

and gas fields [9]. An artificial electric field algorithm that 

climbs hills can be used to track a photovoltaic system's 

greatest Power [10]. Powerful models like AlexNet may 

produce results with high accuracy on even the most 

challenging datasets [11]. Taguchi and response surface 

method can be used to remove the malachite green and 

auramine-O by NaX nano zeolites from the polluted water 

[12]. Using random forest, gradient boosting model, extreme 

gradient boosting, and their ensembles, it is possible to map 

the implications of flood threats. These are influenced by 

climate change and changes in land use. [13]. Three types of 

artificial neural network-based multi-layer perceptron can be 

used to predict the degree of dissolved oxygen [14]. The 

interval type-3 fuzzy logic systems, a specific instance of 

general type-2 fuzzy systems, serve as the foundation for 

dynamic fractional-order models [15]. Interval type-3 fuzzy 

logic is used to model each output of the system. This utilizes 
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multiple first-order dynamic fractional order fuzzy systems 

[16]. Optimization methods like particle swarm optimization, 

genetic algorithms, artificial bee colonies, and backtracking 

search algorithms can be utilized to determine the ideal 

parameters of the smart grid [17]. For each of the six depth 

increases, the wavelet support vector regression improves 

performance in forecasting soil salinity [18]. 

The data-driven approaches have been enhancing the 

modeling quality in a variety of applications, including 

Pearson's correlation. This reveals strong positive 

connections between the number of the Covid-19 patients and 

the number of deaths caused by this pandemic [19]. To 

identify flood-prone areas, the methods boosted regression 

tree, parallel random forest, very randomized trees, random 

forest, and regularized random forest are helpful [20]. The 

ability of hybrid failure mode and effects analysis aids in 

overcoming several shortcomings in the use of traditional 

FMEA [21]. The multi-layer perceptron together with whale 

optimization techniques can be helpful to model a hybrid 

model which can predicts the wind speed [22]. The Bayesian 

artificial neural network and support vector machine 

algorithms are helpful for the accurate estimation of 

groundwater nitrate concentration [23]. The hybrid model’s 

ability to capture maximum salinity values has been greatly 

improved by the hybridization of machine learning 

techniques. This is very crucial for the management of water 

resources [24]. The development of comparative research 

with multivariate discriminant analysis is used to evaluate the 

performance of two ensemble models, boosted regression 

trees and the random forest [25]. Scalability and the capacity 

to use noisy, nonlinear economic data patterns in conjunction 

with high-dimensional problems are two characteristics of 

deep reinforcement learning [26]. The efficacy of the deep 

learning neural network and particle swarm optimization 

method for predicting the susceptibility of gully erosion is 

89% [27]. The nomadic people algorithm increases the soft 

computing models' accuracy and convergence speed [28]. 

The stability of photovoltaic/battery systems is ensured by a 

fractional-order control system. This is based on type-3 fuzzy 

logic systems under unknowable dynamics, fluctuating 

irradiance, and temperature [29]. With the best model fitting 

ability, LSTM produces more accurate findings. 

Additionally, Adaboost, Gradient Boosting, and XGBoost 

frequently compete fiercely for tree-based models [30]. The 

most effective models for identifying other sensitive areas' 

vulnerability to gully erosion are based on credal decision 

trees random forest, and kernel logistic regression [31]. At the 

provincial level, the deep neural network assists in managing 

a lot of supplementary data [32]. For modeling and 

uncertainty analysis of groundwater levels, the adaptive 

neuro-fuzzy interface system with the grasshopper 

optimization algorithm and support vector machine exhibits 

the best and worst results, respectively [33]. The best 

methods for estimating the solubility of acids in supercritical 

carbon dioxide are provided by the radial basis function 

artificial neural network, multi-layer perceptron artificial 

neural network, least squares support vector machine, and 

adaptive neuro-fuzzy inference system. This can help 

chemists and engineers forecast operational conditions in the 

sector [34]. The space syntax technique can be used to assess 

how spatial integration of urban settings affects the quality of 

physical activity [35]. The bootstrapping algorithm with the 

generalized additive model attains superior performance in 

terms of statistical measures for flood susceptibility 

prediction [36]. The radio duty cycles for false wakeups and 

idle listening are decreased using a quick clear channel 

evaluation method. This is done by using dynamic received 

signal strength indicator status check time and saves about 

8% energy consumption [37]. The recurrent neural network 

and long short-term memory algorithms outperform stock 

market trends via continuous and binary data [38]. The 

DistBlockBuilding architecture is employed to handle risk-

free and safe data transmission from one surface to another 

surface [39].  

Smart grid applications had been embedded into the concept 

of a smart city with a wide range of applications, e.g., support 

vector machine algorithm-based model predicts the power 

and energy demand-supply consumption in smart grid to 

achieve smart city smartly [40, 43]. A new evolving machine 

learning algorithm helps to accurately intrusion detection 

systems in smart grids [41]. The Bagging classifier algorithm 

predicts the power consumption in a smart grid with 97.9% 

of accuracy [42]. The random forest-based model has 

outperformed by 10% as compared to other machine 

learning-based algorithms for theft detection datasets for 

benchmarking in the smart grid environment [44]. By 

increasing efficiency, the energy optimization method may 

reduce the delay rate to 40.3% while increasing real and 

expected cost analysis by 95% [45].  

 
Fig 2. Need for machine intelligence in the smart grid. 

Deep learning methods on the other hand work best on big 

datasets and learns from data. The relationships between 

input and output data and variables are well modeled using 

deep learning methods and deliver insight into 

comprehensive datasets. Smart grids incorporate a wide 

range of deep learning applications and methodologies. For 

instance, a the grained recurrent unit algorithm gives better 

result in smart grid cyber security audits, as compare to CNN-

based long short-term memory algorithm [46]. The 

performance of a machine-learning-based ultra-lightweight 

data aggregation technique for smart grids that do not require 

a secret key to be retained for communicating with the 

aggregator is improved by employing collaborative learning 

[47]. Deep Neural Networks and Decision Tree classifiers 

perform better at managing risk in the smart grid's financial 

sector [48]. To increase classification accuracy and examine 

electricity theft in the smart grid, the outputs of the ML 



 

 

algorithms can be combined using the temporal convolutional 

network [49.50]. A deep learning framework estimates the 

solar generators' intra-hour output power interval. Also, it 

detects the data invasions in real-time and with pinpoint 

accuracy [51]. There are two primary phases to CNN's 

training for voice emotion recognition. To begin with, local 

invariant characteristics are learned using unlabeled data. It 

makes use of a sparse auto-encoder variant with 

reconstruction penalization. The second stage involves 

sending local invariant characteristics. This features extractor 

termed salient discriminative feature analysis. Using a brand-

new objective function, this trains discriminative features that 

are sensitive to affect. Recognizing speech emotions 

promotes feature saliency, orthogonality, and discrimination 

[52]. The convolutional neural network methodologies have 

been a fundamental deep learning solution to smart grid 

applications. It is essential to investigate and evaluate the 

progress of this method in the smart grid. Consequently, a 

comprehensive investigation with the aid of PRISMA had 

been conducted. The PRISMA standard queries including the 

convolutional neural networks and its abbreviation forms of 

ConvNet or CNN reveal a significant increase in the 

popularity of this deep learning method in smart grid 

applications. This research identifies 2200 pieces of literature 

in the field. After considering the PRISMA guideline the 

most relevant and fundamental application had been reduced 

to 46 documents where the single and hybrid methods had 

been identified. The investigation showed that hybrid 

methods delivered a better performance with higher accuracy. 

It is expected that more hybrid methods will have emerged in 

the smart grid application. Unlabeled samples from the CNN 

training sets are trained using a sparse auto-encoder variant. 

This requires reconstruction penalization to learn local 

invariant features. CNN is a flexible and effective deep 

learning technique for understanding speech and emotion. 

The objective function promotes feature saliency, 

orthogonality, and discrimination for speech error 

recognition [53]. In comparison to deep neural networks, 

CNNs help reduce the speech recognition error rate on the 

TIMIT phone recognition and voice search large vocabulary 

tasks by 6%–10% [54]. However, CNNs frequently cannot be 

employed for object recognition jobs with real-time 

restrictions, where several predictions must be performed on 

sub-windows of a big input image. This is owing to the high 

model complexity [55]. CNNs can be used in a limited-

weight-sharing method to more accurately simulate speech 

features [56]. A CNN to accurately predict image quality 

without a reference image [57].  

    The CNN had been proposed in the early 90s and it started 

to gain popularity in image and speech analysis by 2014. 

Today, CNN is used for a variety of purposes and in many 

different ways. For example, with 96.97% accuracy, the CNN 

classifier is designed to predict whether a lung lesion is 

malignant or not based on the features gathered.  With an 

accuracy rate of 98.55. For identifying pneumonia, the 

ensemble classifier using support vector machines with radial 

basis functions and logistic regression classifiers performs 

well [58]. To detect coronavirus disease from chest X-ray 

imaging, an improved densely connected convolutional 

network method based on transfer learning can be used 

[59,60]. The efficiency of classifying the eight main 

personality qualities from text using integration of 

convolutional neural networks and Long Short-Term 

Memory. [61]. Due to its intelligence, effective learning, 

precision, and resilience in model development, deep 

learning is now a need [62].   Picture data processing is well 

suited to a multi-layer neural network architecture [63]. 

Convolutional neural networks enforce a local connectivity 

pattern in which each neuron only interacts with a tiny local 

subset of the neurons. This referred to as the local receptive 

field of the preceding layer. [64].  

     By introducing weight sharing across spectrum and time, 

CNN gives the model translational robustness to minor model 

changes. Additionally, CNNs frequently use pooling, which 

adds more translational and rotational invariance [65]. Using 

a CNN with automated speech recognition (ASR) training, 

identify speakers [66]. Key detection, chord detection, and 

genre and artist classification have all been tested using 

convolutional learning on music audio data. Aside from our 

first research, CNNs have never been used for the relatively 

low-level task of onset detection, despite the findings being 

promising [67]. Before delivering the picture patches to the 

DCNN for classification, they are first processed. A linear 

plane can be fit onto the image intensity as represented by 

"𝑎𝑥 +  𝑏𝑦 +  𝑐 =  𝐼"                          (1) 

where (x,y) is the location of the pixel, I is the intensity of the 

corresponding pixel, and a, b, and c are the fitting parameters 

[68]. The correlation coefficient for the CNN is given by  

Correlation Coefficient = (𝐶𝑜𝑛(𝑥, ŷ)/(𝜎𝑥, 𝜎ŷ)            (2) 

Where x denotes real samples., ŷ denotes predicted samples, 

Cov(x, ŷ) represents the covariance between x and ŷ. ‘σ’ is 

the standard deviation. This is calculated for both x and ŷ. 

[69]. Another adaptive learning technique for addressing 

damaging learning rates is the root mean square propagation. 

RMSprop uses an exponentially weighted average to 

calculate the learning rate after each iteration, given by [70].  

qt=qt-1 +(1−Ƴ) × pt
2                                 (3) 

Δwt=−
𝑞𝑡

√𝑞𝑡+√ ∈
 × pt                                                      (4) 

wt +1= wt + ƞ ×Δwt                          ….(5) 

where η represents initial learning rate; qt denotes 

exponential average of gradients along wj; pt is gradient at 

time t along wj; xt describes exponential average of squares 

of gradients along wj; Ƴ is the hyperparameter. 

 



 

 

Fig 3. A detailed illustration of CNN 

II. MATERIALS AND METHODS 

The process for conducting a systematic review of the 

documents is based on queries in the Scopus database 

integrated with PRISMA. The review methodology is based 

on earlier review techniques that were employed to build the 

state of the review on conventional neural networks in diverse 

applications [71–86]. The PRISMA found that the two most 

popular classical machine learning techniques are support 

vector machines and long-short term memories The 

following Figure illustrates the schematic representation of 

the methodology which is planned in three levels.  

Fig 4. The schematic representation of the methodology integrated with PRISMA 

 

 
Fig 5. Illustration of the popularity of CNN in the smart grid 

within the past five years (2200 articles: source Scopus July 2022 

  
Fig 6 Identification of the fundamental and essential CNN using PRISMA 

guidelines (350 articles: source Scopus July 2022 



 

 

III.  RESULTS 

The state-of-the-art review includes the single and hybrid 

CNN methods. The principal findings following the thorough 

survey and suggested model is that hybrid-CNN was found to 

be a very effective method. This can be used for abnormal 

flow detection in the software-defined network-based smart 

grid. The review demonstrates that using hybrid CNN 

improves accuracy. This is a significant advancement over 

using other deep learning techniques. Deep learning models 

are typically used with hybrid detection techniques to 

increase detection accuracy. The hybrid CNNs were 

employed to identify consumer electricity use fraud.  New 

actors are being incorporated into the SG as it changes day by 

day. Consequently, new hybrid-CNN-based models and 

applications will be needed. The CNN-LSTM and CNN-

GRU use different performance metrics like F-1 scores, 

precision, accuracy, and recall. The hybrid-CNN appears to 

have a bright future in smart grid applications. However, 

compared to shallow networks, these algorithms are more 

challenging to train. Their theoretical elements need to be 

investigated despite their widespread use and superior 

performance. Table 1 provides a summary of the single CNN 

approaches. Furthermore, the hybrid methods of CNN are 

listed and discussed in table 2.  

 

 
 

 

TABLE I.  Single CNN in smart grid 

 

TABLE II. Hybrid CNN in smart grid    

References Year Journal name Application 

[87] 2022 

IEEE Transactions on Network Science and 

Engineering Attack and defense to recognize power quality. 

[88] 2021 Ad Hoc Networks Internet-of-Things load identification. 

[89] 2021 Computer Communications Non-intrusive household load identification. 

[90] 2020 IEEE Transactions on Industrial Informatics Nonintrusive Load Monitoring  

[91] 2020 PLoS ONE Reduction and faulty data detection during the building of the smart grid. 

[92] 2020 IEEE Internet of Things Journal Detection of the fake data injection attack locally. 

[93] 2020 
International Transactions on Electrical Energy 
Systems Enhancing security by identifying and categorizing non-technical losses.  

[94] 2019 IEEE Internet of Things Journal Protection of energy privacy and detection of energy theft 

[95] 2019 Energies Energy disaggregation  

[96] 2019 WSEAS Transactions on Power Systems Forecasting of sources and loads in smart grids 

[97] 2018 IEEE Transactions on Industrial Informatics Electricity-Theft detection 

[98] 2018 Neurocomputing Energy demand prediction 

References Year Sources Application Name of the hybrid CNN 

[99] 2022 Energies False data injection  and attack detection 

Convolutional Neural Network, 
Auto-encoder, Long-short term 

memory 

[100] 2022 
Journal of Internet Services and Information 

Security Cyber-security audit 

Convolutional Neural Network, 
AlexNet, ,Long-short term 

memory 

[101] 2022 
Journal of Modern Power Systems and Clean 

Energy Discreet load monitoring 

Biology-inspired spiking neural 
network, spike-time dependent 

plasticity algorithm 

[102] 2022 
Journal of King Saud University - Computer 

and Information Sciences Self-maintenance of smart grids 
Convolutional Neural Network, 

Discrete Wavelet Transform 

[103] 2022 IEEE Internet of Things Journal Energy theft detection 
Temporal convolutional 

network, FedDetect framework 

[104] 2022 Energies 
Manual operation evaluation and  virtual 

reality training in Smart Grid 

Vectorized spatio-temporal 
graph convolutional neural 

network, 

[105] 2022 IEEE Access Loss detection  

Gray relational analysis, a 
quantizer based on D-H, and a 
classifier based on 1D CNN 

[106] 2022 IEEE Access Identification of non-technical losses 
Bidirectional gated recurrent 

unit, Autoencoder 

[107] 2022 
Wireless Communications and Mobile 

Computing 
Recognition of faulty electrical lines 

using the Internet of Things 
Convolutional Neural Network, 

Relief-F 

[108] 2022 IEEE Access 
Data augmentation to detect non-

technical losses  

Bidirectional Wasserstein 
generative adversarial network, 

2D- Convolution Neural 
Network 

[109] 2022 IEEE Access Electricity theft detection  

AdaBoost and AlexNet, 
artificial bee colony optimized, 
Convolution Neural Network 



 

 

CONCLUSION 

The convolutional neural network methodologies have been 

a fundamental deep learning solution to smart grid 

applications. It is essential to investigate and evaluate the 

progress of this method in the smart grid. Consequently, a 

comprehensive investigation with the aid of PRISMA had 

been conducted. The PRISMA standard queries including the 

convolutional neural networks and their abbreviation forms 

of ConvNet or convolutional neural reveal a significant 

increase in the popularity of this deep learning method in 

smart grid applications. This research identifies 2200 pieces 

of literature in the field. After considering the PRISMA 

guideline the most relevant and fundamental application had 

been reduced to 46 documents where the single and hybrid 

methods had been identified. The investigation showed that 

hybrid methods delivered a better performance with higher 

accuracy. It is expected that more hybrid methods will have 

emerged in the smart grid application. The literature 

demonstrates that a convolution neural network has been 

thought of as a workable alternative. In conclusion, this 

article will be interesting to aspiring researchers who may be 

keen to learn about the cutting-edge concepts required to 

understand convolution neural network use in smart grid 

technologies. In estimating individual household energy 

consumption with both predictable and regular usage 

behavior, the hybrid convolutional neural - long short-term 

memory-based deep learning architecture performs better 

than the other competing systems. Future work to improve 

classification accuracy will require additional research 

utilizing methods such as attention mechanisms, context-

relation modeling, feature fusion of depth and infrared 

information, etc. 
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