o

£

g EasyChair Preprint

Ne 3415

A Mathematical Conjecture from P versus NP

Frank Vega

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 16, 2020

A Mathematical Conjecture from P versus NP

Frank Vega
Joysonic, Uzun Mirkova 5, Belgrade, 11000, Serbia
vega.frank@gmail.com

—— Abstract

P versus NP is considered as one of the most important open problems in computer science. This
consists in knowing the answer of the following question: Is P equal to NP? It was essentially
mentioned in 1955 from a letter written by John Nash to the United States National Security Agency.
However, a precise statement of the P versus NP problem was introduced independently by Stephen
Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. It is
one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a
US 1,000,000 prize for the first correct solution. Another major complexity class is NP-complete. To
attack the P versus NP question the concept of NP-completeness has been very useful. If any single
NP-complete problem can be solved in polynomial time, then every NP problem has a polynomial
time algorithm. We state the following conjecture for a natural number B greater than 3: The
number of divisors of B is lesser than or equal to the quadratic value from the integer part of the
logarithm of B in base 2. This conjecture has been checked for large numbers: Specifically, from
every integer between 4 and 10 millions. If this conjecture is true, then the NP-complete problem
Subset Product is in P and thus, the complexity class P is equal to NP.

2012 ACM Subject Classification Theory of computation — Complexity classes

Keywords and phrases complexity classes, completeness, polynomial time, logarithm, tuple

1 Introduction

The P versus NP problem is a major unsolved problem in computer science [4]. This is
considered by many to be the most important open problem in the field [4]. The precise
statement of the P = NP problem was introduced in 1971 by Stephen Cook in a seminal
paper [4]. In 2012, a poll of 151 researchers showed that 126 (83%) believed the answer to
be no, 12 (9%) believed the answer is yes, 5 (3%) believed the question may be independent
of the currently accepted axioms and therefore impossible to prove or disprove, 8 (5%) said
either do not know or do not care or don’t want the answer to be yes nor the problem to be
resolved [8].

The P = NP question is also singular in the number of approaches that researchers have
brought to bear upon it over the years [6]. From the initial question in logic, the focus moved
to complexity theory where early work used diagonalization and relativization techniques
[6]. It was showed that these methods were perhaps inadequate to resolve P versus NP
by demonstrating relativized worlds in which P = NP and others in which P # NP [3].
This shifted the focus to methods using circuit complexity and for a while this approach
was deemed the one most likely to resolve the question [6]. Once again, a negative result
showed that a class of techniques known as “Natural Proofs” that subsumed the above
could not separate the classes NP and P, provided one-way functions exist [11]. There
has been speculation that resolving the P = NP question might be outside the domain of
mathematical techniques [6]. More precisely, the question might be independent of standard
axioms of set theory [6]. Some results have showed that some relativized versions of the
P = NP question are independent of reasonable formalizations of set theory [9].

It is fully expected that P # NP [10]. Indeed, if P = NP then there are stunning
practical consequences [10]. For that reason, P = NP is considered as a very unlikely event
[10]. Certainly, P versus NP is one of the greatest open problems in science and a correct

https://orcid.org/0000-0001-8210-4126
mailto:vega.frank@gmail.com

A Mathematical Conjecture from P versus NP

solution for this incognita will have a great impact not only in computer science, but for
many other fields as well [1]. Whether P = NP or not is still a controversial and unsolved
problem [1]. We show some results that could help us to prove this outstanding problem.

2 Theory and Methods

2.1 Preliminaries

In 1936, Turing developed his theoretical computational model [12]. The deterministic and
nondeterministic Turing machines have become in two of the most important definitions
related to this theoretical model for computation [12]. A deterministic Turing machine has
only one next action for each step defined in its program or transition function [12]. A
nondeterministic Turing machine could contain more than one action defined for each step of
its program, where this one is no longer a function, but a relation [12].

Let ¥ be a finite alphabet with at least two elements, and let X* be the set of finite
strings over ¥ [2]. A Turing machine M has an associated input alphabet ¥ [2]. For each
string w in ¥* there is a computation associated with M on input w [2]. We say that M
accepts w if this computation terminates in the accepting state, that is M (w) = “yes” [2].
Note that M fails to accept w either if this computation ends in the rejecting state, that
is M(w) = “no”, or if the computation fails to terminate, or the computation ends in the
halting state with some output, that is M(w) = y (when M outputs the string y on the
input w) [2].

Another relevant advance in the last century has been the definition of a complexity class.
A language over an alphabet is any set of strings made up of symbols from that alphabet [5].
A complexity class is a set of problems, which are represented as a language, grouped by
measures such as the running time, memory, etc [5]. The language accepted by a Turing
machine M, denoted L(M), has an associated alphabet 3 and is defined by:

L(M)={weX": M(w)=“yes"}.

Moreover, L(M) is decided by M, when w ¢ L(M) if and only if M(w) = “no” [5]. We
denote by ¢y (w) the number of steps in the computation of M on input w [2]. For n € N
we denote by Ths(n) the worst case run time of M; that is:

Ty (n) = max{ty(w) :we X"}

where X" is the set of all strings over X of length n [2]. We say that M runs in polynomial
time if there is a constant k such that for all n, Ths(n) < n* + k [2]. In other words, this
means the language L(M) can be decided by the Turing machine M in polynomial time.
Therefore, P is the complexity class of languages that can be decided by deterministic Turing
machines in polynomial time [5]. A verifier for a language L; is a deterministic Turing
machine M, where:

Ly ={w: M(w,c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [2]. A verifier uses additional information,
represented by the symbol ¢, to verify that a string w is a member of L;. This information
is called certificate. NP is the complexity class of languages defined by polynomial time
verifiers [10].

F. Vega

A function f:X* — ¥* is a polynomial time computable function if some deterministic
Turing machine M, on every input w, halts in polynomial time with just f(w) on its tape
[12]. Let {0,1}* be the infinite set of binary strings, we say that a language L, C {0,1}*
is polynomial time reducible to a language Ly C {0,1}*, written Ly <, Lo, if there is a
polynomial time computable function f : {0,1}* — {0,1}* such that for all « € {0,1}*:

x € Ly if and only if f(x) € Lo.

An important complexity class is NP-complete [7]. A language Ly C {0,1}* is NP-complete
if:

L, € NP, and

L' <, L, for every L' € NP.

If L, is a language such that L' <, Ly for some L' € NP-complete, then L, is NP-hard
[5]. Moreover, if Ly € NP, then Ly € NP-complete [5].

2.2 Definitions on Tuples

» Definition 1. We consider a tuple (ay,as,...,a,) as an m-tuple.

» Definition 2. We consider the addiction of two m-tuples (a1, a9, ..., am) and (b1, ba, ... by)
as the m-tuple (aj + by, az + ba, ..., am + by).

» Definition 3. We consider the subtraction of two m-tuples (a1, as, ..., am) and (by,ba, ..., by)
as the m-tuple (a1 — by,a2 — ba, ..., am — by).

» Definition 4. We consider an m-tuple (a1, as, ..., am) is equal to an m-tuple (by,ba, ... by)

if and only if for every integer 1 < i < m we have that a; = b;.

» Definition 5. For a positive integer k, we consider k, as the m-tuple (k,k, ..., k). Besides,
—————

m
an m-tuple (a1, as,...,ay) is lesser than 0,,, when there is an integer 1 < i < m such that

a; < 0.

» Definition 6. For some natural number B > 3 with the prime factorization pi* x p3? X
oo X pimosuch that p1 < pa < ... < pm, then we consider the value of h(B) as the m-tuple

(a1,a2,...,am).

» Definition 7. Consider two natural numbers B > 3 and C > 1 when C divides B and the
prime factorization of B is pi* X p5? X ... X p%m such that p1 < p2 < ... < D, then we

consider the value of hp(C) as the m-tuple (ay,al, ..., a),) where o} is the exponent of the

power p|* in the prime factorization of C' from the prime p1 and so forth until m (the value
of al; could be 0 when the prime p; does not divide C).

3 Results

We show a previous known NP-complete problem:

» Definition 8. Subset Product

INSTANCE: Finite set X, a size s(x) € Z" for each x € X, and a positive integer B.

QUESTION: Is there a subset X' C X such that the product of the sizes of the elements
in X' is B?

REMARKS: We denote this problem as SP [10]. SP € NP-complete [7]. This problem
remains in NP—complete even if we know the prime factorization of B [7].

A Mathematical Conjecture from P versus NP

> Conjecture 9. For some natural number B > 3 with the prime factorization p{* x p5? x
... X p%n then we could always obtain that (a; +1) X (az+1) X ... x (a, +1) < (|logy B])?,
which means that the number of divisors of B is lesser than or equal to (|log, B])? [13].

» Theorem 10. If the Conjecture 9 is true, then SP € P.
Proof. Suppose the set X is
T1,L2y..., LN

and we wish to determine if there is a nonempty subset X’ C X such that the product of the
sizes of the elements in X’ is B. We assume that we have the prime factorization of B. We
ignore when B < 3, since these cases are trivial. We assume also that each size s(x;) divides
B otherwise we just remove the element z; from our set X. We consider the sequence of
tuples

hp(s(21)), hp(s(z2)), ..., hp(s(zn))

where ¢; = s(x;) is the size of the element z; and the function hp(c¢;) returns an m-tuple
for some m using the Definition 7. We can calculate the tuple hp(s(x;)) for every element
z; € X just in O(N x (|logy B|)?), since we have the prime factorization of B.

Now, define the Boolean-valued function Q(¢,y) to be the value (true or false) of “there is
a nonempty subset of s(x1), ..., s(x;) which products to y” which is equivalent to the Boolean-
valued function Q(¢, hp(y)) “there is a nonempty subset of m-tuples hg(s(z1)),...,hp(s(z;))
which sums to hp(y)”, because the product of two prime powers p” and p’ from a same
prime p is equal to p"t*, where we sum the exponents r and t of the prime powers. Thus,
the solution to the problem “Given a nonempty subset X’ C X such that the product of the
sizes of the elements in X’ is B?" is the value of Q(N, h(B)) using the Definition 6.

Clearly, Q(i,hp(y)) = false, if hp(y) < O, or y > B using the Definition 5. So these
values do not need to be stored or computed. Create an array to hold the values Q(i, hp(y))
for 1 <i < N, 0, < hp(y) and y < B such that y divides B. The array can now be filled in
using a simple recursion. Initially, for 0, < hp(y) and y < B such that y divides B, set

Q(1,hp(y)) = (ha(s(z1)) == ha(y))

where == is a Boolean function that returns true if hp(s(z1)) is equal to hp(y) using the
Definition 4, false otherwise. Then, for ¢ = 2,..., N, set for 0,, < hp(y) and y < B such
that y divides B

Q(i,hp(y) = Qi — 1,hp(y)) V (hp(s(x:)) == hp(y)) vV Q(i — 1,hp(y) — hp(s(z:)))

where the substraction of tuples is stated using the Definition 3 and V is the OR Boolean
function. For each assignment, the values of (Q on the right side are already known, either
because they were stored in the table for the previous value of i or because Q(i — 1, hp(y) —
hp(s(x;))) = false if hp(y) — hp(s(z;)) < Op,. Therefore, the total number of arithmetic
operations is O(N x ¢ x (|log, B])), where ¢ is equal to the number of the valid m-tuples
between 0,,, and h(B) (that is, the amount of different integers 1 < y < B such that y divides
B) and (|log, B|) > m is greater than or equal to the number of indexes in the m-tuples that
we need to compare in each iteration. Certainly, the amount of the valid m-tuples between
0, and h(B) is equal to ¢ = (a1 +1) X (a2 +1) X ... X (an, + 1) when the prime factorization
of B> 3is p* X pg? X ... x p%m where this is actually the number of divisors of B [13]. In
this way, if this Conjecture 9 is true, then the solution has runtime of O(N x (|logy B])?)
and thus, the problem SP would be in P, because the runtime is polynomial according to
the bit-length of the input. <

F. Vega

» Lemma 11. If the Conjecture 9 is true, then P = NP.

Proof. This is a direct consequence of Theorem 10, because when any single NP—-complete
problem can be solved in polynomial time, then every NP problem has a polynomial time
algorithm [5]. <

—— References

1

10
11

12

13

Scott Aaronson. P £ NP. Electronic Colloquium on Computational Complezity, Report No. 4,
2017.

Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P =?AP Question.
SIAM Journal on computing, 4(4):431-442, 1975. doi:10.1137/0204037.

Stephen A. Cook. The P versus NP Problem, April 2000. In Clay Mathematics Institute at
http://wuw.claymath.org/sites/default/files/pvsnp.pdf. Retrieved 26 April 2020.
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 3rd edition, 2009.

Vinay Deolalikar. P # NP, 2010. In Woeginger Home Page at https://www.win.tue.nl/
~gwoegi/P-versus-NP/Deolalikar.pdf. Retrieved 26 April 2020.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.

William I. Gasarch. Guest column: The second P £ NP poll. ACM SIGACT News, 43(2):53-77,
2012. doi:10.1145/2261417.2261434.

Juris Hartmanis and John E. Hopcroft. Independence Results in Computer Science. SIGACT
News, 8(4):13-24, October 1976. doi:10.1145/1008335.1008336.

Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

Alexander A. Razborov and Steven Rudich. Natural Proofs. J. Comput. Syst. Sci., 55(1):24-35,
August 1997. doi:10.1006/jcss.1997.1494.

Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course
Technology Boston, 2006.

David G. Wells. Prime Numbers, The Most Mysterious Figures in Math. John Wiley & Sons,
Inc., 2005.

http://dx.doi.org/10.1137/0204037
http://www.claymath.org/sites/default/files/pvsnp.pdf
https://www.win.tue.nl/~gwoegi/P-versus-NP/Deolalikar.pdf
https://www.win.tue.nl/~gwoegi/P-versus-NP/Deolalikar.pdf
http://dx.doi.org/10.1145/2261417.2261434
http://dx.doi.org/10.1145/1008335.1008336
http://dx.doi.org/10.1006/jcss.1997.1494

	Introduction
	Theory and Methods
	Preliminaries
	Definitions on Tuples

	Results

