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Abstract. We devise a shallow semantical embedding of Åqvist’s dyadic
deontic logic E in classical higher-order logic. This embedding is encoded
in Isabelle/HOL, which turns this system into a proof assistant for deon-
tic logic reasoning. The experiments with this environment provide ev-
idence that this logic implementation fruitfully enables interactive and
automated reasoning at the meta-level and the object-level.
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1 Introduction

Normative notions such as obligation and permission are the subject of deontic
logics [18] and conditional obligations are addressed in so-called dyadic deontic
logic. A landmark and historically important dyadic deontic logic has been pro-
posed by B. Hansson [21] and Åqvist [3]. This dyadic deontic logic comes with
a preference models semantics [24], in which a binary preference relation ranks
the possible words in terms of betterness. The framework is immune to the well
known paradoxes of contrary-to-duty (CTD) reasoning such as Chisholm [14]’s
paradox. The class of all preference models, in which no specific constraints are
put on the betterness relation, has a known axiomatic characterisation, given by
Åqvist’s system E. (See Parent [24].)

When applied as a meta-logical tool, simple type theory [15], aka classical
higher-order logic (HOL), can help to better understand semantical issues (of
embedded object logics). The syntax and semantics of HOL are well understood
[7] and there exist automated proof tools for it; examples include Isabelle/HOL
[23] and LEO-II [11]. As mentioned in the Handbook of Deontic Logic and Nor-
mative Systems [19], the development of computational techniques in deontic
logic is still in its infancy.

In this paper we devise an embedding of E in HOL. This embedding uti-
lizes the shallow semantical embedding approach that has been put forward by
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Benzmüller (cf. [6] and references therein) as a pragmatical solution towards
universal logic reasoning. This approach uses classical higher-order logic as (uni-
versal) meta-logic to specify, in a shallow way, the syntax and semantics of
various object logics, in our case system E. The embedding has been encoded in
Isabelle/HOL to enable experiments in deontic reasoning.

Related work [9] has developed an analogous shallow semantical embedding
for the dyadic deontic logic proposed by Carmo and Jones [13]. A core difference
concerns the notion of semantics employed in both works, which leads to different
semantical embeddings. Instead of the semantics based on preference models as
employed by Hansson and Åqvist, a neighborhood semantics is employed by
Carmo and Jones. Based on the embeddings provided in [9] and here, further
empirical studies are planned in order to compare these rival formalisations in
particular regarding their practical reasoning performance and regarding their
suitability to address relevant challenges (such as CTD reasoning) in practical
applications.

Deep semantical embeddings of non-classical logics have been studied exten-
sively in the related literature (examples are given in [17, 16]). The emphasis in
these works typically is on interactive proofs of meta-logical properties. While
meta-logical studies are also in reach for the methods presented here (see e.g. [8,
20]), the primary motivation, at least for this paper, is different. Our interest is
in proof automation at object level, i.e. proof automation of Åqvist’s system E.
In other words, we are interested in practical normative reasoning applications
of system E in which a high degree of automation (at object level) is required.
Moreover, we are interested not only in the ’propositional’ system E, but also in
quantified extensions of it. For this, we plan to accordingly adapt the achieve-
ments of previous work (see e.g. [10, 4]). Making deep semantical embeddings
scale for quantified non-classical logics, on the contrary, seems more challenging
and less promising regarding proof automation.

The article is structured as follows: Sec. 2 describes system E and Sec. 3 intro-
duces HOL. The semantical embedding of E in HOL is then devised and studied
in Sec. 4. This section also shows the faithfulness (viz. soundness and complete-
ness) of the embedding. Sec. 5 discusses the implementation in Isabelle/HOL
[23]. Sec. 6 concludes the paper.

2 Dyadic Deontic Logic E

The language of E is obtained by adding the following operators to the syntax
of propositional logic: 2 (for necessity); 3 (for possibility); and ©(−/−) (for
conditional obligation). ©(ψ/φ) is read “If φ, then ψ is obligatory”. The set of
well-formed formulas is defined in the straightforward way. Iteration of the modal
and deontic operators is permitted, and so are “mixed” formulas, e.g.,©(q/p)∧p.
We put > =df ¬q ∨ q, for some propositional symbol q, and ⊥ =df ¬>.

A preference model is a structure M = 〈S,�, V 〉 where

– S is a non-empty set of items called possible worlds;
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– �⊆ S × S (intuitively, � is a betterness or comparative goodness relation;
“s � t” can be read as “world s is at least as good as world t”);

– V is a function assigning to each atomic sentence a set of worlds (i.e V (q) ⊆ S).

Given a preference model M = 〈S,�, V 〉 and a world s ∈ W , we define the
satisfaction relation M, s � ϕ (read as “world s satisfies ϕ in model M”) by
induction on the structure of ϕ as described below. Standard deontic logic(SDL)
is based on two class of states: good/bad (or green/red). In preference mod-
els we allow gradations between good and bad states. The closer a state is to
ideality, the better. Intuitively, the evaluation rule for the dyadic obligation op-
erator puts©(ψ/φ) true whenever all the best φ-worlds are ψ-worlds. We define
VM (ϕ) = {s ∈ S | M, s |= ϕ} and opt�(V (ϕ)) = {s ∈ V (ϕ) | ∀t(t � ϕ → s �
t)}. Whenever the model M is obvious from context, we write V (ϕ) instead of
VM (ϕ).

M, s |= p if and only if s ∈ V (p)

M, s |= ¬ϕ if and only if M, s 6|= ϕ (that is, not M, s |= ϕ)

M, s |= ϕ ∨ ψ if and only if M, s |= ϕ or M, s |= ψ

M, s |= 2ϕ if and only if V (ϕ) = S

M, s |= © (ψ/ϕ) if and only if opt�(V (ϕ)) ⊆ V (ψ)

As usual, a formula ϕ is valid in a preference model M = 〈S,�, V 〉 (notation:
M |= ϕ) if and only if, for all worlds s ∈ S, M, s |= ϕ. A formula ϕ is valid
(notation: |=E ϕ) if and only if it is valid in every preference model. The notions
of semantic consequence and satisfiability in a model are defined as usual.

System E is defined by the following axioms and rules:

All truth functional tautologies (PL)

S5-schemata for 2 and 3 (S5)

© (ψ1 → ψ2/ϕ)→ (©(ψ1/ϕ)→©(ψ2/ϕ)) (COK)

© (ψ/ϕ)→ 2© (ψ/ϕ) (Abs)

2ψ →©(ϕ/ψ) (Nec)

2(ϕ1 ↔ ϕ2)→ (©(ψ/ϕ1)↔©(ψ/ϕ2)) (Ext)

© (ϕ/ϕ) (Id)

© (ψ/ϕ1 ∧ ϕ2)→©(ϕ2 → ψ/ϕ1) (Sh)

If ` ϕ and ` ϕ→ ψ then ` ψ (MP)

If ` ϕ then ` 2ϕ (N)

The notions of theoremhood, deducibility and consistency are defined as
usual.

Theorem 1. System E is (strongly) sound and complete with respect to:

– the class of all preference models
– the class of preference models in which � is reflexive
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– the class of preference models in which � is total (for all s, t ∈ S, s � t or
t � s)

Proof. See Parent [24].

3 Classical Higher-order Logic

In this section we introduce classical higher-order logic (HOL). The presentation,
which has partly been adapted from [5], is rather detailed in order to keep the
article sufficiently self-contained.

3.1 Syntax of HOL

To define the syntax of HOL, we first introduce the set T of simple types. We
assume that T is freely generated from a set of basic types BT ⊇ {o, i} using
the function type constructor �. Type o denotes the (bivalent) set of Booleans,
and i a non-empty set of individuals.

For the definition of HOL, we start out with a family of denumerable sets
of typed constant symbols (Cα)α∈T , called the HOL signature, and a family of
denumerable sets of typed variable symbols (Vα)α∈T .3 We employ Church-style
typing, where each term tα explicitly encodes its type information in subscript α.

The language of HOL is given as the smallest set of terms obeying the fol-
lowing conditions.

– Every typed constant symbol cα ∈ Cα is a HOL term of type α.
– Every typed variable symbol Xα ∈ Vα is a HOL term of type α.
– If sα�β and tα are HOL terms of types α � β and α, respectively, then

(sα�β tα)β , called application, is an HOL term of type β.
– If Xα ∈ Vα is a typed variable symbol and sβ is an HOL term of type β,

then (λXαsβ)α�β , called abstraction, is an HOL term of type α � β.

The above definition encompasses the simply typed λ-calculus. In order to
extend this base framework into logic HOL we simply ensure that the signature
(Cα)α∈T provides a sufficient selection of primitive logical connectives. Without
loss of generality, we here assume the following primitive logical connectives to
be part of the signature: ¬o�o ∈ Co�o, ∨o�o�o ∈ Co�o�o, Π(α�o)�o ∈ C(α�o)�o
and =α�α�α∈ Cα�α�α, abbreviated as =α. The symbols Π(α�o)�o and =α�α�α
are generally assumed for each type α ∈ T . The denotation of the primitive
logical connectives is fixed below according to their intended meaning. Binder
notation ∀Xα so is used as an abbreviation for (Π(α�o)�o(λXαso)). Universal
quantification in HOL is thus modeled with the help of the logical constants
Π(α�o)�o to be used in combination with lambda-abstraction. That is, the only
binding mechanism provided in HOL is lambda-abstraction.

3 For example in Sec. 4 we will assume constant symbol r, with type i � i � o as part
of the signature.
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HOL is a logic of terms in the sense that the formulas of HOL are given
as the terms of type o. In addition to the primitive logical connectives selected
above, we could assume choice operators ε(α�o)�α ∈ C(α�o)�α (for each type α)
in the signature. We are not pursuing this here.

Type information as well as brackets may be omitted if obvious from the
context, and we may also use infix notation to improve readability. For example,
we may write (s ∨ t) instead of ((∨o�o�oso)to).

From the selected set of primitive connectives, other logical connectives can
be introduced as abbreviations.4 For example, we may define s∧ t := ¬(¬s∨¬t),
s→ t := ¬s∨t, s←→ t := (s→ t)∧(t→ s) , > := (λXiX) = (λXiX), ⊥ := ¬>
and ∃Xαs := ¬∀Xα¬s.

The notions of free variables, α-conversion, βη-equality (denoted as =βη) and
substitution of a term sα for a variable Xα in a term tβ (denoted as [s/X]t) are
defined as usual.

3.2 Semantics of HOL

The semantics of HOL is well understood and thoroughly documented. The
introduction provided next focuses on the aspects as needed for this article. For
more details we refer to the previously mentioned literature [7].

The semantics of choice for the remainder is Henkin semantics, i.e., we work
with Henkin’s general models [22]. Henkin models (and standard models) are
introduced next. We start out with introducing frame structures.

A frame D is a collection {Dα}α∈T of nonempty sets Dα, such that Do =
{T, F} (for truth and falsehood). The Dα→β are collections of functions mapping
Dα into Dβ .

A model for HOL is a tuple M = 〈D, I〉, where D is a frame, and I is a
family of typed interpretation functions mapping constant symbols pα ∈ Cα to
appropriate elements of Dα, called the denotation of pα. The logical connectives
¬, ∨, Π and = are always given their expected, standard denotations:5

– I(¬o→o) = not ∈ Do→o such that not(T ) = F and not(F ) = T .

4 As demonstrated by Andrews [2], we could in fact start out with only primitive
equality in the signature (for all types α) and introduce all other logical connectives
as abbreviations based on it. Alternatively, we could remove primitive equality from
the above signature, since equality can be defined in HOL from these other logical
connectives by exploiting Leibniz’ principle, expressing that two objects are equal
if they share the same properties. Leibniz equality

.
=
α

at type α is thus defined
as sα

.
=
α
tα := ∀Pα�o(Ps ←→ Pt). The motivation for the redundant signature as

selected here is to stay close to the the choices taken in implemented theorem provers
such as LEO-II and Leo-III and also to theory paper [7], which is recommended for
further details.

5 Since =α→α→o (for all types α) is in the signature, it is ensured that the domains
Dα→α→o contain the respective identity relations. This addresses an issue discovered
by Andrews [1]: if such identity relations did not exist in the Dα→α→o, then Leibniz
equality in Henkin semantics might not denote as intended.
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– I(∨o→o→o) = or ∈ Do→o→o such that or(a, b) = T iff (a = T or b = T ).
– I(=α→α→o) = id ∈ Dα→α→o such that for all a, b ∈ Dα, id(a, b) = T iff a is

identical to b.
– I(Π(α→o)→o) = all ∈ D(α→o)→o such that for all s ∈ Dα→o, all(s) = T iff
s(a) = T for all a ∈ Dα; i.e., s is the set of all objects of type α.

Variable assignments are a technical aid for the subsequent definition of an inter-
pretation function ‖.‖M,g for HOL terms. This interpretation function is para-
metric over a model M and a variable assignment g.

A variable assignment g maps variables Xα to elements in Dα. g[d/W ] de-
notes the assignment that is identical to g, except for variable W , which is now
mapped to d.

The denotation ‖sα‖M,g of an HOL term sα on a model M = 〈D, I〉 under
assignment g is an element d ∈ Dα defined in the following way:

‖pα‖M,g = I(pα)

‖Xα‖M,g = g(Xα)

‖(sα→β tα)β‖M,g = ‖sα→β‖M,g(‖tα‖M,g)

‖(λXαsβ)α→β‖M,g = the function f from Dα to Dβ such that
f(d) = ‖sβ‖M,g[d/Xα] for all d ∈ Dα

A model M = 〈D, I〉 is called a standard model if and only if for all α, β ∈ T
we have Dα→β = {f | f : Dα −→ Dβ}. In a Henkin model (general model)
function spaces are not necessarily full. Instead it is only required that for all
α, β ∈ T , Dα→β ⊆ {f | f : Dα −→ Dβ}. However, it is required that the
valuation function ‖ · ‖M,g from above is total, so that every term denotes. Note
that this requirement, which is called Denotatpflicht, ensures that the function
domains Dα→β never become too sparse, that is, the denotations of the lambda-
abstractions as devised above are always contained in them.

Corollary 1. For any Henkin model M = 〈D, I〉 and variable assignment g:

1. ‖(¬o→o so)o‖M,g = T iff ‖so‖M,g = F .
2. ‖((∨o→o→o so) to)o‖M,g = T iff ‖so‖M,g = T or ‖to‖M,g = T .
3. ‖((∧o→o→o so) to)o‖M,g = T iff ‖so‖M,g = T and ‖to‖M,g = T .
4. ‖((→o→o→o so) to)o‖M,g = T iff (if ‖so‖M,g = T then ‖to‖M,g = T ).
5. ‖((←→o→o→o so) to)o‖M,g = T iff (‖so‖M,g = T iff ‖to‖M,g = T ).
6. ‖>‖M,g = T .
7. ‖⊥‖M,g = F .
8. ‖(∀Xαso)o‖M,g = T iff for all d ∈ Dα we have ‖so‖M,g[d/Xα] = T .
9. ‖(∃Xαso)o‖M,g = T iff there exists d ∈ Dα such that ‖so‖M,g[d/Xα] = T .

Proof. We leave the proof as an exercise to the reader.

An HOL formula so is true in a Henkin model M under assignment g if
and only if ‖so‖M,g = T ; this is also expressed by writing that M, g |=HOL so.
An HOL formula so is called valid in M , which is expressed by writing that
M |=HOL so, if and only if M, g |=HOL so for all assignments g. Moreover, a
formula so is called valid, expressed by writing that |=HOL so, if and only if so
is valid in all Henkin models M .
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4 Embedding E into HOL

This section, the core contribution of this article, presents a shallow semantical
embedding of system E in HOL and proves its soundness and completeness. In
contrast to a deep logical embedding, in which the syntactical structure and the
semantics of logic L would be formalized in full detail (using e.g. structural in-
duction and recursion), only the core differences in the semantics of both system
E and meta-logic HOL are explicitly encoded here. In a certain sense we show,
that system E can in fact in be identified and handled as a natural fragment of
HOL.

4.1 Semantical Embedding

The formulas of E are identified in our semantical embedding with certain HOL
terms (predicates) of type i � o. They can be applied to terms of type i, which
are assumed to denote possible worlds. That is, the HOL type i is now identified
with a (non-empty) set of worlds. Type i � o is abbreviated as τ in the remainder.
The HOL signature is assumed to contain the constant symbol ri�τ . Moreover,
for each propositional symbol pi of E, the HOL signature must contain the
corresponding constant symbol piτ . Without loss of generality, we assume that
besides those symbols and the primitive logical connectives of HOL, no other
constant symbols are given in the signature of HOL.

The mapping b·c translates a formula ϕ of E into a formula bϕc of HOL of
type τ . The mapping is defined recursively:

bpc = pτ
b¬sc = ¬τ bsc
bs ∨ tc = ∨τ�τ�τ bscbtc
b2sc = 2τ�τ bsc
b©(t/s)c =©τ�τ�τ bscbtc

¬τ , ∨τ�τ�τ , 2τ�τ , ©τ�τ�τ abbreviate the following formulas of HOL:

¬τ�τ = λAτλXi¬(AX)
∨τ�τ�τ = λAτλBτλXi(AX ∨BX)
2τ�τ = λAτλXi∀Yi(AY )
©τ�τ�τ = λAτλBτλXi∀Wi( (λVi(AV ∧ (∀Yi(AY → ri�τV Y ))))W → BW )6

Analyzing the truth of a translated formula bsc in a world represented by
term wi corresponds to evaluating the application (bscwi). In line with previous
work [10], we define vldτ�o = λAτ∀Si(AS). With this definition, validity of a
formula s in E corresponds to the validity of the formula (vld bsc) in HOL, and
vice versa.

6 If opt�(A) is taken as a abbreviation for λVi(AV ∧ (∀Yi(AY → ri�τV Y ))), then
this can be simplified to ©τ�τ�τ = λAτλBτλXi(opt�(A) ⊆ B).
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4.2 Soundness and Completeness

To prove the soundness and completeness, that is, faithfulness, of the above
embedding, a mapping from preference models into Henkin models is employed.

Definition 1 (Preference model ⇒ Henkin model). Let M = 〈S,�, V 〉
be a preference model. Let p1, ..., pm ∈ PV , for m ≥ 1 be propositional symbols
and bpjc = pjτ for j = 1, ...,m. A Henkin model HM = 〈{Dα}α∈T , I〉 for M is
defined as follows: Di is chosen as the set of possible worlds S and all other sets
Dα�β are chosen as (not necessarily full) sets of functions from Dα to Dβ. For
all Dα�β the rule that every term tα�β must have a denotation in Dα�β must
be obeyed, in particular, it is required that Dτ and Di�τ contain the elements
Ipjτ and Iri�τ . Interpretation I is constructed as follows:

1. For 1 ≤ i ≤ m, Ipjτ ∈ Dτ is chosen such that Ipjτ (s) = T if s ∈ V (pj) in M
and Ipjτ (s) = F otherwise.

2. Iri�τ ∈ Di�τ is chosen such that Iri�τ (s, u) = T if s � u in M and
Iri�τ (s, u) = F otherwise.

Since we assume that there are no other symbols (besides the r, the pj and the
primitive logical connectives) in the signature of HOL, I is a total function.
Moreover, the above construction guarantees that HM is a Henkin model: 〈D, I〉
is a frame, and the choice of I in combination with the Denotatpflicht ensures

that for arbitrary assignments g, ‖.‖HM ,g is a total evaluation function.

Lemma 1. Let HM be a Henkin model for a preference model M . For all for-
mula δ of E, all assignment g and world s it holds:

M, s |= δ if and only if ‖bδcSi‖H
M ,g[s/Si] = T

Proof. See appendix.

Lemma 2 (Henkin model ⇒ Preference model). For every Henkin model
H = 〈{Dα}α∈T , I〉 there exists a corresponding preference model M . Correspond-
ing here means that for all formula δ of E and for all assignment g and world
s, ‖bδcSi‖H,g[s/Si] = T if and only if M, s � δ.

Proof. Suppose that H = 〈{Dα}α∈T , I〉 is a Henkin model. Without loss of
generality, we can assume that the domains of H are denumerable [22]. We
construct the corresponding preference model M as follows:

– S = Di.
– s � u for s, u ∈ S iff Iri�τ (s, u) = T .
– s ∈ V (pjτ ) iff Ipjτ (s) = T for all pj .

Moreover, the above construction ensures that H is a Henkin model for M .
Hence, Lemma 1 applies. This ensures that for all formulas δ of E, for all assign-
ment g and all world s we have ‖bδcSi‖H,g[s/Si] = T if and only if M, s � δ.
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Theorem 2 (Soundness and Completeness of the Embedding).

|=E ϕ if and only if |=HOL vld bϕc

Proof. (Soundness,←) The proof is by contraposition. Assume 6|=E ϕ, i.e, there
is a preference model M = 〈S,�, V 〉, and a world s ∈ S, such that M, s 6|= ϕ.

By Lemma 1 for an arbitrary assignment g it holds that ‖bϕcSi‖H
M ,g[s/Si] =

F in Henkin model HM = 〈{Dα}α∈T , I〉. Thus, by definition of ‖.‖, it holds

that ‖∀Si(bϕcSi)‖H
M ,g = ‖vld bϕc‖HM ,g = F . Hence, HM 6|=HOL vld bϕc. By

definition 6|=HOL vld bϕc.
(Completeness, →) The proof is again by contraposition. Assume

6|=HOL vld bϕc, i.e., there is a Henkin model H = 〈{Dα}α∈T , I〉 and an assign-
ment g such that ‖vld bϕc‖H,g = F . By Lemma 2, there is a preference model
M such that M 2 ϕ. Hence, 6|=E ϕ.

5 Implementation in Isabelle/HOL

The semantical embedding as devised in Sec. 4 has been implemented in the
higher-order proof assistant Isabelle/HOL [23]. Figure 1 displays the respective
encoding. Figure 2 applies this encoding to Chisholm’s paradox (cf. [14]), which
involves the following four statements:

1. It ought to be that a certain man go to help his neighbors;
2. It ought to be that if he goes he tells them he is coming;
3. If he does not go, he ought not to tell them he is coming;
4. He does not go.

These statements can be given a consistent formalisation in DDL see Fig. 2. This
is confirmed by the model finder Nitpick [12] integrated with Isabelle/HOL.
Nitpick computes an intuitive, small model for the scenario consisting of one
possible world i1. The actual world is i1 also. Preference relation r is interpreted
in this model as r = ∅.

In the actual world the man doesn’t go to help his neighbors and doesn’t
tell them that he is coming. That is, V (¬go) = V (¬tell) = {i1}. Also, we
have op(V (>)) = ∅. So, i1 |= ©(go/>) by the evaluation rule for ©. Similarly,
op(V (go)) = op(V (¬go)) = ∅ implies i1 |=©(tell/go) and i1 |=©(¬tell/¬go).

6 Conclusion

A shallow semantical embedding of Åqvist’s dyadic deontic logic E in classi-
cal higher-order logic has been presented, and shown to be faithful (sound an
complete). The works presented here and in [9] provide the theoretical foun-
dation for the implementation and automation of dyadic deontic logic within
existing theorem provers and proof assistants for HOL. We do not provide new
logics. Instead, we provide an empirical infrastructure for assessing practical as-
pects of an ambitious, state-of-the-art deontic logics; this has not been done
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before. An interesting and relevant aspect of the approach is that (based on the
ideas of previous work [10, 4]) quantified extensions of system E and [9] can eas-
ily be implemented and studied in the framework and experimentally assessed.
There is much room for future work. For example, experiments could investigate
whether the provided implementation already supports non-trivial applications
in practical normative reasoning, or whether further improvements are required.
Moreover, we could employ our implementation to systematically study some
meta-logical properties of dyadic deontic logic system E within Isabelle/HOL.
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Appendix (Proof for Lemma 1)

In the proof we implicitly employ curring and uncurring, and we associate sets
with their characteristic functions. Throughout the proof whenever possible we
omit types in order to avoid making the notation too cumbersome. The proof of
lemma 1 is by induction on the structure of δ. We start with the case where δ is
pj . We have ‖bpjcS‖HM ,g[s/Si] = T

⇔ ‖pjτS‖H
M ,g[s/Si] = T

⇔ Ipjτ (s) = T
⇔ s ∈ V (pj) (by definition of HM )
⇔ M, s � pj

For the inductive cases we make the hypothesis that the claim holds for sentences
δ′ shorther than δ:

Inductive hypothesis: For all assignment g and state s,

‖bδ′cS‖HM ,g[s/Si] = T if and only if M, s � δ′

We consider each inductive case in turn:
(a) δ = ϕ ∨ ψ. In this case:

‖bϕ ∨ ψcS‖HM ,g[s/Si] = T

⇔ ‖(bϕc ∨τ�τ�τ bψc)S‖H
M ,g[s/Si] = T

⇔ ‖(bϕcS) ∨ (bψcS)‖HM ,g[s/Si] = T (((bϕc ∨τ�τ�τ bψc)S) =βη ((bϕcS) ∨ (bψcS)))
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⇔ ‖bϕcS‖HM ,g[s/Si] = T or ‖bψcS‖HM ,g[s/Si] = T
⇔ M, s � ϕ or M, s � ψ (by induction hypothesis)
⇔ M, s � ϕ ∨ ψ

(b) δ = ¬ϕ. In this case:

‖b¬ϕcS‖HM ,g[s/Si] = T

⇔ ‖(¬τ�τbϕc)S‖H
M ,g[s/Si] = T

⇔ ‖¬(bϕc)S)‖HM ,g[s/Si] = T ((¬τ�τbϕc)S =βη ¬(bϕcS))

⇔ ‖bϕcS‖HM ,g[s/Si] = F
⇔ M, s 2 ϕ (by induction hypothesis)
⇔ M, s � ¬ϕ

(c) δ = 2ϕ. We have the following chain of equivalences:

‖b2ϕcS‖HM ,g[s/Si] = T

⇔ ‖(λX∀Y (bϕcY ))S‖HM ,g[s/Si] = T

⇔ ‖∀Y (bϕcY )‖HM ,g[s/Si] = T

⇔ For all a ∈ Di we have ‖bϕcY ‖HM ,g[s/Si][a/Yi] = T

⇔ For all a ∈ Di we have ‖bϕcY ‖HM ,g[a/Yi] = T (S /∈ free(bϕc))
⇔ For all a ∈ S we have M,a |= ϕ (by induction hypothesis)
⇔ M, s |= 2ϕ

(d) δ =©(ψ/ϕ). We have the following chain of equivalences:

‖b©(ψ/ϕ)cS‖HM ,g[s/Si] = T

⇔ ‖(λX∀W ( (λV (bϕcV ∧ (∀Y (bϕcY → r V Y ))))W → bψcW ))S‖HM ,g[s/Si] = T

⇔ ‖∀W ( (λV (bϕcV ∧ (∀Y (bϕcY → r V Y ))))W → bψcW )‖HM ,g[s/Si] = T
⇔ For all u ∈ Di we have:

‖(λV (bϕcV ∧ (∀Y (bϕcY → r V Y ))))W → bψcW‖HM ,g[s/Si][u/Wi] = T
⇔ For all u ∈ Di we have:

If ‖(λV (bϕcV ∧ (∀Y (bϕcY → r V Y ))))W‖HM ,g[s/Si][u/Wi] = T ,

then ‖bψcW‖HM ,g[s/Si][u/Wi] = T
⇔ For all u ∈ Di we have:

If ‖bϕcW‖HM ,g[s/Si][u/Wi] = T and

‖∀Y (bϕcY → rW Y )‖HM ,g[s/Si][u/Wi] = T ,

then ‖bψcV ‖HM ,g[s/Si][u/Wi] = T
⇔ For all u ∈ Di we have:

If ‖bϕcW‖HM ,g[s/Si][u/Wi] = T and

for all t ∈ Di we have ‖∀Y (bϕcY → rW Y )‖HM ,g[s/Si][u/Wi][t/Yi] = T ,

then ‖bψcW‖HM ,g[s/Si][u/Wi] = T
⇔ For all u ∈ Di we have:

If ‖bϕcW‖HM ,g[s/Si][u/Wi] = T and

for all t ∈ Di we have ‖bϕcY ‖HM ,g[s/Si][u/Wi][t/Yi] = T implies Iri�τ (u, t) = T ,

then ‖bψcW‖HM ,g[s/Si][u/Wi] = T
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⇔ For all u ∈ Di we have:
If u ∈ V (ϕ) and
for all t ∈ Di we have t ∈ V (ϕ) implies u � t,
then u ∈ V (ψ) (see the justification *)

⇔ opt�(V (ϕ)) ⊆ V (ψ)
⇔ M, s |=©(ψ/ϕ)

Justification *: What we need to show is: ‖bϕc‖HM ,g[s/Si] is identified with
V (ϕ) (analogously ψ). By induction hypothesis, for all assignment g and

state s, we have ‖bϕcS‖HM ,g[s/Si] = T if and only if M, s � ϕ. Expanding
the details of this equivalence we have: for all assignment g and state s

⇔ s ∈ ‖bϕc‖H
M ,g[s/Si] (functions to type o are associated with sets)

⇔ ‖bϕc‖H
M ,g[s/Si](s) = T

⇔ ‖bϕc‖H
M ,g[s/Si]‖S‖H

M ,g[s/Si] = T

⇔ ‖bϕcS‖H
M ,g[s/Si] = T

⇔M, s � ϕ

⇔ s ∈ V (ϕ)

Hence, s ∈ ‖bϕc‖HM ,g[s/Si] if and only if s ∈ V (ϕ).

By extensionality we thus know that ‖bϕc‖HM ,g[s/Si] is identified with V (ϕ).
Moreover, since HM obeys the Denotatpflicht we know that V (ϕ) ∈ Dτ .
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Fig. 1. Shallow semantical embedding of E in Isabelle/HOL.
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Fig. 2. The Chisholm paradox scenario encoded in E (the shallow semantical embed-
ding of E in Isabelle/HOL as displayed in Fig. 1 is imported here). Nitpick confirms
consistency the encoded statements.


