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Abstract—In this paper, we propose an efficient multi-stage
algorithm for non-adaptive Group Testing (GT) with general
correlated prior statistics. The proposed solution can be applied
to any correlated statistical prior represented in trellis, e.g., finite
state machines and Markov processes. We introduce a variation
of List Viterbi Algorithm (LVA) to enable accurate recovery
using much fewer tests than objectives, which efficiently gains
from the correlated prior statistics structure. Our numerical
results demonstrate that the proposed Multi-Stage GT (MSGT)
algorithm can obtain the optimal Maximum A Posteriori (MAP)
performance with feasible complexity in practical regimes, such
as with COVID-19 and sparse signal recovery applications, and
reduce in the scenarios tested the number of pooled tests by
at least 25% compared to existing classical low complexity GT
algorithms. Moreover, we analytically characterize the complexity
of the proposed MSGT algorithm that guarantees its efficiency.

I. INTRODUCTION

Classical Group Testing (GT) aims to detect a small number
of “defective” items within a large population by mixing
samples into as few pooled tests as possible. The idea of
GT was first introduced during World War II when it was
necessary to discover soldiers infected with Syphilis. Dorfman
[1] showed that the required number of tests could be reduced
if multiple blood samples were grouped into pools. When the
samples that participate in the next pool are selected iteratively
based on the previous pool test results, the GT algorithm is
called adaptive. In contrast, in non-adaptive GT, the whole
process is designed in advance. Since it was first suggested,
the GT problem has been investigated and generalized to many
areas and applications, among them disease detection [2]–[4],
cyber security applications [5], pattern matching algorithms
[6] and communication [7], [8].

All of these applications imply a strong connection between
GT and Compressed Sensing (CS) as two methods for sparse
signal recovery that share common applications [9]–[12]. The
main difference between the two is that CS aims to recover
a real-valued signal [13], while GT recovers a binary signal
[14] or discrete-values [4], [15], [16]. Thus, one can consider
GT as a Boolean CS [17], [18].

Traditional GT and its performance (i.e., the tradeoff be-
tween the number of pool tests and recovery algorithm com-
plexity), focused on the probabilistic model in which the
items are identically distributed and independent [14], [19].
Recent research explores cases where prior information about
the correlation of objects is available [2], [3], [20]–[22]. The
motivation for this approach arises from the fact that correlated
prior statistics have the potential to achieve higher recovery
rates and reduce the number of required tests. In disease
detection, leveraging information about the proximity between
individuals, represented by contact tracing information or

graphs, can lead to significant savings in pool tests [2], [3],
[20], [21]. However, previous GT works presented solutions
designed for specific models and applications and may not be
extended easily to other models and applications. In numerous
signal processing applications, correlation between different
frequencies, time signals, or among different sensors can also
be utilized to achieve more precise estimations [13], [23], [24].
Hidden Markov Model (HMM) is a common model for many
physical signals, such as speech signals [25], human motion
[26], and spectrum occupancy in communication systems [27].
Infections can be also modeled as HMMs [28]. For example,
[29] presents a GT solution for a specific HMM derived from
contact tracing. To the best of our knowledge, no existing
solution addresses the GT problem with general Markovian
priors and applicable to a wide range of diverse applications.

In this work, we introduce a practical non-adaptive Multi-
Stage GT (MSGT) algorithm for correlated items with prior
statistics. The proposed multi-stage algorithm employs a new
variation of the parallel List Viterbi Algorithm (LVA) [30]–
[32] we designed for GT to enable accurate low complexity
recovery using fewer tests. The proposed algorithm can be
applied for any statistical prior represented in trellis [33],
e.g., finite-state machines and Markov processes. Using LVA,
MSGT leverages those statistics to estimate the defective set
efficiently, even in a regime below the maximum likelihood
(ML) upper bound. Furthermore, we show how the algorithm’s
parameters can be tuned to achieve a maximum probability of
success without exceeding the limitation of the available com-
putational capacity. We derive a lower bound that considers the
exact priors of the problem and provides analytical results that
characterize the MSGT computational complexity efficiency.
Our numerical results demonstrate that in practical regimes
for COVID-19 [34], [35] and sparse signal recovery in signal
processing [9]–[11], [13], the low computational complexity
MSGT algorithm proposed herein can reduce in the scenarios
tested the number of pool tests by at least 25%.

The rest of this paper is organized as follows. Section II for-
mally describes the GT model with correlated prior statistics.
Section III presents the MSGT algorithm and the analytical
results. Section IV details the simulation evaluation. Finally,
Section V provides concluding remarks and future directions.

II. PROBLEM FORMULATION

Given a set of individuals N , the objective in GT is to
discover a small subset K of unknown defective items using
the minimum number of measurements T . Let N = |N |,
K = |K| denote the total number of items and the number
of defective items, respectively, where K = O(Nθ) for some
θ ∈ [0, 1). The binary vector U ∈ {0, 1}N represents the



population, such that Ui = 1 indicates that the i-th item is
defective. We assume that the set of the individuals is sparse,
such that θ ≤ 1/3 [14], [17], [19], [36], and that each item
can be in one of 2 states: defective and not-defective. For
each item, there is some prior probability that it is defective,
{πi}Ni=1 ∈ [0, 1]

N , πi = P (Ui = 1). The correlation between
the state of the i-th item and the states of the previous τ items
is represented by Φi ∈ [0, 1]

2τ×2. τ = 1, 2, . . . represents the
number of memory steps of the underlying process considered
in the recovery stage. When there is no memory in the
process, τ = 0 and {πi}Ni=1 hold all the prior information.
Φi[l, k] = P (Ui = sk|(Ui−τ , ..., Ui−1) = sl), where sl is the
binary representation of l by a τ -length binary vector and
sk ∈ {0, 1} (For example see Fig. 6b).

For the non-adaptive GT, the testing matrix X ∈ {0, 1}T×N

is defined such that each row corresponds to a single pool
test, and each column corresponds to a single item. That
is, the i-th pool test is represented as a binary row vector:
Xi = [Xi(1), ..., Xi(N)] , i ∈ {1, ..., T} whose elements are
defined: Xi(j) = 1 if the item with an index j ∈ {1, ..., N} is
included in the i-th pool test, and otherwise Xi(j) = 0. Then,
the outcome of the i-th pool test is given by

Yi =
∨
j∈K

Xi(j) =

N∨
j=1

Xi(j)Uj

where
∨

is the Boolean OR function.
Given X and the outcome vector Y , the recovery success

criterion in GT can be measured using various metrics [14].
The main metrics we will use herein are exact recovery and
partial recovery. In terms of exact recovery, the goal is to detect
the precise subset of defective items K. Therefore, given the
estimated defective set K̂ = K̂(N,K,X, Y ), we define the
average error probability by1

P exact
e ≜

1(
N
K

) ∑
K:|K|=K

P
(
K̂ ̸= K

)
.

In partial recovery, we allow a false positive (i.e., |K̂ \K|) and
false negative (i.e., |K \ K̂|) detection rate. Thus, the average
partial success rate is given by:

P partial
s ≜

1(
N
K

) ∑
K:|K|̸=K

∣∣∣K̂ ∩ K
∣∣∣

K
.

To conclude, for a sparse subset of infected items of size K,
form N , the goal in non-adaptive GT with correlated prior data
items, is to design a T × N testing matrix and an efficient
and practical recovery algorithm that can exploit correlated
priors, such that by observing Y T we can identify the subset
of infected items with high probability and with feasible
computational complexity. Thus, given the knowledge of the
correlated prior data items and the available computational
resources, the test designer could design the testing matrix
and a recovery algorithm to maximize the success probability.

1For simplicity of notation, Ps and Pe = 1−Ps refer to success and error
probabilities in the exact recovery analysis.

III. MAIN RESULTS

In this section, we introduce the efficient multi-stage re-
covery algorithm for any statistical prior represented in a
trellis diagram [33], detailed in Algorithm 1. In the first stage,
standard low-complexity algorithms [19] reduce the search
space independently of prior correlations. This reduction is
guaranteed by new analytical results we derive. In the second
stage, the algorithm employs a novel adaptation of the List
Viterbi Algorithm (LVA) [32], designed for GT to enable ac-
curate low-complexity recovery using fewer tests by exploiting
the correlated prior information. Additionally, we derive a
bound to ensure the low complexity of the entire algorithm.
Section III-A describes the proposed algorithm. Section III-B
provides analytical results, followed by a discussion in Section
III-C. We refer the reader to [37, Appendix A] for a detailed
explanation of all the algorithms used as integral components
of Algorithm 1.

A. Pool-Testing Algorithm

1) Testing Matrix and Pooling: The proposed multi-stage
recovery algorithm is intended to work with any non-adaptive
testing matrix, e.g., as given in [38]. To simplify the technical
aspects and focus on the key methods, the testing matrix is
generated randomly under a fixed optimal approximation with
Bernoulli distribution of p = ln(2)/K [39], using classical
GT methods. The pooling and its outcome are given by the
process elaborated in Section II and illustrated in Fig. 1.

Fig. 1: For an unknown population U ∈ {0, 1}9 with K = 2, a
random testing matrix is sampled and the test result Y is calculated.

2) Recovery Process: The suggested recovery algorithm
operates in two main stages. In the first stage (Stage 1), to
reduce the space of search (i.e., the possible defective items),
the algorithm efficiently identifies non-defective and definitely
defective items without considering the prior correlated infor-
mation. In the first step of this stage, we use the Definitely Not
Defective (DND) algorithm [19], [40]–[42] (line 1, Fig. 2.(a)).
DND compares the columns of the testing matrix, X, with the
outcome vector, Y T . If Y (i) = 0 for some i ∈ {1, . . . , T}, the
algorithm eliminates all items participating in the i-th test from
being defective, and outputs them as the set P(DND) ⊂ N .

In the second step of Stage 1, we use Definite Defectives
(DD) algorithm [19] (line 2, Fig. 2.(b)), which goes over the
testing matrix and the test result, looking for positive pool
tests that include only one possibly defective item. DD denotes
those items as definitely defective items and outputs them as
the set P(DD).

Let P(S1,1) = N \ P(DND) and P(S1,2) = N \(
P(DND) ∪ P(DD)

)
denote the set of items that their status



Algorithm 1 Multi-Stage Recovery Algorithm
Input: X, Y, {πi,Φi}Ni=1,K, L, τ, γ
Output: K̂
Stage 1: Reduction of space search

1: P(DND) ← DND(X, Y )

2: P(DD) ← DD
(
X, Y,P(DND)

)
3: P(S1,2) ← N \

(
P(DND) ∪ P(DD)

)
Stage 2: Recovery exploiting prior info

4: {πi,Φi}Ni=1 ← updatePriors
(
{πi,Φi}Ni=1,P(S1,2),P(DD)

)
5: Z← LVA

(
L, τ, {πi,Φi}Ni=1

)
6: C← {}
7: for l← 1 to L do
8: if K ≤

∑
i (Zl,i) ≤ γK then

9: V(l) ← {i | Zl,i = 1}
10: C← C ∪ getAllCombinations

(
V(l),K

)
11: end if
12: end for
13: K̂ ←MAP

(
X, Y,C, {πi,Φi}Ni=1

)

is still unclear after the first step and the second step, respec-
tively. P(S1,2) holds a new space search, and P(DD) holds the
already known defectives. This knowledge is acquired without
utilizing any prior data, which we reserve for the second stage.

Fig. 2: First stage of MSGT. (a) The first step of Stage 1, the DND
algorithm, reveals 5 DND items in U, forming P(DND). Since items
participating in negative tests must be non-defective, we mark all
the participants in the two negative test results as non-defective. (b)
The second step of Stage 1, the DD algorithm, outputs P(DD) that
includes a single DD item, based on the first test result, as it is the
only possibly defective item participating in this test. The two other
positive test results do not contribute to our knowledge here because
there is more than one possibly defective item participating in them.

In the first step of Stage 2, we translate the data we obtained
in DND and DD, P(S1,2) and P(DD), into the state space in
terms of transition probabilities, {Φi}Ni=1, and initial probabil-
ities, {πi}Ni=1, so we can employ all the gathered information
in the next steps (line 4, Fig. 3.(a)). In the state space, the
population sequence, U, is parallel to time steps considered
traditionally in VA for communications problems [32], and
there are two possible states per item, the first indicates “non-
defective” and the second indicates “defective”.

In the second step, the suggested LVA for GT goes over the
sequence of items and outputs Z ∈ {0, 1}L×N , a list of the L
most likely trajectories in the state space (line 5, Fig. 3.(b))
according to MAP decision based on the given prior informa-
tion. Each trajectory is a sequence of N states, representing
items classified as either defective or non-defective. Thus, Z
provides L estimations of U. In practice, the L estimations
may include any number of defective items and require further

processing.
In the third step, we extract candidates for the defective set

out of the L estimated sequences Z (lines 7 to 12). For some
l ∈ {1, . . . , L}, let V(l) denote the set of items estimated as
defective in Zl, the l-th row of Z (line 9). We ignore sequences
that contain less than K defective items or more than γK
defective items, for some γ ≥ 1, and consider only Zl in
which K ≤

∣∣V(l)
∣∣ < γK as valid sequences. For each one of

the valid sequences, we refer to all the combinations of size
K in V(l) as candidates for K̂, and add them to the candidates
list C (line 10).

At this point, we have in C a list of candidates to be our
final estimation K̂, and we can calculate the probability of each
one of them using {πi,Φi}Ni=1. Then, in the fourth step, the es-
timated defective set, K̂, is finally chosen using MAP estimator
out of the C (line 13), i.e., K̂ = argmaxc∈C P (Y |X, c)P (c).

If there are no valid sequences in Z, we consider trajectories
with fewer than K detections for partial recovery. We select
the trajectory with the most detections and randomly complete
it to form a set of size K for our final estimation K̂.

Fig. 3: Stage 2 of MSGT. (a) All the possible transitions in the
state space that we consider in the LVA step, following the insights
obtained in Stage 1. These transitions aggregate to a total of 6
trajectories. (b) The two most likely trajectories returned by LVA
(assuming L = 2). Given K = 2, the black trajectory corresponds
to a valid population vector U with 2 defective items, while the
gray trajectory indicates an invalid population with 3 defective items
instead. Consequently, in the subsequent step, MSGT will extract
two optional defective sets: {U6, U8} and {U7, U8}, and will finally
choose the most likely one using MAP estimator. (c) Comparison of
Stage 2 to ML. With T = 5, we use the first 5 rows of the testing
matrix, ignoring the last test result. This leaves 3 possibly defective
items, forming two potentially defective sets of size K = 2. Using
ML, one set is chosen randomly, leading to an error probability of
0.5. With T = 6, based on the third and sixth test results, there is
only one set of size K = 2 that matches the outcome Y , resulting in
successful decoding with the ML decoder. As shown above, MSGT’s
Stage 2 can successfully decode U with just T = 5, as using the
LVA step it narrows down to only 2 possible trajectories, and then
the final estimation is selected based on the given prior information
and the insights gained in Stage 1.

B. Analytical Results

Here we provide analytical results related to the proposed
MSGT. The proof of certain theorems is technical and falls
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(a) Upper bound for possibly defective items
after DND for N = 10000, and K = 15.
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(b) Lower bound for definitely defective
items after DD for N = 10000, and K = 15.
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(c) Minimum γ parameter to satisfies (2) for
N = 500, and K = 3.

Fig. 4: Numerical evaluation for theoretical results and bounds. The results in (a), (b), and (c) are over 1000 iterations. For ML Upper
Bound (UB), TML = (1 + ϵ)K log2 N , for any ϵ > 0 [17]. In particular, ϵ = 0.25 in the results presented herein.

outside the scope of this paper. The complete proofs are
deferred to [37].

Let P
(DND)
e,a and P

(DND)
e,u denote the error probability of

DND in the average case and its deviation from the average
(“worst-case”) that still allows the success of MSGT on
average in feasible computational complexity, respectively.
The two following Theorems give the upper bound on the
expected number of possible defective items and a “worst-
case” upper bound after the first step of Stage 1.

Theorem 1 ([4]). Consider a group test with a Bernoulli
testing matrix with p = ln 2/K, and T tests as K → ∞.
Let P

(DND)
e,a ≜ N−α(1−ln 2/K)/2 for α ≜ T/K log2 N . The

expected number of possibly defective items is bounded by

E
[∣∣∣P(S1,1)

∣∣∣] ≤ K + (N −K)P (DND)
e,a .

Theorem 2. Consider a group test with a Bernoulli testing
matrix and DND decoder. For any γ ≥ 1, as K → ∞, the
worst-case error probability of DND is bounded by

P (DND)
e,u ≤ P (DND)

e,a

+

1 +

(
γK −

(
K + (N −K)P

(DND)
e,a

))2
(N −K)P

(DND)
e,a

(
1− P

(DND)
e,a

)


−1

.

Proof Sketch. Let G denote the number of non-defective items
that were hidden and not detected in DND (i.e., the number
of false positive items). The probability of each definitely
defective item being hidden, P (DND)

e , depends solely on the
design of the testing matrix. We upper bound P

(DND)
e , by

the sum of the average probability of error P
(DND)
e,a and a

concentration term:

P (DND)
e,u ≜ P (DND)

e,a + P (G− E[G] > g) ,

for some g > 0. We are interested in g = γK −(
K + (N −K)P

(DND)
e,a

)
since LVA’s performance in Stage

2 may be worse than the brute force performance of MAP,
if the number of occlusions in the testing matrix exceeds the
threshold γK. In the case of Bernoulli encoder, the N − K
random variables, representing occlusions of non-defective
items, are independent and G ∼ Bin

(
N −K,P

(DND)
e

)
.

Using the binomial distribution and applying the one-sided
Chebyshev inequality [43] to the concentration term completes
the proof.

The following theorem provides the expected number of
defective items detected by DD in the second step of Stage 1.

Theorem 3. Consider a group test with a Bernoulli testing
matrix with p = ln 2/K, and T tests as K → ∞. The expected
number of defective items that DD successfully detects is
bounded by

E
[∣∣∣P(DD)

∣∣∣] ≥ K

(
1−N−α

2 (1−ln 2/K)N·P (DND)
e,a

)
. (1)

Proof Sketch. Since E
[∣∣P(DD)

∣∣] = (1− E
[
P

(DD)
e

])
K, we

focus on bounding E
[
P

(DD)
e

]
. The detection of the i-th

defective item (i ∈ K) in the DD algorithm may fail under
two conditions: either it does not participate in any test or it
participates, but at least one other potentially defective item
participates in the same pool test. Let Ai represent the event in
which at least one potentially defective item, excluding item i,
participates in some test. Consequently, the probability of Ai

is given by P (Ai) = 1− (1−p)|P
(S1,1)|−1. The probability of

not identifying item i as definitively defective in a given test
is given by 1− p+ pP (Ai). Therefore, the probability of not
detecting a defective item in all T tests is given by

P (DD)
e =

[
1− p (1− p)|P

(S1,1)|−1
]T

.

Next, we substitute the result shown in Theorem 1 and use
the fact that e−x ≥ (1− x/n)

n for any integer n > 0 and

x > 0. It follows that E
[
P

(DD)
e

]
≤ N−α

2 (1−
ln 2
K )

P
(DND)
e,a N

,
which concludes the proof.

The proposition below provides a sufficient condition on
γ, such that, MSGT achieves performance that we conjecture
outperforms ML. This can be assumed since LVA used for this
step is an optimal MAP estimator [32].

Proposition 1. Let η denote the average success probability
of ML decoder. For GT with correlated prior information and
γ ≥ 1, MSGT can achieve an average success probability
equal or greater than η, if

T ≥ log η + log

(
N

K

)
− log

(
N −K

K(γ − 1)

)
. (2)

Proof. We follow the lines of the success probability analysis
in [36, Theorem 1]. Consider a list decoder that, given the
test outcome Y , outputs L(Y ), a list of items estimated as



defective, such that |L(Y )|≥ K. Let N(Y ) denote the number
of possible defective sets for which, given Y , the list decoding
is successful: N(Y ) ≜

∑
K 1{L(Y )∩K=K}. Assuming no prior

information is given, N(Y ) is bounded by the counting bound

N(Y ) ≤
(
N −K

L−K

)
. (3)

The success probability of the decoder can be written as

Ps =
1(
N
K

) ∑
Y

N(Y ) =
2T(
N
K

)N(Y ). (4)

By substituting (3) into (4), taking the logarithm and rearrang-
ing, we have that

T ≥ logPs + log

(
N

K

)
− log

(
N −K

L−K

)
.

It is important to note that unlike [36, Theorem 1], we halt the
success probability analysis here without deriving a converse,
and instead focus on the connection between T and γ. This
analysis is valid for any list decoder, particularly for an ML
decoder [17], [44], allowing us to set Ps = η. Since MSGT
uses MAP, the non-uniform and correlated prior information
allows us to achieve better recovery performance for the same
T and L compared to ML. Moreover, since for any γ ≥ 1, γK
is the maximum list size of estimated defective items we allow
in MSGT. By substituting L = γK, we establish a lower limit
for γ that guarantees MSGT’s success probability remains at
least equal to that of the ML estimator.

One of the key features of the proposed MSGT algorithm
is its low and feasible complexity in practical regimes com-
pared to ML or MAP-based GT decoders. Both ML and
MAP involve exhaustive searches, resulting in a complexity
of O(

(
N
K

)
KN log2 N) operations [17]. The theorem below

and the subsequent Remark characterize the computational
complexity of MSGT.

Theorem 4. Consider a group test for a population of N
items, of which K are defective and a Bernoulli testing
matrix. The computational complexity of the MSGT algorithm
is bounded by O

(
LγKKN log2 N

)
operations.

Proof. We begin by analyzing the complexity of each step of
the proposed MSGT solution given in Algorithm 1, and finally,
we sum everything up to determine the total complexity.

In Stage 1, the complexity of DND is O (KN log2 N) as
analyzed in [45, Remark 6]. Then, for each positive entry of
the test result vector Y T , the DD algorithm counts the number
of possibly defective items that participate in the correspond-
ing pool test. That requires K

∣∣P(S1,1)
∣∣ log2 N computations,

and for simplification, we bound it by the DND complexity,
i.e., O (KN log2 N).

In Stage 2, parallel LVA requires L times more com-
putations than the VA [32]. VA calculates all the possible
transition probabilities for each step in the sequence. In GT,
this sequence is the order’s items sequence, where with the
suggested algorithm, it is enough to consider only the

∣∣P(S1,2)
∣∣

items as the sequence steps. The optional states are basically

either “non-defective” or “defective”, so there are four possible
transitions in each step of the trellis proposed herein for GT.
Nevertheless, this algorithm can be implemented to leverage
additional memory to decide the state of each item based on
the preceding τ items. Consequently, LVA takes 22τL

∣∣P(S1,2)
∣∣

computations. For the average case, we use the expectation
bounds from Theorems 1 and 3, such that:

E
[∣∣∣P(S1)

∣∣∣] = E
[∣∣∣P(S1,1)

∣∣∣]− E
[∣∣∣P(DD)

∣∣∣]
≤ (N −K)P (DND)

e,a +N−α
2 (1−ln 2/K)N·P (DND)

e,a
K.

Accordingly, the number of the required computations for LVA
step in MSGT is bounded by

22τL

[
(N −K)P (DND)

e,a +N−α
2 (1−ln 2/K)N·P (DND)

e,a
K

]
.

(5)
For the worst-case, we assume that the DD step does not affect
the possible detected items set, thus

∣∣P(S1,2)
∣∣ ≤

∣∣P(S1,1)
∣∣.

To further bound the expression, we utilize both the error
probability of the worst case as given in Theorem 2, thus∣∣P(DND)

∣∣ ≤ K + (N − K)P
(DND)
e,u . By substituting The-

orem 2 it follows that the number of possibly defective items
in the worst-case is upper bounded by

K + (N −K)
(
P (DND)
e,a +1 +

g2

(N −K)P
(DND)
e,a

(
1− P

(DND)
e,a

)
−1

 ,
(6)

for g = γK −
(
K + (N −K)P

(DND)
e,a

)
. Now, since the two

expressions multiplying (N − K) in (5) and (6) are error
probabilities, both of them can be roughly bounded by one.
Hence, the number of computations of LVA in the average
case and worst-case becomes O(LN).

In the next step in Stage 2, we filter the LVA results. We
sum each sequence Zl with a complexity of O(N). If the
result is in the range [K, γK], we extract all the combinations
of size K −

∣∣P(DD)
∣∣. Thus, this stage is done in at most

O
(
L
(
N +

( γK

K−|P(DD)|
)))

computations.
Finally, in the MAP step of Stage 2, the algorithm goes

over at most L combinations of size K −
∣∣P(DD)

∣∣ out of
no more than γK possibly defective items in each sequence.
Then, for each combination, the group test is applied. There-
fore, the MAP stage requires

(
LγK
K

)
KN log2 N computations.

Substituting the bounds of the binomial coefficient
(

γK
K

)K
≤(

γK
K

)
≤
(

eγK
K

)K
, it follows that the complexity of MAP stage

in the proposed MSGT is O
(
LγKKN log2 N

)
.

To conclude, the complexity of MSGT is the sum of
all the steps, i.e., O

(
NK log2 N + LN + L

( γK

K−|P(DD)|
)
+

LγKKN log2 N
)
. As N grows, the dominant term is the

complexity of the MAP step. Thus, the complexity of the
MSGT algorithm is bounded by O

(
γKKN log2 N

)
opera-

tions, which completes the proof.
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(a) N = 500 and K = 3.
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(b) N = 1024 and K = 8.
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(c) N = 10000 and K = 13.
Fig. 5: Success probability of MSGT, MAP, ML and DD over 1000 iterations. A comparison to ML and MAP is not presented
in (b) and (c), as they are not feasible for populations of those sizes due to the computational complexity burden.

Remark 1. If we skip the LVA step, MSGT converges to the
MAP estimator. Thus, the MAP’s complexity is

O

(( ∣∣P(S1,2)
∣∣

K −
∣∣P(DD)

∣∣
)
KN log2 N

)
,

when the DND and DD are executed as prior steps, and
otherwise it is O

((
N
K

)
KN log2 N

)
.

Note that from Theorem 4 and Remark 1, it follows that the

proposed MSGT algorithm performs O
(

1
L

(
N
γK

)K)
, times

fewer computational operations compared to MAP.

C. Discussion

To the best of our knowledge, MSGT is the first GT
algorithm to effectively leverage Markovian prior statistics.
Unlike numerous previous approaches, MSGT utilizes initial
probabilities and transition matrices without necessitating spe-
cific adjustments for new use cases. The algorithm offers
the flexibility to be fine-tuned to optimize its performance
in accordance with the available computational resources and
the number of tests, T . The simple reduction of the search
space in Stage 1 enables MSGT to handle challenging regimes
with a small number of tests. Stage 2, particularly the LVA
step, contributes to its high success probability. Additionally,
using the parallel implementation of LVA, rather than the
iterative one, keeps the complexity low [32]. It is important
to note that, as explained in [32], achieving optimal results
is ensured only with a very large L, inevitably leading to
complexity equivalent to MAP’s. However, as we empirically
demonstrate in the following section, results equivalent to
MAP’s can be achieved with reasonable complexity. Moreover,
it is shown that MSGT addresses practical regimes, e.g., in
COVID-19 detection [46] (T = 48 for (N,K) = (384, 4)),
in communications [47] ((N,K) = (105, 6)), and in GT
quantizer [8] ((N,K) = (1024, 16) [48]).

Another aspect of novelty in this work is the integration
of Viterbi Algorithm into the GT problem. In the context of
Markovian priors, one can think of the population’s sequence
of items as a sequence of observations stemming from a hidden
Markov process within a given Markov model over N steps. In
that case, the selection of a Viterbi decoder becomes natural,
offering an optimal and efficient decoding solution. However,
the most likely sequence of items does not necessarily include
K defective items. Particularly, in sparse signal scenarios,
which is the focus of GT, the most likely sequence typically

involves the minimum number of defectives that explain the
observations. As a result, VA may not necessarily detect more
defective items than already known and may detect even more
than K. To address this, we employ LVA, which produces a
list of the L most likely sequences, such that choosing an
appropriate value for L guarantees a successful recovery.

Like many previous works, MSGT assumes precise knowl-
edge of K. In practical use cases, this assumption relies on
using an accurate estimator for K employing O (log2(N))
tests [49], but the estimation might be erroneous. For the sake
of practical completeness, it is worth noting that modifications
can be made to handle incorrect estimates of K, albeit with in-
creased computational complexity. The authors of [4] suggest
altering the ML estimator to consider all possible sets, without
restricting the number of defective items, and show that the
probability of success is almost unaffected. MSGT relies on
knowing K only for the MAP estimation step. Thus, a similar
adaptation can be applied. In MSGT, the MAP estimator
should consider all possible sets from LVA and cannot stop
with the first set that explains the outcome Y . Hence, such
modification will increase the complexity compared to [4].

IV. NUMERICAL EVALUATION

This section assesses the performance of the proposed
MSGT algorithm by numerical study. First, in Subsection IV-1,
we provide a numerical evaluation to support our theoretical
results and bounds given in Section III. Then, in Subsec-
tion IV-2, we contrast the performance of MSGT with the
one of DD, ML, and MAP in a practical regime of N
and K. To generate the correlated prior information between
adjacent items, we use the Gilbert-Elliot (GE) model [50],
which is a stationary Markov chain of order 1 with two states:
one representing an error phase and the other an error-free
phase. The GE model is characterized by initial probabilities
assigned to these two states, denoted as πi ∈ [0, 1]2, as
well as transition probabilities between them Φi ∈ [0, 1]2×2.
These characteristics align well with the inputs required by
the MSGT algorithm. In the practical scenarios tested (e.g.,
in the regime of COVID-19, when the test machine can
simultaneously process a fixed small number of measurements
[34], [35], or in sparse signal recovery in signal-processing
with fixed vector size of input samples [9]–[11], [13], [51]), we
show that the low computational complexity MSGT algorithm
can reduce the number of pool tests by at least 25%.

1) Theoretical Analysis: In Fig. 4a we show the concen-
tration of

∣∣P(S1,1)
∣∣, as obtained from the simulation, along
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with the bound on its expectation and on the worst-case
that were calculated in Theorems 1 and 2 respectively. Note
that the worst-case scenario regarding MSGT is when LVA
filters the correct set of defective items. That may happen if
the number of possibly defective items exceeds the threshold
γK. Since in MSGT, we only allow this deviation from the
average and ignore the case of exceeding this threshold, our
upper bound for the worst-case does not cover all potential
realizations of

∣∣P(S1,1)
∣∣. Similarly, Fig. 4b demonstrates the

concentration of
∣∣P(DD)

∣∣, as acquired through simulation, and
the lower bound on its expectation as given in Theorem 3.
Fig. 4c illustrates the numerically computed lower bound for
γ, derived from the inequality provided in Proposition 1. For
this simulation, we fix N = 500, K = 3, and calculate γ value
for a specific range of T relative to the upper bound of ML.
As explained in Section III, our conjecture asserts that any
value of γ surpassing this lower bound guarantees that MSGT
performance will be at least on par with that of ML. Therefore,
whenever computational resources allow, it is advisable to
choose the value of γ corresponding to the lower bound. This
approach was followed in the subsequent simulations, and
the practical outcomes presented in Subsection IV-2 provide
empirical support for our conjecture. Fig.6a compares the
number of potential combinations to be examined in the MAP
step, with and without the execution of the LVA step in MSGT.
It can be observed that the LVA step performs an extensive
filtering process, which allows MSGT to remain feasible even
when executing MAP is no longer possible, especially in a
regime below ML upper bound.

The converse of the GT problem with general prior statistics
was developed by Li et al. [52] and according to which any
GT algorithm with a maximum error probability Pe requires
a number of tests that satisfies: T ≤ (1− Pe)H(U), where
H(·) denotes entropy. Using the joint entropy identity we have:
(1− Pe)H(U) =

∑N
i=1 H (Ui|U1, . . . , Ui−1).

The GE model considered in our numerical evalua-
tions is a stationary Markov chain with τ = 1. Thus,
P (Ui|U0, . . . , Ui−1) = P (Ui|Ui−1), for i ∈ {2, . . . , N}.
Substituting those priors, it follows that the converse of our
problem is: T ≤ H(U1) +

∑N
i=2 H (Ui|Ui−1). This bound is

illustrated in the practical scenarios tested in Fig. 4 and Fig. 5.
2) Algorithm Evaluation: We demonstrate the performance

of MSGT using simulation. The population is sampled from

GE model, and the regime is K = O
(
Nθ
)

with θ ≤ 1/3. The
GE parameters serve as our prior statistics, but in practice, we
ignore samples where the number of defective items does not
match K. In addition, although in the complexity analysis, we
considered Bernoulli encoder for simplification, here we use
a near-constant column weight encoder that optimizes DND’s
performance [38], with ln 2

K T tests sampled randomly for each
item. The parameter γ was chosen to satisfy (2) and L = 500
was chosen empirically. Fig. 5 compares MSGT to MAP,
ML, and DD algorithms. We run DND and DD before ML
and MAP for reasonable runtime and memory consumption.
The population includes N ∈ {500, 1024, 10000} items and
K ∈ {3, 8, 13} defective items, respectively, and the empirical
success probability is the average over 1000 experiments.
Note that for N = 1024, 10000 it is no longer possible
to compare the performance since ML and MAP become
infeasible (Fig. 5b,5c).

Finally, MSGT was also tested with more complex prob-
abilistic models. We sample the population based on a 3-
memory-steps Markov process (Φi is a 8×2 matrix for all i).
We execute MSGT using these prior statistics and also execute
it with limited prior statistics, assuming that the process has
only one memory step (Φi is 2 × 2). For example of Φi

representing a 2-memory-steps process, see Fig 6b. The results
are shown in Fig. 6c. It is evident that utilizing the prior of
long memory improves the success probability by 10% in this
scenario. We do note again that for the practical regime tested
as in [8], [46]–[48], i.e., N = 1024 and K = 8, it is no
longer possible to compare the performance since, unlike the
efficient proposed MSGT algorithm, ML and MAP decoders
for GT become infeasible.

V. DISCUSSION AND FUTURE WORK

To the best of our knowledge, the existing solutions in
literature do not offer an efficient and general solution for
the regime below TML. In this work, we are focusing on this
regime of the number of tests (i.e., T < TML), where the
proposed MSGT can leverage the prior correlated information,
within the LVA step, to significantly reduce the number of
the potential defective combinations. This approach yields
an efficient computational solution that, as demonstrated in
our simulation result for practical scenarios, can approach the
minimum number of tests as MAP algorithm.



Future work includes the derivation of an upper bound for
this problem, which holds significant importance in compre-
hending the algorithm’s potential.
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