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Abstract. In a previous paper (https://dx.doi.org/10.2139/ssrn.3648127 ), an elementary and thoroughly 
arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is 
granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to 
Fermat himself though without being absolutely and precisely correct. The present paper elucidates the 
contemporary mathematical background, from which an inductive proof of FLT can be inferred since its 
proof for the case for “n = 3” has been known for a long time. It needs “Hilbert mathematics”, which is 
inherently complete unlike the usual “Gödel mathematics”, and based on “Hilbert arithmetic” to generalize 
Peano arithmetic in a way to unify it with the qubit Hilbert space of quantum information. An “epoché to 
infinity” (similar to Husserl’s “epoché to reality”) is necessary to map Hilbert arithmetic into Peano 
arithmetic in order to be relevant to Fermat’s age. Furthermore, the two linked semigroups originating from 
addition and multiplication and from the Peano axioms in the final analysis can be postulated algebraically 
as independent of each other in a “Hamilton” modification of arithmetic supposedly equivalent to Peano 
arithmetic. The inductive proof of FLT can be deduced absolutely precisely in that Hamilton arithmetic and 
the pransfered as a corollary in the standard Peano arithmetic furthermore in a way accessible in Fermat’s 
epoch and thus, to himself in principle. A future, second part of the paper is outlined, getting directed to an 
eventual proof of the case “n=3” based on the qubit Hilbert space and the Kochen-Specker theorem 
inferable from it.    
Keywords: Fermat’s last theorem, Hilbert arithmetic, Kochen and Specker’s theorem, Peano arithmetic, 
quantum information, qubit Hilbert space 
 

I INSTEAD OF INTRODUCTION: THE FRUITFUL TENSION OF IDEMPOTENCY AND 
HIERARCHY, OR ABOUT ITS EMBODIMENT IN THE SEPARABLE COMPLEX HILBERT 
SPACE OF QUANTUM MECHANICS AS UNITARITY 

Fermat’s last theorem (or FLT further for briefly) is often considered to be a mathematical 
“curio” and the centuries-old troubles about its correct proof to be inexplicable and even ridiculous. 
Even Wiles’s proof (1995) elucidates its meaning as rather an artifact being a direct corollary from 
the modularity theorem which is properly the very important one for mathematics being able to 
link the discrete mathematics of modular forms and the continuous (even smooth, i.e. 
differentiable) mathematics of elliptic curves. In fact, that implicit understanding about the 
meaning of FLT follows its realization as a specific, proper arithmetic statement without any 
essential methodological connotations (unlike the parent theorem of modularity) and thus without 
any influence to philosophy or, at least, to philosophy of mathematics1. 

 
1 An “exception that proves the rule” is the book by Schwarzer (2020) who had written that “there must be 
a connection between Fermat’s last theorem and quantum theory” (p. 101) and this is its basic assumption. 
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 The advocated approach  is quite different: it interprets FLT as relevant to the foundations of 
mathematics as implied by the relation of arithmetic and set theory and thus obeying the Gödel 
dichotomy about it: either incompleteness or contradiction. In other words, FLT is suggested to be 
a Gödel insoluble statement if the relevant framework is granted to be that of arithmetic and set 
theory as first-order logics to propositional logic, i.e. the usual and traditional basis of 
mathematics, furthermore able to supply models for any any theory belonging to any branch of it. 

Even more, the same structure of FLT (by the way, Fermat’s equation is especially symmetric, 
unlike almost all Diophantus equations, to the class of which it belongs) can be observed as an 
embodiment of the relation of arithmetic and set theory, in turn and paradoxically hinting at its 
proof as a hidden key or a secret code contained in itself. In other words, a proper philosophical 
approach relying on its “mathematical semiotics” or “hermeneutics” is suggested, but not as a basis 
for loose, “humanitarian” interpretations contradicting the fundamental principles of logic and 
mathematics, and even science at all; on the contrary, an absolutely rigorous proof consistent to 
the enumerated foundations of mathematics is meant: 

It is grounded in Hilbert arithmetic discussed in other papers (e.g. Penchev 2021 August 24; 
Penchev 2020 August 2020), which can be furthermore used as a “Wittgenstein ladder”2 for an 
only arithmetical proof of FLT; at that relatively elementary as an ultimate result and thus 
accomplishable by Fermat himself and verifying the option of his own “lost proof”. In the final 
analysis, the tools, to which one can restrict the necessary formal and logical means after removing 
the “Wittgenstein ladder” of Hilbert arithmetic, turn out to be only two: (1) modified modus tollens, 
notated further and briefly as “MMT” (2) mathematical induction in the specific form of Fermat’s 
descent (or “MFD” further). Obviously, both might be used by Fermat himself.  

Anyway, that approach though accomplishable in Fermat’s age in virtue of its “inexperience” 
has become more and more impossible after Descartes’s dualism gradually limiting the site of 
mathematics in the organization of knowledge and cognition (or Michel Foуcault’s “episteme” 
suggested in his book in 1966), to “mind”, and after set theory, explicitly formulated and 
enumerated among the foundations of mathematics.  

Thus, a “bracket” touching Wiles’s proof can be opened: since it infers FLT from the 
modularity theorem, set theory is necessarily involved, and consequently, the utilized branches of 
mathematics are to go out from the standard mathematics (if it is restricted as usual to the 
framework underlain by arithmetic and set theory). The noticed contradiction of Wiles’s proof and 
the sketched here approach needs an explicit proof discussed in detail in Section IV “A formal 
proof of the insolubility of FLT in Gödel mathematics (arithmetic & set theory)” and elucidating 

 
2 The expression “Wittgenstein ladder” is frequently used and investigated in the context of Wittgenstein’s 
works (e.g. Reid 1998; Ware 2015). Furthermore, it is also utilized sometimes out of that context as a 
metaphor, but anyway in the framework of philosophy (e.g. Petroff 1996) However, the term in the present 
paper serves rather to designate a philosophical and mathematical method related to Husserl’s “epoché”. 
So, its philosophical meaning can be inferred from that comparison, and as a proper mathematical approach, 
it means a solution of a problem to be researched in a structure more general (i.e. without certain concepts 
or axioms) than that meant in default. In the case of FLT, it suggests only arithmetic (rather than arithmetic 
& set theory) to be used for its proof.   



that FLT is a Gödel insoluble statement by the mediation of Yablo’s paradox3, which the eventual 
proof of FLT in the framework of both arithmetic and set theory obeys necessarily.   

Simultaneously, one can interpret the “inexperience” of Fermat’s age also as a pre-
bifurcational state in history of mathematics forked in our real  branch inspired by Descartes’s 
dualism and culminated into the establishment of set theory, therefore ultimately closed any option 
for the alleged original and only arithmetical proof of Fermat. Thus, a counterfactual branch is not 
less suggestable, in which Fermat’s proof would not be “lost”, and would march triumphantly, 
being so familiar to any student there as the Pythagorean theorem or as the concept of “set” 
following  our own branch in the history of mathematics  On the contrary, one can admit that “set” 
would be just so “lost” in that counterfactual branch as Fermat’s original proof in ours.   

One can notice the horizon marked in the present article as a rigorous “counterfactual history 
of mathematics” based оn axioms whether inexistent yet or being negations of existent ones. Thus, 
the paper can be enumerated also among the first representatives of that yet absent “genre” of 
“counterfactual mathematics” closely linked to its philosophy and foundations.  

If one “gazes” at the Gödel dichotomy about the relation of arithmetic and set theory (e,g, as 
in: Penchev 2020 August 25; Penchev 2016), one can localize its reason only in the direct 
contradiction of the axiom of induction (valid in arithmetic) and the axiom of infinity (postulated 
in set theory) in relation of all natural numbers: indeed, the axiom of induction implies for all 
natural numbers to be finite, but the axiom of infinity states that the set of all natural numbers is 
infinite4. Thus, the axiom of infinity introduces a special quality to any “naive” collection 
homogenous in a sense, namely to be a “set” opposing it to the quality of its elements. 

One can object immediately that FLT is an only arithmetical statement so that the influence of 
set theory on it is rather doubtful. However, FLT is a statement referring to all exponents (natural 
numbers) greater than 2, therefore implying the problem of how those “all exponents” are to be 
interpreted: whether as natural numbers or as the set of them.  According to the proper arithmetical 
formulation of FLT, they are to be “natural numbers” rather than as their “set”, however this 
implies an indirect problem consisting in the following: the proof about all natural numbers greater 
than two needs the set of all natural numbers than two, though that set can be removed in the 
ultimate result just as a “Wittgenstein ladder”:  

 
3 Yablo’s paradox suggests a wide mathematical and philosophical context relevant to the present paper and 
elaborated by Yablo himself along with many other researchers. He discusses proper philosophical ideas in 
many papers (e.g. Yablo 1982; 1985; 1987; 1992a; 1992b; 1993a; 1993b; 1993c; 1997a; 1997b; 2000a; 
2000b; 2002; 2003; 2005a; 2005b; 2016). So one can speak of Yablo’s philosophy relevant to Yablo’s 
paradox. Though the former alone can be an instructive and fruitful subject of study, it is out of the scope 
of the present investigation anyway. Nonetheless, his philosophical ideas are meant implicitly, but without 
expressive references since the relations are mediated and often sophisticated.       
4 “The Status of induction” (Detlefsen 1986: 46-58) is the central problem in the relation of Hilbert’s 
program and the discussed approach to FLT. The same author (Detlefsen 1990) clarifies why Gödel's first 
incompleteness theorem (i.e. “Satz VI” in the original paper) does not refute Hilbert’s program in a way 
relative to ideas here. 



The observation at issue is an exemplification of the statement justified in another paper 
(Penchev 2021 November 18) and stating figuratively that “Achilles will never overtake the 
Tortoise” in an only “arithmetic universe” once it is interpreted in logical terms as Lewis Carroll 
(1895) did. Thus, the proof of FLT, though formulated only arithmetically, needs set theory just 
like Achilles if he “wishes” to overtake the Tortoise (which our usual experience reckons to be 
obvious). In other words, the statement about all natural numbers greater than two need be 
“overtaken” (or as if “seen outside”) to be proved, and this only set theory, or at least the concept 
of set, is able to provide or guarantee. Thus, set theory though hidden behind propositional logic 
turns out to be necessary for proving the (otherwise absolutely) arithmetical statement of FLT: 

Nonetheless, the mediation of set theory is simultaneously impossible just by virtue of the 
Gödel dichotomy. So, one can formulate explicitly a “paradox of the proof of FLT” summarizing 
both opposite tenets above and consisting in the following: 

(1) On the one hand, the proof of FLT needs the set of all natural numbers greater than two 
and thus set theory, though FLT is an only arithmetic statement referring to all natural numbers 
rather than to the set of them.  

(2) However on the other hand, FLT is a Gödel insoluble statement in the framework of both 
arithmetic and set theory, so adding set theory FLT cannot be proved again.  

Formally, those, i.e. both (1) and (2) above, seem not to be a real logical paradox, but rather a 
statement contradicting common sense’s belief or at least, the mathematical common sense’s 
belief: namely, though Gödel’s proof of the incompleteness theorems is constructive (the opposite 
thesis is advocated in: Penchev 2020 August 25; Penchev 2010), there do not exist any examples 
of  Gödel insoluble statements in the real history of mathematics, so that any mathematical 
statement met by humankind is either true or false, and thus always soluble. Consequently, FLT 
“should be soluble”, too.   

The present paper supports the same intuitive conviction of many mathematicians, however 
following a proper mathematical, formal and logical way, in which the Gödel “first incompleteness 
theorem”5 (“Satz VI” in his original paper in 1931) is justified to be an independent axiom6, 
incorrectly interpreted as a theorem in virtue of pre-predicative and non-articulated prеjudice out 
of the proper scope of mathematics and delivered by the fundamental organization of knowledge 
and cognition in Modernity, i.e. Michel Foucault (1966)’s “episteme”, about the subordinate 
position of mathematics in it.  

On the contrary, if that “theorem” is not granted (which is quite admissible since it is an 
independent axiom) just only that subordinate position of mathematics is rejected and if that is the 

 
5 So-called “second incompleteness theorem” is granted to be inferable from the first one. FLT needs 
quantifiers to be formulated: so it is out of “elementary arithmetic” without quantifiers. Nonetheless the 
second incompleteness theorem seems to be reformulatble in that “elementary arithmetic” (Pozsgay 1968). 
However, if the second incompleteness theorem is generalized to general recursive arithmetic (as in Ryan 
1978), FLT can be also generalized to it. 
6 For example, Akiyoshi (2009) demonstrates the viewpoint, from which one “cannot claim that Gödel’s 
second incompleteness theorem defeats Hilbert’s program. Moreover we clarify what is essentially needed 
for such an argument to succeed” (p.13). 



case, the world is a true part from mathematics (rather than vice versa), and insoluble statements 
really do not exist just according to the intuitive conviction of almost all mathematicians. That 
mathematics renouncing its subordination (and formally, the “Gödel incompleteness axiom” 
replacing it by its negation) is called Hilbert mathematics7. 

Then, and unlike the alternative Gödel mathematics, the sketched above paradox about the 
proof of FLT is a real paradox since insoluble statements cannot exist in Hilbert mathematics. 
Consequently, it needs a relevant explanation of itself in Hilbert mathematics to be conserved as 
consistent, to which, particularly, the present paper is devoted. 

The meant way out, quite concisely since it is described many times in details, including in the 
present paper, and if it is to be related just to FLT, consists in its proof in Hilbert arithmetic relevant 
to Hilbert mathematics unlike Gödel mathematics, eventually demonstrating that the proof can be 
mapped unambiguously (i.e. mathematically homomorphically) into Peano arithmetic though in a 
rather sophisticated approach, nonetheless supplying FLT by a proof in Peano arithmetic and even 
accessible to Fermat himself therefore supporting the option of his original, but “lost” proof, since 
that complicated approach at issue can be removed from the ultimate syllogism of the proof like a 
“Wittgenstein ladder”, or speaking more precisely, by virtue of Gentzen’s “cut-elimination” 
(1935). Particularly, the idea of an only arithmetic proof of FLT is consistent even to Gödel 
mathematics, since his incompleteness theorems are valid only in the framework of both arithmetic 
and set theory, but not only within arithmetic alone.   

 However, the problem of how the only arithmetical proof of FLT avoids the paradox of its 
proof, and more especially, the necessity of the set of all natural numbers greater than two, is to be 
expressively shown. One should first make clear where the set of all natural numbers (or any 
infinite subset of it) is really necessary in an only arithmetical proof (such as the intended one of 
FLT), on the one hand, and how a statement relating to all natural numbers (excluding eventually 
some of them e.g. as in FLT) can be proved at all in arithmetic, on the other hand. 

In fact, the proper arithmetic necessity of the set of all natural numbers (or a relevant subset) 
is rather ambiguous for the cut-elimination rule: there exists always a natural number (thus 
necessarily being a finite number) of implications, to which any proof involving an infinite subset 
of the set of all natural numbers can be reduced, however this is a pure proof of existence alone or 
at least, a general method of how that finite number of implications to be revealed explicitly is not 
known8. So, that infinite set of natural numbers in an arithmetical proof means only the existence 
of the proof, but not any finite constructive sequence to be really accomplished.  

 
7 A paper (Barrio 2010) can be considered as a counterargument to “Hilbert mathematics” as far it “is to 
show that it’s not a good idea to have a theory of truth that is consistent but ω-inconsistent”, and Hilbert 
mathematics can be interpreted to suggest that kind of truth, and as to FLT by means of Yablo’s paradox 
also utilized in the paper at issue. However, if one accepts a Pythagorean ontology of the world (as here) 
that theory of truth seems to be admissible. 
8 Anyway, one may mention certain modifications of Gödel’s “T system” (e.g. Alves, Fernández, Florido. 
Mackie 2010) presumably able to overcome that restriction. Furthermore, the approach of Kanskos (2010) 
to the consistency of Heyting arithmetic to be proved by “an interpretation of the expressions of the vectors 
as ordinals” is rather similar to the interpretation of transfinite numbers as vectors in a relevant kind of 
Hilbert space as in Hilbert arithmetic. 



That kind of use of an infinite set can be visualized by Carroll’s logical metaphor of “What the 
Tortoise said to Achilles”: the infinite set guarantees that Achilles will overtake or has overtaken 
the Tortoise (a statement, which corresponds to our experience absolutely), however bracketing 
the exact moment of time when he is overtaking the Tortoise “constructively” since that moment 
generates  insurmountable contradictions (just the subject of Zeno’s paradox). Quite analogically 
or even isomorphically, any implication (properly meant by Carroll’s paradox) can be 
accomplished by the mediation of the set of an infinite series of implications, though the exact 
moment of its accomplishment meets the same kind of insoluble contradictions as those in Zeno’s 
paradox.  

To that set eventually involved in an arithmetical proof referring to an infinite set of natural 
numbers, two fundamental, proper arithmetical tools correspond: mathematical induction 
according to the axiom of induction and reductio ad absurdum after the assumption that the set at 
issue is finite (e.g. as in the proof that the prime numbers are an infinite set). One should pay 
attention that both are postulated (the former as an arithmetic axiom, and the latter as a corollary 
from modus tollens) and both mean an unambiguous transition back over the contradictory limit 
between finiteness and infinity, and overcome by both  “physical Achilles” in Zeno’s paradox and 
“logical Achilles” in Carroll’s paradox in the “straight” direction without problems as to any real 
experience, and finally, both necessary for the eventual only arithmetic proof of FLT (though not 
reductio ad absurdum, but its parent modus tollens).  

Speaking rather loosely or figuratively, one might say, all centuries old troubles about FLT are 
due to the necessity to be used both means in a single proof as if passing back over the limit 
between finiteness and infinity two times: the one time by modus tollens and one more time by the 
axiom of induction. The reason for that extraordinary double necessity consists, in the final 
analysis, just in the fact that FLT is a Gödel insoluble statement. Speaking again rather figuratively, 
the first leap over the finiteness / infinity limit is necessary for it to be transformed from an 
insoluble proposition into a usual one, i.e. either false or true, but never both; and the second one, 
for a relevant natural (i.e. finite) natural number to be chosen unambiguously to the intermediate 
soluble propositions (i.e. being a hypothetical soluble counterpart of FLT, which is insoluble by 
itself).  

The same double transition over the finiteness / infinity limit can be very easily visualized by  
the consideration in terms of Hilbert arithmetic: the first transition transfers from a finite number, 
but belonging to the dual Peano arithmetic into the shared “arithmetic infinity”; then, the second 
transition does the same, but as if in an opposite direction, namely, from the shared “arithmetic 
infinity” in the initial Peano arithmetic.  

However, even that very sophisticated construction is yet insufficient for the ultimate, only 
arithmetical proof of FLT: it needs the axiom of choice, furthermore utilizing it by the vanishing 
way of a “Wittgenstein ladder”9, for the exchange the order of the two transitions over the 

 
9 That use of the axiom of choice as a “Wittgenstein ladder” can be related to the interpretation of Hilbert’s 
epsilon operator as its implicite action within arithmetic (without set theory), for example as by Wirth 
(2008).  



finiteness / infinity limit and directed oppositely to each order: after the exchange of the order, 
both transitions share the same direction or speaking conventionally: from infinity to finiteness. 
Once all those very complicated preparations have been ultimately accomplished, the 
“Wittgenstein laffer” of Hilbert arithmetic can be absolutely removed and thoroughly hidden, so 
that an only arithmetical proof of FLT can occur as Fermat’s “lost proof”.    

A still more abstract and philosophical basis of the option for FLT to be proved only 
arithmetically can be extracted further. It refers only to the metarelation (which can be alleged or 
called “formal completeness”) of idempotency and hierarchy (i.e. well-ordering, but meant 
simultaneously more philosophically10). From the viewpoint advocated in the present paper, the 
problem of a pure arithmetic proof of FLT is elementary within a kind of “complete arithmetic”, 
which Hilbert arithmetic claims to be. In others words, all the “vanity” about FLT is due to the 
inherent incompleteness of Gödel mathematics, which is not available in Hilbert mathematics: at 
that, in a natural way.  

As to Fermat’s age, the bifurcation of Gödel mathematics versus  Hilbert mathematics had not 
yet taken place and one can speak about a kind of “Fermat arithmetic”, in which Peano axioms 
were not available as well as set theory or even only the concept of “infinite set”: natural number 
could be yet “infinite” in a naive and non-articulated sense and not opposed the usual finite natural 
numbers realized in our epoch. 

Meaning that “Fermat arithmetic”, one can depict and then map formally and rigorously the 
proof from Hilbert arithmetic, which in it is possible in a way not so unimaginably difficult as 
following Wiles (1995), but rather elementarily, into Fermat arithmetic at issue in a very 
sophisticated way, but anyway removable in the ultimate result (which is the alleged “lost proof” 
of Fermat) just as a “Wittgenstein ladder”, and which is the subject of the present study. 

Mentioning Wiles’s proof, accomplished ostensibly thoroughly in the framework of Gödel 
mathematics, one can question what his value in Hilbert mathematics is. In fact, it cannot be really 
made in Gödel mathematics as this is an insoluble statement in it: and as it will be proved 
rigorously in Section IV. So, the real sense of Wiles’s proof is to introduce implicitly or to “sneak 
in” quietly through the backdoor the framework of  Hilbert mathematics by a relevant equivalent 
of the complete Hilbert arithmetic (or eventually weaker than it, but sufficient for the proof of 
FLT) in a way so exceptionally complicated that only a handful of mathematicians can indeed 
realize what is done therefore avoiding  the cries of the “Boeotians” (of whom Gauss feared and 
therefore did not publish his work on non-Euclidean geometry) if anyone dare encroach the general 
organization of cognition in Modernity, and more especially, where mathematics is to be situated, 
however absolutely necessary if that one (like Wiles) wishes to prove FLT.  

 
10 Particularly, the distinction investigated by Freyd (1985: 149) is not relevant. “It is one thing to say that 
the axiom of choice implies that everything may be well-ordered. It is quite another thing to say that if a set 
has a choice function then it has a well-ordering.” Furthermore, the distinctions in computer science (e.g. 
Hornby 2007) should not be meant as well. Yagil (1999) investigates the link of hierarchy to complexity, 
and  Zheng, Weihrauch (2001): how real numbers can be represented by arithmetical hierarchy (meaning 
that all real numbers are well-ordered sets of natural numbers, infinite in general) .  



One can figuratively represent Wiles’s approach on the background of the “parable of the Nude 
King”. Only a lad and commoner can “scream out”: “The king is nude!”. However, Sir Andrwew 
Wiles is an exceptionally respectable scientist, to say, as if rather belonging to the retinue of the 
king than a lad and commoner. Of course, he sees that the king is nude and wants to proclaim that 
loudly, but he can do this only in a way relevant to his social status and using a very sophisticated 
language understandable only for the other “tailors” and thus not calling for a revolution of 
cognition (a behavior absolutely inadmissible as to a respectable scientist). 

One can verify that Gauss, being another respectable scientist, chose to remain silent, and only 
Lobachewski, a scientist in the Kazan university in Russia, i.e almost out of Europe or at its 
boundary to Asia might have the courage to do so at all. Poincaré, another respectable scientist a 
century later anticipated the approach of Wiles just speaking to the other “tailors” but without any 
revolutionary ontological conclusions, and only Einstein11, a twenty-five year old scientific “lad” 
could proclaim that time is really shortened (and even it is able to be distorted as he heralded about 
ten years later in papers of general relativity and after that). 

Has the pressure of the Boeotians’ common sense been weakened  now, still a century later 
than the “lad” Einstein’s age and even two than that of the “outsider” Lobachewski? Quite not! On 
the contrary: it has been reinforced incredibly. How? And why? This would be to be a subject of 
another paper, rather in the area of sociology and general philosophy of science and thus, rather 
aside from the subject of the present paper. In the framework of the later, however, one should pay 
attention just to other embodiments of the metarelation of idempotency and hierarchy called formal 
completeness12, along with that in Hilbert arithmetic and utilized for building an only arithmetical 
proof of FLT:  

As Hilbert arithmetic is complementary to the qubit Hilbert space (in turn isomorphic to the 
separable complex Hilbert space of quantum mechanics under a few quite elementary and technical 
conditions), one is to discover the same ontological metarelation of formal completeness (which 
can be investigated even properly philosophically, e.g. in the framework of “scientific 
transcendentalism” as in other papers: e.g. Penchev 2020 October 20) in its fundamental untarity 
underlying even the constitution as well as the possibility of quantum mechanics to be an objective 
experimental science, fortunately, also a problem already researched in other papers (e.g. Penchev 
2021 June 8). Summarizing their conclusions, unitarity implies the conservation of energy 
conservation in quantum mechanics (Penchev 2020 October 5) and in turn follows from the more 
general conservation of quantum information allowing for comparing entities quite different 
according to their place in the hierarchy of energy or respectively, that of spatial dimensions, e.g. 
an electron (i.e. a microscopic entity), a human being supplied by an apparatus (i.e. a macroscopic 
entity), and a star or a nebula (i.e. megascopic entities). What is similar to all of them is quantum 

 
11 Many papers during many years (e.g. Sallent Del Colombo 2013; Giné 2010; Hacyan 2009; Gingras 
2008; Darrigol 2004; Boi 1996; Gray 1995; Miller 1992; Goldberg 1970; Goldberg 1967) pay attention in 
detail to the deep shared basis or even synchronicity of Einstein’s special relativity and Poincaré’s ideas 
and publications. 
12 It can be interpreted e.g. as an “interior operator” in relation to an arbitrary category (Castellini 2011). 



information being independent of their energies different from each other practically 
incommensurably. 

However, meaning unitarity or the conservation of quantum information in the context of the 
present paper and its proper subject, one would be to pay attention to the interpretation of FLT 
(once it has been realized in terms of Hilbert arithmetic) in concepts, theorems and observations 
of quantum mechanics. After that, a reflection back from quantum mechanics to FLT again could 
allow for the substitution of the proof of FLT for the case “ 𝑛𝑛 = 3”, necessary to be granted for the 
proof by induction from arithmetic papers (such as Kummer 1847), by another proof, only within 
the framework of Hilbert arithmetic, and more precisely said, within that of its dual counterpart of  
the qubit Hilbert space, e.g. such as the Kochen - Specker (1967) theorem about the absence of 
hidden variables in quantum mechanics. This is only a horizon of the present, first part of the study, 
but it will be a proper subject of the investigation in the next part, Part Two of the research. 

Once a reliable bridge for transferring between Hilbert arithmetic (for the proof of FLT by 
induction) and its dual counterpart of the qubit Hilbert space (for the proof of FLT in the case of 
“ 𝑛𝑛 = 3”) would be established in a reliable enough way intended in Part Two, it would pioneer 
the pathway for the interpretation of other theorems in quantum mechanics, e.g that of Gleason 
(1957), by FLT as a next horizon (i.e. a kind of meta-horizon, or a horizon of the horizon) of the 
present paper and intended to be a proper subject of the investigation in Part Three.   

II FERMAT’S LAST THEOREM (FLT) BY BOTH IDEMPOTENCY AND HIERARCHY 
Even a cursory glance on the huge volume of publications devoted directly on FLT 

demonstrates that it is an exceptionally popular (even one of the most popular claims of all time, 
especially after the verified proof of Andrew Wiles and corroborated by an authoritative 
publication in 1995), but proper mathematical statement without any essential philosophical 
influence or interpretations: rather a mathematical “curio”, which turns out to be inexplicably 
difficult for proving despite its elementary formulation absolutely understandable for a junior high 
school student. 

On the contrary, the present paper claims its fundamental philosophical sense and meaning, 
therefore forecasting its huge and revolutionary realization and performance even on the general 
organization of cognition (for which Michel Foucault in 1966 coined the term “episteme”) in our 
epoch. Here, FLT is understood as a statement able to distinguish between “Gödel mathematics” 
corresponding to Modernity, Cartesian dualism, and mathematics opposed to reality, i.e. 
mathematical models only eventually applicable to empirical and experimental experience and 
scientific cognition, on the one hand, and “Hilbert mathematics” meaning a future, neo-
Pythagorean episteme13, after which, mathematics, physics (and all science by it), and philosophy 

 
13 Brouwer’s “creative subject” as a proper mathematical method (e.g.  Niekus 1987) is remotely related to 
the motivation of Hilbert arithmetic in the following sense. The concept of “set”, including and especially 
“infinite set” is necessary to postulate any mathematical entity as existent in advance and therefore, an 
external viewpoint to it. The method of “creative subject” guarantees that about any stage of mathematical 
proof rather than about the mathematical entity created by the stage at issue, therefore substituting the latter 
by the former. Hilbert arithmetic achieves the same objective using the second, dual Peano arithmetic. 



are merged in their foundation (rather than separate foundations) and particularly, heralding a 
world being properly mathematical in its essence just as Pythagoreanism has always insisted, on 
the other hand14. 

Speaking not so loosely or more precisely, FLT is a theorem provable in Hilbert mathematics, 
but unprovable in Gödel mathematics15 for being a statement, which can be demonstrated to belong 
to the class of Gödel insoluble ones, each of which  is related to itself as false: as if claiming for 
itself to be false just as the “Liar” (from the namesake ancient aporia) states for herself or himself 
to lie. This can be visualized directly (as below in the text) by a proof that FLT obeys Yablo 
paradox, and the latter refers to and only to all Gödel insoluble statements.  

Particularly, this means that Wiles’s proof inferring FLT as an immediate corollary from the 
Taniyama-Shimura-Weil conjecture or today’s modularity theorem (what is the statement proved  
by Wiles properly) is not valid in the framework of Gödel mathematics since the cited theorem  
involves arithmetic (by modular forms) and set theory (by elliptic curves) simultaneously and even 
equating them in a sense. In other words, this is a direct proof (but without a constructive reference 
to an explicit step in Wiles’s proof), that it is out of the scope of standard mathematics grounded 
on the three “whales”: (Peano) arithmetic, (ZFC)16 set theory, and (Boolean) propositional logic17; 
for example, by the eventual implicit utilization of so called “inaccessible cardinals”, admissibly 
able to be less than (but not equal to) the least infinite cardinal of any countable sets (as certain 
authors suggest: e.g. McLarty 2010; 2020)18. 

However, FLT not only belongs to that class of inherently insoluble propositions in Gödel 
mathematics, but furthermore it embodies the definition of that class by its formulation and 
structure rather in a proper philosophical consideration than in a rigorous, formal and mathematical 
meaning: an observation which will be also demonstrated further in the paper.      

 
Kikuchi and Kurahashi (2016) introduce concepts of “illusory” and “insane” models of Peano arithmetics, 
in terms of which Hilbert arithmetic can be also discussed.  
14 Barrow (2011) argues “that there is no reason for us to expect Gödel incompleteness to handicap the 
search for a description of the laws of nature, but we do expect it to limit what we can predict about the 
outcomes of those laws”. Paraphrasing or generalizing his idea, one may say that Gödel mathematics would 
correspond to deterministic (non-deterministic) predictions forecast in its framework. Classical physics 
(unlike quantum mechanics) predicts just deterministically. Collins (1980) suggests a different viewpoint 
to the limits of physical knowledge from the viewpoint of “Gödel's proof”. 
15 One can admit even a rather philosophical conjecture that the great contemporary mathematical problems 
such as the CMI “Millennium Prize Problems” (e.g. in the way Carlson, Jaffe, Wiles, eds. 2006 to clarify 
their fundamental meaning for mathematics) are soluble in Hilbert mathematics, but insoluble in Gödel 
mathematics: as FLT in particular.  
16 The restriction to ZFC is not essential since the enumeration (or recursion) of a countable set is  only 
necessary, and the equivalence in different tuples of axioms of set theory is discussed in detail e.g. in Burger 
1971.  
17 Berarducci (1990) considers the consistency of the case if propositional logic is substituted by modal 
logic among those three whales. 
18 McLarty’s approach in many papers (e.g. McLarty 2013, 1993a; 1993b; 1993c 1988) can be related to 
the approach in the present paper. So, sharing the statement that Wiles’s proof is out of the scope of the 
standard mathematics based on arithmetic and set theory is not surprising.  



The term “Hilbert arithmetic” connotes implicitly Hilbert’s program19 for mathematics to be 
justified only on arithmetic (of course, and also on propositional logic), but without set theory 
supposed to be inferable from arithmetic before the  Gödel (1931) incompleteness theorems. After 
Hilbert arithmetic underlies Hilbert mathematics justified in other papers (Penchev 2021 August 
24), therefore  neutralizing the aftershocks of those theorems, one can realize Hilbert arithmetics 
to be relevant to the intention or objective of Hilbert’s program, but in a way either indirect or very 
sophisticated and complicated, or simple, but loose and informal. So, that relation of HIlbert 
arithmetic to Hilbert’s program (in fact meaning Peano arithmetic rather than Hilbert arithmetic) 
needs an extended comment as follows: 

The essence of the Hilbert program relates to the complete representation of any infinite set 
arithmetically granting both set theory and arithmetic to be first-order logic to propositional logic. 
The main counterargument consists in the Gödel incompleteness theorems, which are furthermore 
usually reckoned to be its refutation. One can trace the logical tension of set theory and arithmetic 
back to the relation of the axiom of induction in arithmetic and the axiom of infinity (or equivalent 
to it) in set theory since they claim the opposite and thus contradictory statements about the same, 
namely about all natural numbers in arithmetic to the set of all natural numbers in set theory. All 
natural numbers are finite according to the axiom of induction, but simultaneously, the set of all 
natural numbers is infinite according to the set-theoretical axiom of infinity. 

The same observation can be also demonstrated by the eventual proof of FLT since it should 
refer to an infinite set of natural numbers, namely all natural numbers greater than 2. Indeed, all 
natural numbers greater than 2 are finite in arithmetic (according to the axiom of induction20), but 
nonetheless their set is necessary to be infinite in set theory in virtue of the axiom of infinity. Thus, 
one reveals in relation to the eventual solution of FLT the same tension explicated as a dichotomy 
by the Gödel incompleteness theorems: that general solution has to be either incomplete or 
contradictory sharing the same problem as the Hilbert program.  

 
19 Hilbert’s program is closest to a kind of neo-Pythagoreanism (relevant to the position of the present 
paper). Anyway, the link between it and Pythagoreanism is not discussed at all (e.g. Frank 2009; Feferman 
2008; 1988; Rathjen 2005; Zach 2004; 2003; Raatikainen 2003; Grattan-Guinness 2000; Judson 1997; Sieg 
1988; Simpson 1988). Anyway, Velenan (1997) links FLT directly to Hilbert’s program. However, Gödel’s 
ontological proof of God’s existence in its variants (Hajek 2011) can be interpreted as relevant to 
Pythagoreanism; also other mathematical and philosophical views (e.g. Odifreddi 2011) can be interpreted 
as implicitly Pythagorean. Jongeneel and Koppelaar (1999) clarifies the way, in which Godel’s 
incompleteness theorems can seves pro and contra AI. LaForte, Hayes, Ford (1998) oppose Roger Penrose 
(2011, for example), who (according to those authors) “claims to prove that Gödel’s theorem implies that 
human thought cannot be mechanized”. Indeed, quantum neo-Pythagoreanism is related to “quantum 
computer” and its interpretation as AI. Lacki (2000) connects the early axiomatizations of quantum 
mechanics and the continuation of Hilbert’s program. The later innovation of Hilbert’s program by epsilon, 
also consistent with Heyting’s approach (e.g. Mints 1977, Stein 1980, or Visser 1982) or cut elimination 
(Mints 2008) is even more closely related to the direction of the present paper. The Herbrand complexity 
of cut-elimination (Moser, Zach 2006) can be related to the wave function as a transfinite number can be 
interpreted in Hilbert arithmetic.  
20 Indeed “3” is finite; if any “n>3” is finite, “n+1” is also finite; thus the axiom of induction implies that 
any “n>3” is finite. (Of course, all natural numbers are finite again by the axiom of induction.) 



One must emphasize expressively that the insolubility at issue is valid if and only if both 
arithmetic and set theory, or more precisely, the axiom of induction and the axiom of infinity are 
granted to be valid simultaneously. Thus, any proof of FLT involving simultaneously arithmetic 
and set theory shares the same trouble necessarily. Wiles’s proof is just belonging to that class 
since it infers FLT as a corollary from the modularity theorem (i.e. by the Tanyama-Shimura-Weil 
conjecture once it has been already proved as a theorem) even only for the formulation of  the 
latter linking the discrete modular forms (in arithmetic) with the continuous elliptic curves 
(needing set theory for being continuous). In other words, Wiles’s proof is necessary to be out of 
the scope of  Gödel mathematics and this statement will be demonstrated once again in Section IV 
tracing explicitly that FLT is a Gödel insoluble statement by mediation of Yablo’s paradox. 

A possible corollary from the observation formulated in the previous paragraph is that it is not 
valid for arithmetic alone, since it refers to the simultaneous use of arithmetic and set theory (as 
Wiles’s proof does). So, if one manages to restrict the utilized tools only to arithmetic (as it would 
be plausible to the proof claimed, but not demonstrated by Fermat himself), the above trouble 
would be workable, however that pathway meets a not less problem, which can be illustrated in 
detail by Carroll’s “What the Tortoise said to Achilles” (1895). Or speaking metaphorically, what 
the Tortoise said to Achilles is valid to any proof of FLT by only arithmetical tools, namely: 

Just as Achilles needs set theory to overtake the Tortoise though as a “Wittgenstein ladder”, 
arithmetic as a first-order logic to propositional logic needs set theory again as a “Wittgenstein 
ladder” for any implication to be accomplishable (as Carroll demonstrated properly: Penchev 2021 
November 18). Particularly, set theory is especially necessary for the proof of FLT since it is to 
“overtake” all natural numbers just as Achilles needs it to overtake the Tortoise, though after 
overtaking, set theory is not more necessary and can be absolutely abandoned. Speaking 
figuratively, any proof of FLT including an eventual purely arithmetical one has to “wade between 
Scylla and Charybdis”: that is, between the Gödel dichotomy of “either incompleteness or 
contradiction”, on the one hand, and “What the Tortoise said to Achilles”, on the other hand. The 
former excludes arithmetic and set theory to be used simultaneously, but the latter requires them 
to be used just simultaneously (as if exemplifying the confusing Hegelian “dialectic discourse” 
able to go crazy for any logician).  

Fortunately, the mediation of propositional logic in both cases allows for the Hegelian 
“dialectic contradiction” to be substituted by a safe and only alleged contradiction for both not to 
be utilized simultaneously, or to be complementary to each other (in the sense of Bohr’s “quantum 
complementarity”). Speaking otherwise, the “Witgentein ladder” of set theory can be substituted 
by a doubled “Witgentein ladder” (respectively, two “Wittgenstein ladders”), however usable not 
simultaneously, or in other words, complementarily to each other: in fact borrowed from Hilbert 
arithmetic anyway and therefore demonstrable as a purely arithmetical proof of FLT: thus 
accomplishable by Fermat himself (as he claimed).  

Speaking rigorously and properly mathematically, one needs the bijection of Hilbert arithmetic 
onto Peano arithmetic, after which the former can be absolutely removed (just as a “Wittgenstein 
ladder”). Particularly, this means that the bijection at issue is to be absolutely and thoroughly 



representable into only arithmetical concepts, preferably and plausibly available in Fermat’s age 
and thus accessible for him to have really accomplished the claimed proof of FLT.      

Indeed, there exists an elementary axiomatic exchange in Peano arithmetic if it has been 
extended in advance to be an additive group of all integers rather than the semigroup of all natural 
numbers. Then, the exchange consists into the counterintuitive postilation that any negative integer 
is greater than any positive integer. Furthermore, the number “zero” is to be as if doubled as both 
negative and positive integer so that the “negative zero” to be greater than any integer, but the 
“positive zero” to be less than any integer therefore hinting at a cyclic group both cuttable and 
joinable just at the integer “zero”. 

One can immediately notice that the same approach allows for the purely arithmetical 
introduction of the integer “infinity” to be dual to “zero” once it has been doubled as above. Really, 
the usual group of all integers is cut at “infinity” and thus “infinity” is doubled into both positive 
and negative copies of “infinity”. Thus, if one compares the additive group of integers, defined 
“normally” with their additive group where negative integers are greater than the positive ones, 
i.e. “non-normally” all integers are available as the same in both cases, and this fact calls for “zero” 
and “infinity” to be identified analogically therefore introducing an arithmetical “infinity” as the 
dual counterpart of “zero” and after which the axiom of infinity (in that set theory being purely 
arithmetical) and the axiom of induction are to be dual to each other in turn.  

The last observation removes the tension of the Gödel dichotomy of arithmetic to set theory, 
choosing for arithmetic to be complementary to set theory and thus substituting their “fatal” 
contradiction with a “safe” proper complementarity. Once weaponed by that rigorous, but only 
arithmetical understanding of infinity, the bijection of Hilbert arithmetic into Peano arithmetic can 
be represented exceptionally simply: namely, as the natural bijection of the absolute value of all 
integers into all natural numbers. The  so-defined bijection is absolutely accessible already to 
Fermat, or in other words, the “Wittgenstein ladder” of Hilbert arithmetic is not necessary any 
more and it can be removed absolutely in the ultimate, purely arithmetical proof of FLT, thus 
thoroughly accomplishable by Fermat.  

The bijection at issue (which can be called briefly the “absolute value bijection” or “AVB”) is 
necessary for rigorously inferring of the modified modus tollens, valid to FLT, from the usual 
modus tollens under the AVB condition and will be demonstrated in the next Section III in detail.  

One should notice that just AVB (or respectively, the modified modus tollens) is what 
embodies the relation of the axioms of infinity and induction correspondingly (or respectively, that 
of arithmetic and set theory being different in Gödel mathematics versus Hilbert mathematics) in 
the very symmetric structure of the Fermat equation (i.e. that after FLT). 

Thus, FLT is a statement both: (1) provable in Hilbert mathematics, but not provable in Gödel 
mathematics; (2) embodying the relation of Hilbert mathematics to Gödel mathematics implicitly 
in its structure. Revealing that embodiment (though being removed in the ultimate approach in a 
“Wittgenstein manner”) is necessary for the purely arithmetical proof of FLT and eventually 
accessible to Fermat and accomplishable by him.   



Both those properties of FLT discover its fundamental ontological meaning and philosophical 
sense to be a “secret key” or “secret code” allowing for transforming the episteme of Modernity 
(which is our usual one and thus, very familiar to us) into a new episteme, which can be called 
provisionally, the “episteme of quantum neo-Pythagoreanism”.   

Finally,  that construction by doubling Peano arithmetic in two dual ways (from an additive  
semigroup to an additive group that the one doubling is isomorphic to that of all integers and the 
other one can be considered as a substructure of Hilbert arithmetic) can be generalized a few times 
more and more widely and mathematically, so that one can realize the philosophical sense of FLT 
as a fundamental relation of hierarchy and idempotency in the final analysis. Those stages are as 
follows: 

The semigroup of all natural numbers can be doubled also as a multiplicative group: then, not 
“zero”, but “unit” (as the relevant neutral of that group) is to be bifurcated into the special element 
greater than any natural number, on the one hand, and the element smaller than any natural number, 
on the other hand. Respectively, “infinity” being multiplicatively forked into “infinitesimally small 
quantities” and “infinitesimally great quantities”21 (unlike “negative infinity” versus “positive 
infinity” in the former, additive case), turns out to be analogically identified just as in the case of 
the dual counterpart of the additive group of all integers. Concisely, that generalization considers 
the structure of a group whether multiplicative or additive to which all natural numbers are a 
semigroup correspondingly multiplicative or additive.  

Then, one can introduce an arbitrary well-ordered (and thus, enumerable by natural numbers), 
and infinite semigroup with any associative operation. Obviously, a doubling  procedure is 
homomorphic to both cases above: additive and multiplicative. One may conclude that any well-
ordered infinite semigroup admitting a bijection to all natural numbers can be doubled in two dual 
ways already described. Meaning the axiom of choice, any infinite set (independently of its set-
theoretical power) supplied by an associative operation and closed to it can be considered, first, as 
a relevant semigroup, then it can be doubled isomorphically to the corresponding two dual Peano 
arithmetics belonging to Hilbert arithmetic.   

Finally, one can introduce an abstract relation of idempotency so that the procedure of doubling 
satisfies its formal definition and another one of hierarchy, relevant to well-ordering, and a meta-
relation between the relations of idempotency and hierarchy22. Following the same, rather 
philosophical intention, one can call that meta-relation “completeness” meaning the basis 
(suggestable to be only ontological now) of the way of Hilbert mathematics underlain by Hilbert 

 
21 Rather in the sense of Robinson (1966): as to Leibniz’s original infinitesimal, Christian (1984) elucidates 
the link between Gödel's “incompleteness” and other conceptions, on the one hand, Leibniz's notion of the 
infinitesimals, on the other hand.  Robinson (1956) discusses the conception of complete theories, which 
can be related to the later one, that of nonstandard analysis.  
22 Indeed, both relations of idempotency and well-ordering (hier called hierarchy) are absolutely rigorously 
defined in mathematics. However, the text now means their looser or philosophical sense directed to 
elucidate that of FLT and the eventual option of purely arithmetical proof in virtue of the mentioned  already 
mapping of Hilbert arithmetic into Peano arithmetic and which will be discussed in detail in Section 6. 



arithmetic to be complete (in fact, including the world and thus reality, remaining external as to 
Gödel mathematics, within its scope, i.e. as internal): 

Then, idempotency is to be related (now properly philosophically) to the fundamental 
Cartesian relation of “mind” and the “world” (or “body”), i.e. postulating for them to be idempotent 
to each other; and hierarchy to be limited only within each of them (particularly, a violation of 
hierarchy in they are mixed and which can be proclaimed to be a philosophical or even logical 
fallacy). If one considers the hierarchy of any of them, it will be incomplete to the whole of both 
mind and world: just this is the fundamental philosophical sense of the  Gödel incompleteness 
from the viewpoint of Hilbert mathematics.  

Meaning that maximally wide conceptual framework, the philosophical sense of FLT is to be 
revealed just by the “metarelation” of completeness to both relations of idempotency and 
hierarchy. The proof of FLT needs completeness, thus Hilbert mathematics, independently of the 
fact that it is formulated in terms of a single Peano arithmetics, and in virtue of this: it is shared by 
both Gödel mathematics and Hilbert mathematics. In other words, though being shared as to the 
way to be formulated, it can be proved only in Hilbert mathematics since it is an insoluble Gödel 
statement it the proper framework of Gödel mathematics (which admits many of those unlike 
Hilbert mathematics).  

Anyway, the same observation hints at a possible, “clever and cunning” approach for FLT to 
be proved only in the framework of Peano arithmetic once Hilbert arithmetic is mapped onto Peano 
arithmetic so that the proof of FLT in Hilbert arithmetic to be absolutely unambiguously and 
thoroughly mapped in Peano arithmetic, and Hilbert arithmetic can be removed as a “Wittgenstein 
ladder” in the ultimate result.   

Interpreting the same idea of a “cunning” approach to the proof as to the fundamental 
philosophical sense of FLT, it would mean that FLT is valid in a kind of the world supposed to be 
Pythagorean and fundamentally mathematical, however the proof in that Pythagorean world can 
be mapped absolutely exhaustively in terms of only Peano arithmetic. Thus, one can interpret the 
“lost proof of Fermat” as a counterfactual artifact (which is to be lost necessarily in the real 
Cartesian course of history): 

Indeed, any mathematician, who has lived or is living in the real course of history, needs that 
“Wittgenstein ladder” fundamentally inaccessible to him or her for it belongs to the alternative, 
counterfactual world. Nonetheless, if one suggests that Fermat himself can be related to the pre- 
bifurcational  time, divided disjunctively all mathematicians from the “Wittgenstein ladder” 
necessary for the proof of FLT, he could yet accomplish that proof (lost in our branch of history 
as if “necessarily”) naively in virtue of the fact that the historical bifurcation at issue would not 
happened yet until the time in which Fermat had proved FLT.  

From the same historical and philosophical perspective (particularly, inferable in a Hegelian 
conceptual framework), the “cunning approach” consists in the option for Hilbert arithmetic and 
mathematics realizable in our Cartesian branch of history only in many years after the 
establishment of quantum mechanics to be utilized as that necessary “Wittgenstein ladder” for 



restoring the alleged lost proof of Fermat in an absolutely rigorous way able to be “naive” only in 
virtue of huge wisdom accumulated over the centuries.           

 One can distinguish two Peano arithmetics even within the structure of Fermat’s equation (i.e. 
that meant by FLT) so that the one of them is occupied by the arithmetical variables (usually 
notated as 𝑥𝑥,𝑦𝑦, 𝑧𝑧) and the other one, by the arithmetical exponent (usually notated as 𝑛𝑛). Then, 
each of both is supplied separately by its own “sub-ladder”, however both supplied by Hilbert 
arithmetic though in two different ways and shortly notated as the modified modus tollens or MMT 
(as to the former Peano arithmetic of 𝑥𝑥,𝑦𝑦, 𝑧𝑧) and the also modified Fermat descent or MFD23 (as 
to the latter Peano arithmetic of 𝑛𝑛), accordingly: 

“MMT”: (𝑥𝑥𝑛𝑛+1 → 𝑥𝑥𝑛𝑛) ⇔ [¬(𝑥𝑥𝑛𝑛 = 𝑦𝑦𝑛𝑛 + 𝑧𝑧𝑛𝑛) → ¬(𝑥𝑥𝑛𝑛+1 = 𝑦𝑦𝑛𝑛+1 + 𝑧𝑧𝑛𝑛+1) where “𝑥𝑥𝑛𝑛+1”, 
“𝑥𝑥𝑛𝑛” mean correspondingly the propositions: “there exists 𝑥𝑥𝑛𝑛+1” and “there exists 𝑥𝑥𝑛𝑛”. Once that 
they are interpreted as propositions is emphasized expressively, they can be substituted by the 
quantifier of existence usually notated as “∃” where the special interpretation of the quantifier as 
a proposition is represented by brackets; that is: 

[∃(𝑥𝑥𝑛𝑛+1) → ∃(𝑥𝑥𝑛𝑛)] ⇔ [¬(𝑥𝑥𝑛𝑛 = 𝑦𝑦𝑛𝑛 + 𝑧𝑧𝑛𝑛) → ¬(𝑥𝑥𝑛𝑛+1 = 𝑦𝑦𝑛𝑛+1 + 𝑧𝑧𝑛𝑛+1) 

“MFD”: if “FLT” is true for “𝑛𝑛 = 3” and “MMT” is true, the axiom of induction implies for 
“FLT” to be true for any “𝑛𝑛”.  

The proper mathematical validity of both “MMT” and “MFD” will be discussed in the next 
Section III, but now one can demonstrate that MMT corresponds to idempotency, and MFD to 
hierarchy, however the sequence of their use has been exchangled, namely from “idempotency 
(hierarchy)”24 (as to Hilbert arithmetic) to “hierarchy (idempotency)”25 (as to Peano arithmetic). 

The justification of that exchange is due to the axiom of choice, meaning only that the whole 
qubit Hilbert space is equivalent to a single qubit of it. The correctness of that exchange seems to 
be doubtful at first glance since it refers to the axiom of choice, which does not belong to the 
axioms of Peano arithmetic and even cannot be added to it at all since it means infinite sets and 
thus, implicitly the axiom of infinity, which contradicts the axiom of induction in turn included 
expressively in the axiomatic tuple of Peano arithmetic.  

Anyway, one can justify the use of the axiom of choice by a meta-consideration referring to 
the way how the concept of “Wittgenstein ladder” is to be defined rigorously as to two first-order 
logics such as arithmetic and set theory and their relation. Speaking loosely, the axiom of choice, 
itself, is used as a “Wittgenstein ladder” available only to the “Wittgenstein ladder” of Hilbert 
arithmetic, but removed simultaneously with removing the latter, and thus getting missing in Peano 
arithmetic, only necessary for the formulation and eventual purely arithmetic proof of FLT.   

 However, speaking explicitly and constructively, the mapping of Hilbert arithmetic consisting 
of two dual Peano arithmetics into a single one is what removes both infinity (i.e. all infinite sets) 

 
23 The modified modus tollens (MMT) and the modified Fermat descent (MFD) are described in detail in 
other papers (e.g. Penchev 2020 August 10). 
24 This means that hierarchy is used first within each qubit, and after that each qubit is doubled by its dual 
counterpart. 
25 This means a well-ordered (infinite) series of bits, i.e. the class of all Turing machine tapes. 



and the axiom of choice, relevant to it (them) canceling the difference of the two dual Peano 
arithmetics by considering the class of them26. That erased “bit” can be interpreted philosophically 
in a few different ways however meaning always the bit at issue: either “infinity” or “finiteness” 
(in contemporary mathematics); accordingly, either “body” or “mind” (in Cartesian dualism); 
either our actual branch of history, in which Fermat’s proof of FLT is lost (rather in quotation 
marks, speaking more precisely: “lost”), or a putative or restorable “naive” state before the 
bifurcation with the counterfactual branch at issue, during which Cartesian dualism had not 
appeared and did not exist yet.  

Thus, removing the “Wittgenstein ladder” of Hilbert arithmetic is able to remove the axiom of 
choice, since it belongs to the same “ladder” therefore restoring the pre-Cartesian “paradise” 
before the “apple of the sinn” of dualism to have “eaten”, or without any metaphor, the distinction 
of infinity versus finiteness had not been articulated, and arithmetic had not been yet restricted to 
finiteness.   

Furthemore, one can consider how MMT and MFD embody correspondingly idempotency and 
hierarchy in more detail. All centuries-old troubles about FLT and its proof can be synthesized 
once the present viewpoint of hierarchy and idempotency has been accepted as follows. FLT needs 
both idempotency and hierarchy to be proved (figuratively speaking, for Achilles to be able to 
overtake the Tortoise following Carroll’s “What the Tortoise said to Achilles”: Penchev 2021 
November 2018), on the one hand, and nonetheless, the same approach implies for FLT to be a 
Gödel insoluble statement in the framework of both idempotency and set theory, which are 
necessary for their application just in that sequence: idempotency (hierarchy), on the other hand. 
In other words, “both hands”, just described, generate a real logical and mathematical paradox, 
which can be called the “paradox of the proof of FLT”. Particularly, Wiles’s proof is impossible 
to avoid the same paradox, as this will be rigorously shown in Section IV. 

The idea to prove FLT by induction advocated here can be called the solution of Fermat’s “lost 
proof”: in the above terms, it substitutes “idempotency (hierarchy)” by “hierarchy (idempotency)” 
valid only under the axiom of choice, indeed also unjoinable to Peano arithmetic in the framework 
of both arithmetic and set theory again in virtue of the Gödel dichotomy. However, the axiom of 
choice is utilized only as a “Wittgenstein ladder”: i.e. vanishing by itself as an effect of its own 
use. Someone might reject its use at the point as a logical fallacy or involving a contradiction, 
however this is not a fallacy, in fact, for the following: 

Properly, the direct contradiction of both use and non-use of the axiom of choice (meant by 
the metaphor of “Wittgenstein ladder”  and which also can be called an “objective, dialectical 
contradiction” in a Hegelianian discourse) is substituted by the “alleged contradiction” (as it is 
defined formally and logically e.g. in: Penchev 2020 November 18) of those “use and non-use” 
involved so to be complementary rather than contradictory to each other: in other words, the axiom 

 
26 In other words, what is canceled is a bit of information consisting of two oppositions (often granted to 
be two bits): the first opposition means the bit before and after choice, and the second one, each of both 
equally probable alternatives after choice. The same bit and two oppositions can be interpreted as the two 
missing bits of classical information after the “teleportation law” of quantum information (Penchev 2021 
July 8). 



of choice is used only in our contemporary context of arithmetic and set theory. That context 
vanishes immediately just by virtue of the use of the axiom of choice, and as a side-effect, the 
axiom of choice, itself, vanishes, too: the context is replaced by its complementary one, that of 
Fermat’s age when arithmetic could refer simultaneously to infinity and finiteness since their 
disjunctive articulation had not appeared yet.  

In other words, the use and non-use of the axiom of choice, able to blow up any logical proof 
as any direct contradiction, is changed by their “cunning” and safe utilization as complementary 
to each other: either use (in our epoch) or not-use (in Fermat’s epoch). Indeed, the two epochs are 
complementary to each other just as any two moments of time are divided by a finite interval: they 
cannot happen simultaneously. Speaking more precisely, the “lost proof of FLT” is a metaphor or 
an exemplification of the method of complementarity to avoid the direct contradiction of arithmetic 
and set theory (both necessary for the proof of FLT) and thus one can reveal a solution of the 
“paradox of the proof of FLT” (as it is involved and described above).     

Once the approach of “hierarchy (idempotency)” has been justified as above (indeed rather 
sophistically), it can be explicitly and constructively embedded in the alleged “lost proof” of 
Fermat, which will be the subject of investigation in the next Section III. Concisely, MMT refers 
to idempotency, and MFD, to hierarchy: 

Indeed, MMT means only two levels, and it can be considered as a specific relation of order 
deprived of transitivity (unlike well ordering called hier “hierarchy” being used in a wider and 
philosophical context). Namely interpreted as idempotency, it can be proved as in Section III. 
However, the property of transitivity distinguishes hierarchy (respectively MFD) from 
idempotency (respectively MMT) not allowing it to be related simultaneously to the same 
mathematical entity for it would turn out both transitive and non-transitive.   

Nonetheless, MMT can be also considered as invariant to transitivity since it refers to two 
levels, which can be included equally well both in a relation of idempotency and in a relation of 
hierarchy. Thus, it can be proved by idempotency, but once proved and being the same, to be 
utilized in the context of hierarchy without any formal and logical contradiction: it remains the 
same in two complementary contexts, as that of transitivity (the context of its proof) as that of 
utilization (the global context of the FLT proof by induction). So, it can be seen as the real, 
mathematical and constructive tool to be unified idempotency and hierarchy (contradicting each 
other, e.g. in relation of not-transitivity versus transitivity correspondingly) painlessly and 
consistently as to the purely arithmetical proof of FLT.  

Though this is not necessary for that ostensibly restored “lost proof of Fermat”, MMT can be 
interpreted not worse in terms of set theory, or more especially of that “Wittgenstein ladder” of 
the axiom of choice and allowing for the transition from the contemporary context of both 
arithmetic and set theory to that of Fermat and being only arithmetical. Indeed, just the axiom of 
choice links the idempotency of any choice (meaning explicitly that of an infinite set since the 



choice of a finite set can be accomplished with it following always relevant constructive criteria) 
and hierarchy to each other in virtue of its equivalence to the well-ordering “theorem”27. 

The way for idempotency and hierarchy to be identified by the axiom of choice can be 
visualized by a bit of information being definable as a choice between two equally probable 
alternatives, i.e. naturally idempotent to each other. Indeed, that choice simultaneously orders well 
the two alternatives as the chosen alternative and the unselected alternative. The axiom of choice 
provably equivalent to the well-ordering theorem only postulates the same property also to any 
infinite series of bits.  

Now, one can consider the choice between the two levels involved in MMT as a bit of 
information, which can be even an infinite set if set theory is admissible (which is valid only in 
our contemporary context, but not in Fermat’s). The discussed observation can be expressed, but 
rather loosely and figuratively so. MMT allows for the axiom of choice to act hiddenly or implicitly 
even in Fermat’s context though being only arithmetic and thus rejecting its explicit use needing 
infinity (respectively the axiom of infinity).     

Once MMT has completed its “dialectical” task in a consistent way (namely to unify 
idempotency and hierarchy avoiding their direct contradiction by the alternation of its two 
complementary utilizations: as a conclusion of a proof and as a premise of another proof), MFD, 
properly following an idea used by Fermat himself, allows for an elementary ultimate proof of 
FLT (or involving now “hierarchy” as to terms of the present paper): 

The main peculiarity of MFD is implied by the exchange of idempotency (hierarchy) featuring 
Hilbert arithmetic into the “naive” hierarchy (idempotency) only possible in Fermat’s age “not yet 
known of original sin” of infinity. The eventual purely arithmetical proof of FLT needs a bijection 
(or homomorphism) of Hilbert arithmetic into Peano arithmetic and its opportunity has been 
visualized above by the trivial mapping of the absolute values of all integers into all natural 
numbers. However, it seems not to be directly applicable to the arithmetical proof of FLT due to 
the lack of a well-known relevant logical rule of conclusion (which would be accessible as to 
Fermat, particularly). 

On the contrary, if one means modus tollens already utilized in MMT, and furthermore, the 
method of infinite descent invented by Fermat himself, another homomorphism of Hilbert 
arithmetics into Peano arithmetic calls to pay attention and after which the set of all natural 
numbers is the same of both cases of the two dual counterparts of Peano arithmetics involved in 
Hilbert arithmetic, but being well-ordered oppositely to each other: the “semigroup of transfinite 
numbers”28 starts from “infinity” (speaking loosely) decreasing by a unit as the corresponding 

 
27 The well-ordering theorem is equivalent to the well-classification theorem (thus in turn of the 
axiom of choice) always allowing  for a hierarchy of propositions relatable to any classification 
(Giv 2015). That approach is relevant to the approach to be proved FLT only arithmetically due 
to exchanging “idempotency (hierarchy)” into “hierarchy (idempotency)” as far as idempotency 
is involved in any proposition and its negation. 
28 The question “When is a total ordering of a semigroup a well-ordering?” and its answer (Révész 1990) 
is quite relevant to that transfinite semigroup.  



function of successor (according to Peano’s axiom), and the “semigroup of finite numbers” starts 
from the unit increasing by a unit as usual. 

The next step is that observation to be “translated into Fermat’s language”, i.e. “without 
infinity”: then, what remains is that the former semigroup (i.e. that of transfinite numbers in the 
understanding of our epoch) is only decreasing unlike the latter, usual one: and this corresponds 
and fits exactly to the structure of MMT linking decreasing with increasing equivalently to each 
other. Properly, a chain of successive MMT can be well-ordered only increasing according to all 
natural numbers and thus, implying the applicability of the axiom of induction to FLT (since it is 
not directly applicable, but only after that very sophisticated construction described in the present 
article). One can immediately notice that it will also comprise the twin Peano arithmetics of 
decreasing natural numbers (starting as if from infinity according to the viewpoint of nowadays). 
So, modus tollens is the relevant tool to run both Peano arithmetics only in virtue of the standard 
arithmetical induction only in the one direction, that of successive decreasing: 

That consideration demonstrates that MMT and MFD are sufficient for FLT and its eventual 
purely arithmetical proof to be represented exhaustively by idempotency and hierarchy.      

III FLT PROVED BY INDUCTION RIGOROUSLY 
Another paper (Penchev 2020 August 10) published a few years ago discusses this. The present 

section represents only comments to that paper, the objective of which was, first of all, to visualize 
tenets accessible in Fermat’s age, though in a way not rigorous enough as far as they are “restored” 
on the base of knowledge available nowadays and sketched during the previous two sections. The 
intended notices refer to the following questions:  

(1) Is MMT (i.e. the “modified modus tollens”) valid only to the proof of FLT due to its specific 
features (or symmetries relevant to Hilbert arithmetic and mentioned in the discussion) until now? 

(2) How should one relate MMT and MFD (the “modified Fermat descent”) to each other? Or 
in other words, do they not contradict each other so their simultaneous use in a single proof is 
inadmissible without generating any logical fallacy, therefore canceling the proof itself?  

In a sense, the answer of the latter questions is the key to answer the former one, and thus they 
need be discussed first. Speaking figuratively, both MMT and MFD only together might represent 
that kind of a generalized or as if doubled induction able to prove FLT: it can be visualized as 
transfinite induction consisting of two parts, however not situated successively to each other and 
therefore constituting a single well-ordering29, in which any finite natural number is less than any 
transfinite “natural” number, but complementing each other just as in the rigorous meaning of 
Bohr’s complementarity or as two dual Hilbert spaces in a way to represent transfinite induction 

 
29 FLT cannot be proved directly by transfinite induction since it needs the concept of infinity to be 
formulated and once infinity has been involved even implicitly, FLT turns out to be an insoluble statement 
in that new and extended framework, which already has included infinity. Anyway, transfinite induction 
can be interpreted even within Peano arithmetic (e.g. as in Sommer 1995) and the approach in the present 
can be also interpreted in the same way: that is transfinite induction applied indirectly or implicitly within 
Peano arithmetic. 



in the naive “Fermat arithmetic”  still unaware of the “original sin of infinity” and accordingly able 
to proof FLT in that “paradise”, from which it was not yet “expelled”.  

The same construction can be again (as in the previous sections) visualized by the 
“Wittgenstein ladder” of the axiom of choice, by means of which an infinite set, relevant by its 
well-ordering (also guaranteed by the axiom of choice) to transfinite induction, can be divided into 
two disjunctive infinite subset, however now situated to be complementary to each other similar 
to the two alternatives of a bit of information; that is: the same two alternatives are successive to 
each other in the former case, and the equivalence of the former and latter cases is supplied by the 
axiom of choice and the well-ordering “theorem”. Then, one can speak of the two Peano 
arithmetics of Hilbert arithmetic, however as if they are a “coherent quantum superposition” and 
indistinguishable from each other in any way yet. 

Nonetheless, the proof of FLT needs both and thus, the availability of both can be provided 
only if they are divided (and thus distinguished, but as complementary to each other and thus 
preventing their direct contradiction) into two means furthermore distributed into two discernibly 
different areas: logic (from where modus tollens has come) and arithmetic (from where induction 
by the axiom of induction has come). Indeed, one can see MMT as a second induction developing 
it anti-isometrically (i.e. in the opposite direction) to the usual induction in the normal, “straight” 
direction since the former originates from the dual Peano arithmetic just anti-isometric to its usual 
and “normal” counterpart. 

Anyway, MMT brings with itself a modification of the reverse induction “decreasing” from 
infinity to the finiteness of the usual natural numbers  and which consists in its beginning from the 
“other end”, the opposite end, that of the usual natural numbers: indeed, that “other end” being 
interpreted in terms of reverse induction (inherent for the dual Peano arithmetic) is just the “end 
of infinity”. One can think of the two branches of MMT (namely: “𝑥𝑥𝑛𝑛+1 → 𝑥𝑥𝑛𝑛” is the one branch, 
and “[¬(𝑥𝑥𝑛𝑛 = 𝑦𝑦𝑛𝑛 + 𝑧𝑧𝑛𝑛)] → [¬(𝑥𝑥𝑛𝑛+1 = 𝑦𝑦𝑛𝑛+1 + 𝑧𝑧𝑛𝑛+1)]” is the other one) as belonging to the two 
complementary Peano arithmetics and dual to each other, however now embodied in the 
distinguishable, but able to be consistent, arithmetic, and logic applied to the same arithmetic. One 
need investigated the very sophisticated way for both not to contradict each other and not to 
generate a trivial logical fallacy by distinguishing the sense (and then, the meaning) of the 
implication (though notated as the same “→” in both) in each branch separately: 

One can notice that the implication connects propositions in the latter case, which is its standard 
use in propositional logic, but its use in the former case needs a justification, namely the following 
convention. An implication of mathematical objects (such as “𝑥𝑥𝑛𝑛+1, 𝑥𝑥𝑛𝑛” in the case) is to be 
interpreted as their existence, or that the proposition “There exists 𝑥𝑥𝑛𝑛+1” implies the proposition 
“There exists 𝑥𝑥𝑛𝑛”. Obviously once that convention is accepted, the use defined by it is 
unambiguous.  

Furthermore, the implication “𝑥𝑥𝑛𝑛+1 → 𝑥𝑥𝑛𝑛” is a corollary from; “𝑛𝑛 + 1 → 𝑛𝑛", which in turn can 
be considered as an interpretation in terms of propositional logic of the proper arithmetical axiom 
about the existence of the “function successor”. In other words, the well-ordering of implications 
due to its transitivity and the well-ordering of natural numbers due to the function successor are 



isomorphic and namely that justifies the implication “𝑥𝑥𝑛𝑛+1 → 𝑥𝑥𝑛𝑛 once the convention at issue has 
been granted.  

Meaning the mentioned above substitution of the two dual Peano arithmetics of Hilbert 
arithmetic by the natural pair of one arithmetic and one propositional logic, one may say that the 
branch of “𝑥𝑥𝑛𝑛+1 → 𝑥𝑥𝑛𝑛” refers to arithmetic in that pair, and the branch of “[¬(𝑥𝑥𝑛𝑛 = 𝑦𝑦𝑛𝑛 + 𝑧𝑧𝑛𝑛)] →
[¬(𝑥𝑥𝑛𝑛+1 = 𝑦𝑦𝑛𝑛+1 + 𝑧𝑧𝑛𝑛+1)]” refers to logic in the same pair. However, their identification in virtue 
of MMT connects heterogeneous propositions, which are anyway logically commensurable due to 
the identity of logic used in two ways: once as a propositional logic to arithmetic, and twice as a 
propositional logic to itself (i.e. as a trivial first order-logic to itself30). 

That consideration is not yet sufficient to verify MMT, which is properly a specific statement 
valid only in the framework of FLT because of the symmetry of Fermat’s equation. In fact, that 
symmetry embodies by itself the symmetry of Hilbert arithmetic into the structure of Fermat’s 
equation and then into FLT allowing for an only arithmetical proof in which Hilbert arithmetic 
cannot be utilized explicitly.    

What is verified until now can be notated as: “(𝑥𝑥𝑛𝑛+1 → 𝑥𝑥𝑛𝑛) ⇔ [¬[𝑥𝑥𝑛𝑛 = (𝑦𝑦 + 𝑧𝑧)𝑛𝑛] →
[¬[𝑥𝑥𝑛𝑛+1 = (𝑦𝑦 + 𝑧𝑧)𝑛𝑛+1]” therefore needing yet to be proved that the right part of the latter 
statement and the right part of FFT can be in turn equated: a statement quite nontrivial, being false 
in general, but eventually valid as to FLT utilizing the symmetry of Fermat’s equation.  

To be equated both  [𝑥𝑥𝑛𝑛 = (𝑦𝑦 + 𝑧𝑧)𝑛𝑛] and (𝑥𝑥𝑛𝑛 = 𝑦𝑦𝑛𝑛 + 𝑧𝑧𝑛𝑛), on the one hand, and  ¬[𝑥𝑥𝑛𝑛+1 =
(𝑦𝑦+ 𝑧𝑧)𝑛𝑛+1] and (𝑥𝑥𝑛𝑛+1 = 𝑦𝑦𝑛𝑛+1 + 𝑧𝑧𝑛𝑛+1), on the other hand, one needs (for example) the proof of 
the mutual “orthogonality” of “y” and “z”; that is: any product containing the multiplication “𝑦𝑦. 𝑧𝑧” 
is necessarily zero: a statement being obviously false if “𝑦𝑦” and “𝑧𝑧” are aritnethical variables not 
satisfying any additional conditions. 

However, the mediation of Hilbert arithmetic allows for the formulation of those relevant 
conditions utilizing once again the axiom of choice as a “Wittgenstein ladder” able to be 
unavailable in the ultimate result once it has been involved in the preliminary stage. Anyway, it is 
to be meant and used in a rather different way, namely as a relation within a bit of information 
between the chosen and unchosen alternatives or as the isomorphic relation of the “coherent” state 
of both before choice, on the one hand, versus either of them, but after choice, on the other hand. 
Indeed, this relation can be reckoned as an equivalent of that “orthogonality” necessary for any 
product containing the multiplication of the arithmetical variables “y” and “z” to be zero.  

However, that “orthogonality” seems to be absurd as to any two variables in the usual 
arithmetic since the operation of multiplication is unambiguously defined for any values of them. 
Nonetheless, it is natural in Hilbert arithmetic if those variables are granted to be dual to each 
other, i.e. each of them to belong to the one Peano arithmetic different from its dual counterpart, 
to which is to belong the other variables. Anyway, even that representation borrowed from Hilbert 
arithmetic is not yet sufficient to represent the structure of Fermat’s equation, meaning that two 

 
30 For example, propositional logic can be interpreted as a lattice (properly Boolean one) over models of 
Peano arithmetic (e.g. as Schmerl 2010; 2004; 1993).  



dual Peano arithmetics are anti-isometric to each other. One need introduce the mapping of Hilbert 
arithmetic into Peano arithmetic as above, after which the orthogonality at issue can be embodied 
by distinguishing of the variables of “𝑦𝑦” and “𝑧𝑧” so that the one to belong to the one kind of 
arithmetic, and the other one correspondingly, to the other kind of arithmetic. 

One may visualize the structure of Fermat’s equation substituting the mapping of Hilbert 
arithmetic into Peano arithmetic by the mapping of the Decart product of Peano arithmetic  
(“𝑃𝑃1”) with itself (“𝑃𝑃2”) into itself (“𝑃𝑃”), or notated symbolically as: 𝑃𝑃1 ⊗𝑃𝑃2 → 𝑃𝑃. Then, the 
arithmetical variables “𝑥𝑥”, “𝑦𝑦”, and “𝑧𝑧” belong correspondingly to: 𝑃𝑃1,𝑃𝑃2,𝑃𝑃. That is: (𝑥𝑥 ∈
𝑃𝑃1), (𝑦𝑦 ∈ 𝑃𝑃2), (𝑧𝑧 ∈ 𝑃𝑃 ) if Fermat’s equation is notated as above: 𝑥𝑥𝑛𝑛 = 𝑦𝑦𝑛𝑛 + 𝑧𝑧𝑛𝑛. Thus, the 
“orthogonality” of “y” and “z” is embodied by the natural “orthogonality” of the argument “𝑃𝑃2” 
and the function “𝑃𝑃”.  

Anyway, one can question how Fermat himself in his epoch might mean that representation 
about arithmetical variables “y” and “z”, seeming to be too sophisticated even in our epoch: for 
example, by their geometrical interpretation as spatial volumes since 𝑥𝑥3,𝑦𝑦3, 𝑧𝑧3, which can be 
naturally thought to be the measures of spatial volumes, and 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝑧𝑧𝑛𝑛 as their generalizations 
from the dimension of three (which is natural for a volume) to any dimension. Then, 𝑥𝑥𝑛𝑛 = 𝑦𝑦𝑛𝑛 +
𝑧𝑧𝑛𝑛 can be interpreted as an equation about those generalized volumes, which can be added to each 
other like homogenous volumetric capacity (e.g. like the sum of the amount of water in different 
volumes).  

Indeed, though that sum of generalized volumes is innate after that interpretation, the 
multiplication of dimensions of different volumes (such as “𝑦𝑦” in “𝑦𝑦𝑛𝑛” with “𝑧𝑧” in “𝑧𝑧𝑛𝑛” in the 
case of Fermat’s equation) is meaningless and can be granted to be zero just as this is necessary 
for the only arithmetical proof of FLT. In fact, the intervention of that kind of geometric 
interpretation by volumes into a proof intended or alleged to be only arithmetic seems to be not 
quite correct (though it just brings the necessary “orthogonality” in the proof). 

However, one should mean that Descartes’s “analytic geometry” belonging to to Fermat’s time 
exploited the same king of merging algebra (respectively, arithmetic) with geometry again just in 
virtue of the missing concept of “infinity” and thus, the missing opposition of “infinity” and 
“finiteness”. Thus, the ideas of Hilbert arithmetic (explicitly possible only after Hilbert space able 
to unify arithmetic and geometry consistently even after the opposition of “finiteness” and 
“infinity” has been introduced expressively after set theory) can be anyway available in Descartes 
and Fermat’s age though in a naive or unarticulated way: 

Indeed, if the opposition of infinity and finiteness is absent, the axiom of induction (or simply, 
mathematical induction) can be used limitlessly without any distinction between its finite or its 
“transfinite” (by the term of our epoch) uses. Particularly, Fermat might use induction 
“transfinitely” in a naive way, i.e. unaware of its distinction to finite induction (a distinction 
appeared only in the 20th century).    

One can utilize the concept of “epoché”, coined by Huserl originally to reality, now to infinity 
to represent in a rigorous way the naive attitude to infinity in Fermat’s age, after which the 
distinction of finitiness and infinity can be absolutely abandoned without any influence on the 



consideration or logical fallacy in the proof. Even more, one can state that FLT can be proved 
rigorously only after that “epoché to infinity” and inherent for Fermat just as “speaking in prose” 
is inherent for all people without being aware of “speaking in prose”. On the contrary, a “poetry 
of infinity” featured contemporary mathematics makes that proof impossible.   

IV A FORMAL PROOF OF THE INSOLUBILITY OF FLT  IN GÖDEL MATHEMATICS 
(ARITHMETIC & SET THEORY) 

The idea for an only arithmetic proof of FLT (corresponding to the metaphor of “restoring 
Fermat’s lost proof”) relies crucially on its interpretation as a Gödel insoluble statement; at that, 
as a provable proposition rather than as a more or less loose conjecture or a figurative expression. 
This is not only a quite different realization, but furthermore entirely aside (even rather back, 
oppositely) to the mainstream mathematicians’ meta-understanding of proof at all as a technical 
puzzle (i.e. very, very complicated as to that of FLT after it had not been “ordered” for almost five 
centuries before Wiles’s innovation).  

Wiles’s proof (1995) shares its direction to use more and more sophisticated, newer and newer, 
more and more “cunning” tools so that the puzzle cannot but be resolved in the final analysis, what 
properly Wiles managed to demonstrate expressively therefore confirming once again the 
mainstream mathematicians’ conviction about all mathematical problems to be too clever puzzles 
not needing any change of the dominating (in the case, rather philosophical) “paradigm” and thus 
unintentionally following the viewpoint of Thomas Khun’s classical paper (1962). 

One can introduce the metaphor that any “wall” in mathematical cognition cannot but be 
destroyed without any change of general direction applying more and more powerful means. 
However, Wiles’s means need be so powerful, that some “dissidents” (e.g. McLarty 2010; 2020) 
admit that such powerful tools can be utilized only changing the general direction, and Wiles did 
this though unofficially, without posting this “quiet change of paradigm” therefore going out of 
Gödel mathematics possible only in the framework of both arithmetic and set theory. The present 
paper tries only to show (as a little above) that Willes’s going out is necessary since FLT is 
insoluble in Gödel mathematics.  

Once this can be proved rigorously (which is forthcoming in fact), it can be even utilized for 
another, only arithmetical proof of FLT, however involving powerful philosophical (or 
philosophical and mathematical, and logical) tools rather than exceptionally mathematical ones as 
the mathematical mainstream does as getting natural. Following the mentioned “wall in front of 
cognition”, that philosophical approach seeks for ways to bypass it rather  than to “pierce it head-
on”. Indeed, human beings usually research how to bypass any obstacle that turns out to be difficult 
enough rather than to “pierce it head-on” by more and more efforts.  

Those philosophical means relevant can be represented as a modified “epoché” to infinity 
(rather than the original phenomenological “epoché” to reality and suggested by Husserl himself). 
In other words, one should abandon the question if any mathematical entity is finite or infinite 
following the new “epoché”. Furthermore, it seems to be natural as to Fermat’s age and its naivety 
or inexperience to infinity, which appeared as an articulated concept only a few centuries later, 
after Cantor’s set theory. Then, one can involve the term of Fermat arithmetic just for notating 



that arithmetic does not discuss infinity whether naively (as Fermat’s age supposedly) or for too 
much experience (as our epoch is inclined  to praise and flatter itself).  

That is: “Fermat arithmetic” is defined after abandoning the problem about any arithmetic 
entities (e.g. natural numbers) to be either finite or infinite, or any logically consistent combination 
of both. So, Fermat arithmetic is to be related to our age, corresponding to the state of too much 
experience rather than the inexperience of the 17th century about infinity31. Anyway, it suggests 
ideas and hypotheses of how that kind of Fermat arithmetic can be represented thoroughly in the 
options available in Fermat’s age, but those are rather loose conjectures or figurative ways to be 
introduced more or less popularly “Fermat arithmetic” otherwise absolutely rigorous. 

One can immediately notice that the “epoché to infinity” of Fermat arithmetic is sufficient to 
avoid and prevent at all the Gödel incompleteness. This can be demonstrated literally following 
the text of his paper (1931) or even, quite simply as here: by elucidating that “epoché to infinity” 
is able to “cure the root” of  the Gödel incompleteness consisting in the direct contradiction of the 
axiom of induction (in Peano arithmetic) and the axiom of infinity (in ZFC set theory) as to all 
natural numbers in relation to the set of them. Indeed, if one abandons the question whether all 
natural numbers (respectively, their set) are finite or infinite, that contradiction cannot appear and 
consequently, the Gödel incompleteness, too.    

Then and as a corollary, FLT is not more an insoluble statement (since that insolubility was 
due just to the incompleteness of Gödel mathematics meaning the framework of both arithmetic 
and set theory), and one can prove it expressively just as Fermat had mentioned. Anyway, that 
proof in Fermat arithmetic turns out to be much more complicated than that in Hilbert arithmetic 
needing to “restore the virginity” of Fermat’s age: indeed sophisticated, but possible. Anyway, it 
might be simultaneously quite simple in Fermat’s own performance, since many problems, which 
Fermat arithmetic is to resolve, even cannot be formulated in his epoch.  

A necessary condition of all those considerations and the proper subject of the present section 
is the proof that FLT is really an insoluble statement in the framework of both arithmetic and set 
theory. Speaking loosely, the proof cannot fundamentally resolve FLT as to the set-theoretical 
complement of arithmetic being finite after the axiom of induction to the set theory being infinite 
after the axiom of infinity. On the contrary, if one admits an “epoché” to the existence of that 
complement just as Fermat arithmetic does, FLT is already soluble since the eventual insolubility 
of FLT cannot be even formulated if that is the case. 

The intended proof32 contains a few crucial points, which will be considered successively in 
detail further. Those are: (1) FLT implies an inductive scheme as to the exponent (“n”) in Fermat’s 
equation; (2) that inductive scheme can be interpreted as an exemplification of Yablo’s paradox33, 

 
31 One can refer (of course, as a joke) to Lady Bracknell’s words from the first act of Oscar Wilde’s “The 
importance of being Earnest”: “I have always been of opinion that a man who desires to get married should 
know either everything or nothing. Which do you know?” Analogically, whoever wishes to prove FLT 
should know either everything (as our epoch praises itself) or nothing (as our epoch alleges that of Fermat). 
32 The idea of that proof is suggested initially in: Penchev 2020 August 25.  
33 Yablo’s paradox is not relevant to Fermat arithmetic in virtue of (e.g.) the following observation 
(Bernardy 2009). “Consider an infinite sequence of sentences, where any sentence refers to the truth values 



after which an exponent to which FLT is an insoluble statement exists necessarily though it cannot 
be demonstrated constructively; (3) an antinomic statement after Yablo’s paradox applied to (2) is 
a Gödel insoluble proposition34. A few preliminary comments to those three stages are: 

As to (1): the inductive scheme about FLT meant in the previous section, to say, in a 
“cataphatic” way, is exploited now “apophatically”. That is: the inductive scheme valid under the 
only condition of the axiom of induction, is transferred now in the framework of both arithmetic 
and set theory and where both axioms, the axiom of induction and the axiom of infinity are valid. 
Once this has been done, one can immediately notice that it satisfies the formal structure of Yablo’s 
paradox. 

As to (2): the essence of Yablo’s paradox can be granted to be built as an antinomy without 
self-referentiality and therefore just relevant to FLT because it does not involve any self-
referentiality. On the contrary and again following intentions and ideas about the eventual 
inductive proof of FLT in the previous section, its formulation for any certain natural exponent 
postpones the proof for the next natural number. Then, this circumstance is not crucial in Fermat 
arithmetic, but it is fatal in the framework of both arithmetic and set theory, and Yablo’s paradox 
is the relevant tool to be demonstrated expressively.  

As to (3): all the previous considerations in the paper are based on the Gödel incompleteness 
rather than on Yablo’s paradox, so the tenets in terms of the latter are to be translated in the 
language of the former. Nonetheless, the translation itself relies on the relation of idempotency 
and hierarchy penetrating the present approach. Indeed, the self-referentiality for the Gödel 
incompleteness can be immediately interpreted as idempotency for example in terms of the 
“Liar”35: the composed statement that “I lie that I lie” means that I do not lie in fact. In other words, 
idempotency is embedded in the Boolean negation, and self-referentiality transforms into double 
Boolean negation, therefore involving idempotency as a necessary and even sufficient condition 
once idempotency is used twice successively.  

As to hierarchy in Yablo’s paradox, it seems to be obvious. So, the intended in (3) translation 
of FLT into the Gödel incompleteness is only one more example of the general and presumably, 

 
of the subsequent sentences: if the corresponding function is continuous, no paradox arises.” One may say 
that Fermat arithmetic refers to the “phenomenon” of the function at issue, therefore intentionally not 
distinguishing continuity from discreteness as to the function.  
34 In fact, this is often stated, but in a slightly different form: by clarifying that the alleged non-circularity 
of Yablo’s paradox can be easily overcome (e.g. Beall 2001 or Payne 2015). The “infinitary version” of 
Yablo’s paradox, though designed to overcome its circular reduction (Bringsjord, Heuveln 2003;  Bueno, 
Colyvan 2003), can also be interpreted as an analogical tenet as well as that of Sorensen (2011) about 
“bottomless determination”. Furthermore, Cieśliński and Urbaniak (2013) suggest a direct link between 
Gödel’s incompleteness and Yablo’s paradox by means of “diagonalization”. Yablo’s paradox is related to 
ω-inconsistency by Ketland (2005). Schlenker (2007) discusses the elimination of self-reference in the 
context of Yablo’s paradox.  
35 Hardy (1995) or Ming (2013) as well as (Priest 1997) or Sorensen (1998) discuss the relation of Yablo’s 
paradox to that of “Liar” in detail. Kurahashi (2014) clarifies the link between Yablo's paradox and Rosser’s 
proofs of the incompleteness theorems (also related to the “Liar”) by means of the Rosser-type 
formalizations of Yablo’s paradox.    



philosophical relation of idempotency and hierarchy used many times above Here are the three 
stages in mathematical detail:  

(1) The necessary inductive scheme involved is to be restricted to the usual induction to “𝑛𝑛”. 
That is: if one notates definitively 𝐹𝐹𝐹𝐹𝐹𝐹(𝑛𝑛) = ¬(𝑥𝑥𝑛𝑛 = 𝑦𝑦𝑛𝑛 + 𝑧𝑧𝑛𝑛), FLT states: ∀𝑛𝑛 > 2,𝑛𝑛,𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈
𝑁𝑁: 𝐹𝐹𝐹𝐹𝐹𝐹(𝑛𝑛) → 𝐹𝐹𝐹𝐹𝐹𝐹(𝑛𝑛+ 1), which obeys the axiom of induction if one has been proved FLT(3) in 
advance. As to the present consideration, meaning only the applicability of the standard inductive 
scheme under relevant additional conditions, FLT(3) is considered to be granted and even out of 
the scope of this first part of the paper. Indeed, FLT(3) was claimed to be proved by many 
mathematicians in a more or less well-founded way. One can admit that at least Kumer’s one 
(meaning FLT(3) as a particular case among all regular numbers, or regular prime numbers, 
introduced by him) is sufficiently flawless to be transferred without any additional comments or 
notices. 

As for Fermat, his proof of FLT(4) is available and well-known (Fermat 1670). So, one admits 
that the circumstance that prevented Fermat himself from publishing an eventual inductive proof 
of the general case is not its absence as to him, but the missing other proof: that of FLT(3). Of 
course, this is only a loose conjecture.   

Though the first part of this paper brackets FLT(3) to be out of its scope for its availability in 
advance, the involvation of Hilbert arithmetic suggests implicitly another way for its proof closer 
to quantum mechanics by the mediation of the qubit Hilbert space being in turn complementary to 
Hilbert arithmetic. Indeed, all proofs of FLT(3), including the cited one of Kumer, are 
accomplished thoroughly in Peano arithmetic or even involving ones or other elements needing 
set theory those remaining more or less heterogenous to involving Hilbert arithmetic however 
rather “stylistically” though being absolutely consistent to it.  

That “aesthetic” motivation actuates the second part of the paper, the proper subject of which 
is just the proof of FLT(3) by the Kochen-Specker (1967) theorem being fundamental for quantum 
mechanics, and by it, for Hilbert arithmetic. Its idea is to demonstrate by reductio ad absurdum 
that the admission that FLT(3) is false implies the availability of “hidden variables” in quantum 
mechanics, but rejected just by the Kochen-Specker theorem. In a little more detail: the admission 
that FLT(3) is false would imply the absolute separability of two qubits however remaining 
necessarily contextual to each other just as a direct corollary from the Kochen–Specker theorem.     

The next stage (2) needs to describe the inductive scheme of FLT as in (1) only in terms of 
Yablo’s paradox, therefore showing that FLT obeys it.  

One can notice immediately that FLT is an example of Yablo’s paradox if FLT is granted to 
be the infinite set of propositions:   

"𝐹𝐹𝐹𝐹𝐹𝐹(𝑛𝑛 ≥ 3) 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓"; 
"𝐹𝐹𝐹𝐹𝐹𝐹(𝑛𝑛 ≥ 4) 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓";  
"𝐹𝐹𝐹𝐹𝐹𝐹(𝑛𝑛 ≥ 5) 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓";  

… 
"𝐹𝐹𝐹𝐹𝐹𝐹(𝑛𝑛 ≥ 𝑘𝑘) 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓";  

… 



That the scheme36 is equivalent to FLT is obvious as well as it satisfies literally all the 
conditions of Yablo’s paradox. Consequently, its conclusion that there exists some “𝑛𝑛” so that the 
statement “"𝐹𝐹𝐹𝐹𝐹𝐹(𝑛𝑛) 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓" is both true and false” is necessarily valid. In other words, FLT is 
an insoluble statement if one means the infinite set of all statements gettin the scheme above as the 
antinomy needs. One has to emphasize expressively that a necessary condition is the infinite set of 
all those statements to be involved explicitly. 

On the contrary, if one considers FLT as a usual inductive scheme obeying only the axiom of 
induction, but without constituting the infinite set of all statements, i.e. set theory not to be 
involved, no contradiction appears. Even more, if one extends the discussion even to Fermat 
arithmetic rather than only to Peano arithmetic, the contradiction at issue does not appear, too, The 
introduction of Fermat arithmetic suggests that one refrains from making any statement about the 
existence of the infinite set of all those propositions necessary for the Yablo’s paradox to be applied 
to FLT. If that “epoché” holds, one has to abstain from Yablo’s paradox itself for a necessary 
condition is not satisfied: if a necessary condition is a subject of “epoché”, any conclusion needing 
it is does not imply (anway it can be true in virtue of different premises).  

One can show where exactly the infinite set of statements is necessary for Yablo’s paradox: it 
needs statements about all propositions for any “𝑛𝑛” greater than a certain “𝑘𝑘”. If one does not 
admit statements about all those propositions otherwise than in virtue of the axiom of induction, 
Yablo’s paradox is prevented since those statements about all propositions of that kind cannot be 
inferred from the axiom of induction just due to which their set is crucially necessary for Yablo’s 
paradox: namely, to surround the axiom of induction because it cannot be applied. Then the 
conclusion is that FLT in the framework of both arithmetic and set theory is an insoluble statement 
due to Yablo’s paradox, but this is false in the framework of arithmetic alone. 

The last observation implies a direct corollary in relation to Wiles’s proof: it cannot be 
accomplished in the framework of Gödel mathematics. So: either it is wrong if it is in the 
framework of Gödel mathematics, or it is out of it if it is correct. The dispute about whether Wiles’s 
proof is within the scope of the standard mathematics (which can be equated to Gödel 
mathematics) is well known (e.g. McLarty 2010; 2020). The proponents and opponents seek 
constructive tenets based on the demonstration of syllogism belonging to that proof, however being 
too bulky and sophisticated. However the applicability of Yablo’s paradox to FLT resolves that 
dispute, avoiding that massive volume of syllogisms, but nonetheless proving that FLT is an 
insoluble statement in the framework of both arithmetic and set theory in a quite direct and even 
elementary way (as above). 

Indeed, the modularity theorem needs both arithmetic and set theory for its formulation and if 
FLT (as Wiles did) is proved as a corollary (from it), the proof goes beyond Gödel mathematics 
necessarily. The next section will demonstrate explicitly that FLT is provable within Hilbert 
arithmetic (which in turn is complementary to Gödel mathematics), and then, one can admit that 
Wiles’s proof involves elements relative to it, but in an unarticulated way. This is only a conjecture 

 
36 If Yablo’s paradox is reformulated in second-order languages (e.g. Picolo 2013), that formal scheme 
can be rewritten to them accordingly if need be. 



and its alternative, namely that Wiles’s proof is absolutely independent (though necessarily beyond 
Gödel mathematics), is also possible.  

The final stage (3) demonstrates the logical equivalence of an insoluble statement according to 
the Gödel incompleteness theorem (“Satz VI” in his original paper in 1931), on the one hand, and 
an insoluble statement due to Yablo’s paradox, on the other hand; that is: both opposite 
implications between each other. If one considers the general scheme of the bijection of an 
idempotency and an hierarchy, an insoluble statement in any of both seems to conserve its property 
of insolubility after the bijection.  

Nonetheless, its enumeration (i.e. the relevant bijection to the set of all natural numbers, on the 
one hand, and the inductive construction of that bijection, on the other hand) turns out to be 
ambiguous just due to the fundamental incompleteness of arithmetic to set theory. Speaking 
loosely, the insoluble statement at issue (and thus, the eventual bijection to an insoluble statement 
in the counterpart scheme) should possess a transfinite number37 to the set of all natural numbers, 
but a finite number as to the inductive scheme of the bijection. In other words, its insolubility can 
be interpreted as follows: it is a soluble statement in the inductive scheme of the bijection, but an 
insoluble statement in the bijection of the two sets just due to the incompleteness, i.e. due to those 
elements of the infinite set of all natural numbers which are not natural numbers and which 
constitute an infinite subset of the set of all natural numbers and which can be called “transfinite 
numbers” or even: “transfinite natural numbers”38.   

Consequently, what is to be properly proved in the stage (3) is that there exists a bijection 
(between the Gödel and Yablo schemes) which conserves that ambiguity. In other words, all 
inductive finite natural numbers according to any of them are also all inductive natural numbers 
according to the other scheme, and respectively, the set of all transfinite numbers is the same in 
both cases. This seems to be already obvious because both schemes share the same arithmetic and 
the same set theory, which implies all natural numbers and the set of all natural numbers to remain 
the same in both schemes. That proof is sufficient, but it can be supported by a more intuitive 
(being constructive) visualization of what “happens” to a Gödel insoluble statement after the 
bijection into Yablo’s scheme (i.e. demonstrating that it turns out to be a Yablo insoluble 
statement) as well as vice versa: 

According to the proof above, it conserves its set-theoretical transfinite number as well as its 
inductive finite number. The Gödel insoluble statement states that a statement possessing a certain 
Gödel number is false and the insoluble  statement at issue is just that statement which possesses 

 
37 Any transfinite number possesses a certain “wave function” as its dual counterpart in the qubit Hilbert 
space, and thus, a certain relevant probabilistic distribution, the characteristic function of which is the wave 
function at issue. Thus, that transfinite number (respectively, probability distribution) can be attached to a 
“universal Chaitin machine” as its halting probability just at the natural number (Calude 2002: “computably 
enumerable real” number), to which the transfinite number in the present context  corresponds 
unambiguously. Furthermore, one can construct a model of Peano arithmetic directly on probability 
distributions (e.g. as in   Murakami, Tsuboi 2003). 
38 The transfinite area (as a result of the Gödel incompleteness) can be investigated even as a special 
mathematical area with its ontology as by Woodin (2011). 



that unique Gödel number. Furthermore, the unique Gödel number is assigned by an inductive 
scheme, which guarantees it to be finite. Nonetheless, that number belongs to the subset of all 
transfinite numbers which are fundamentally irrepresentable arithmetically and this is what 
generates the incompleteness of arithmetic to set theory39.  

Thus, one can determine a pair of a finite natural number (e.g. notable as “𝑛𝑛”) and still one, 
but set-theoretical transfinite number, which in turn can be represented as still one finite natural 
number (e.g. notable as “𝑘𝑘”) by virtue of the axiom of choice and its equivalence to the well-
ordering “theorem”. Those “𝑛𝑛” and “𝑘𝑘” can be identically conserved after passing into Yablo’s 
scheme as those necessary for constituting an insoluble statement already in its framework.  

One can notice that “𝑛𝑛” and “𝑘𝑘” both being natural numbers are to be distinguished by the 
property “randomness” valid for “𝑘𝑘” but not not as to “𝑛𝑛” since the latter is determined according 
to the rigorous rules to generate any Gödel number. On the contrary, “𝑘𝑘” is assigned only by the 
axiom of choice valid to the infinite sets and fundamentally excluding (in general) any permanent 
rule able to generate a constant (similar to that to generate “𝑛𝑛”). Those observations are usually 
meant by the utilization of functors in a proposition such as: “∀𝑛𝑛,∃𝑘𝑘: any arithmetical proposition 
about both 𝑛𝑛,𝑘𝑘”; and this is the way for both constant Gödel number “𝑛𝑛” and random natural 
number “𝑘𝑘” to be transferred from the Gödel scheme into Yablo’s one40, conserving the 
insolubility of the proposition at issue.         

V THE PROVABILITY OF FLT  IN HILBERT ARITHMETIC 
Until now, Hilbert arithmetic was discussed in relation to FLT as a “Wittgenstein ladder” 

utilized only as a mean to hint at, or suggest how FLT might be eventually proved in Peano 
arithmetic or in Fermat arithmetic introduced only by the epoché to infinity in the framework of 
Peano arithmetic, but on the background of set theory (and Cantor’s concept of infinity as actual 
infinity).  

Anyway, one can explicitly express the eventual only arithmetical proof of FLT in Hilbert 
arithmetic being considered as a generalization of Peano arithmetic. Preliminarily, one is to notice 
that Hilbert arithmetic, unlike Peano arithmetic, is not either incomplete or inconsistent even with 
set theory; on the contrary it is a consistent and complete foundation of Hilbert mathematics and 

 
39 Hartmans (1980) explains the connection between Gödel numberings and countable sets by “creative sets 
or the complete recursively enumerable sets”; Visser (1984) discusses “recursively enumerable theories” 
in an analogical context.  
40 Those “n” and “k” can be exemplified in Yablo’s scheme applied to FLT as follows. One can assume 
that there exists an “n” such that “FLT (m > n)” is not false. Consequently, “FLT (m > n+1)” is false, but 
there exists some “k” (k>n+1) so that “FLT (m > k)” is not false. Indeed, “n” is certain being determined 
by the assumption, but “k” is not certain (i.e. it can be interpreted to be random) for being determined only 
by the necessity of its existence. Goldstein (2006: 867) notices the following. “A syntactically correct 
number-specification may fail to specify any number due to underspecification. For similar reasons, 
although each sentence in the Yablo sequence is syntactically perfect, none yields a statement with any 
truth-value.” In other words, “k” is not certain just for the “underspecification”.  



relevant to its ontological completeness and consistency (e.g. Penchev 2021 August 2441). Thus, 
FLT is not an insoluble statement in Hilbert arithmetics even only because Hilbert mathematics 
cannot contain any insoluble statement. 

One can trace in detail how Hilbert mathematics manages to release from the Gödel dichotomy 
of the relation of Peano arithmetic to set theory: “either incompleteness or inconsistency”. It 
postulates a dual, anti-isometric, but isomorphic (respectively, homomorphic) counterpart of 
Peano arithmetic42, by which all transfinite natural numbers are enumerated in virtue of the axiom 
of choice in a “reverse direction” starting “from infinity” as the first element of a well-ordering 
and “moved back” by  a function successor modified to be anti-isometric, such as “𝑛𝑛 − 1” (unlike 
“𝑛𝑛 + 1” in the “straight” direction utilized by Peano arithmetic). 

Obviously, the idea of Hilbert arithmetic is borrowed from the qubit Hilbert space 
(respectively, the separable complex Hilbert space of quantum mechanics), first of all, to adopt 
and adapt its completeness provable within itself as the theorems of the absence of hidden 
variables: already for the objective of the consistent completeness of mathematics. Then, Hilbert 
arithmetic can be obtained from the qubit Hilbert space by the class of equivalence of each qubit, 
by which the 𝑛𝑛-th qubit is transformed into the usual  𝑛𝑛-th unit of Peano arithmetic, so that its dual 
space can be immediately represented by the second dual Peano arithmetic involved by Hilbert 
arithmetic43, also as a generalization to the standard, thus single Peano arithmetic. 

Then, one can visualize the solubility of any statement in the Gödel scheme (and thus, in the 
Yablo one, too) assigning both parameters, the certain “𝑛𝑛” and the random “𝑘𝑘”, involved at the 
end of the previous section to specify any insoluble statement whether in the one or in the other 
scheme as two usual (i.e. finite rather than transfinite) natural numbers, but belonging to each of 
both dual Peano arithmetics in Hilbert arithmetic, consequently substituting the fundamental 
randomness of the one of them by their mutual duality forbidding for them to be considered 
simultaneously (again an approach borrowed from quantum mechanics). Then and as a corollary, 
any insoluble statement in the one Peano arithmetic is soluble in its dual counterpart, and anyone 
is free to use both of them, though alternatively or complementarity, so that any statement is 
soluble, however just in one of them, but which is absolutely sufficient for Hilbert mathematics 
not to contain any insoluble statement, including FLT as to the case at issue.    

 
41 The approach can be mediately related to “arithmetized completeness theorem” “attributed to Hilbert - 
Bernays” (Dimitracopoulos 2001: 82), and furthermore in the general scope of the “arithmetization of logic” 
(Gautier 2010: 58-99). On the contrary,  Grzegorczyk (2005) suggests “undecidability  without 
arithmetization” if “the decidability is defined directly as the property of graphical discernibility of 
formulas” (p. 163).  
42 The dual counterpart of Peano arithmetic can be interpreted as a definable model of Peano arithmetic in 
a model of Peano arithmetic as this is described by Ikeda and Tsuboi (2007) as well as by Strannegård 
(1999), also by Murawski (1988) or even in Heyting arithmetic as a “constructive nonstandard model” 
(Moerdijk, Palmgren 1997). 
43 The dual Peano arithmetic involved in Hilbert arithmetic can be also interpreted by means of the result 
provided by Enayat (2008). It can be also situated in the domain of models of Peano’s arithmetic (Gaifman 
1976) as an “end-extension”.   



The same universal solubility need be formally represented in terms of Fermat arithmetic 
featured by its epoché to infinity by involving the following bijection: [𝑃𝑃+ ⊗  𝑃𝑃− → 𝑃𝑃0] ↔ 𝑃𝑃 and 
where the notations are:  “𝑃𝑃+” the one dual Peano arithmetic in Hilbert arithmetic and featured by 
the “positive (𝑛𝑛 + 1)” function successor;   “⊗” Descartes product; “𝑃𝑃−” the other  dual Peano 
arithmetic in Hilbert arithmetic and featured by the “negative (𝑛𝑛 − 1)” function successor; “→ 𝑃𝑃0” 
the mapping meant as the “epoché” at issue, that is, into Fermat arithmetic, and “𝑃𝑃0” is Fermat 
arithmetic; and finally, “↔ 𝑃𝑃” is the bijection or identity to the usual Peano arithmetic, which is 
notated by “𝑃𝑃".  

Then, all Gödel insoluble statements meant by “ 𝑃𝑃−” are substituted by the class of equivalence 
to “𝑃𝑃+” (i.e. any column “𝑛𝑛” in the Descartes product is replaced by a single “𝑛𝑛”, but belonging 
to “𝑃𝑃+”); or speaking loosely and more flowerily being paradoxically, the solubility of a 
proposition consists in its complete insolubility, i.e. in the class of equivalence of  all insoluble 
prepositions referring to it. For example by the “Liar” antinomy: the class of all “propositions of 
lies” (such as “I lie”; “I lie that I lie”, “I lie that I lie that I lie”; and so on) is postulated to be 
equivalent to the non-false proposition (such as “I do not lie” or “I say the truth”). That substitution 
by the relevant class of equivalence is isomorphic to that one generating a unit of Hilbert arithmetic 
from a certain qubit of the qubit Hilbert space as the class of equivalence of all possible values of 
it or that of an “empty” qubit.  

One is to demonstrate MMT and MFD in Hilbert arithmetic, meaning Fermat arithmetic as for 
the latter to be used as a “Wittgenstein ladder” to FLT in Peano arithmetic. MFD does not generate 
any problem for it can be repeated literally in each of 𝑃𝑃+,𝑃𝑃−,𝑃𝑃0 separately and thus in the “epoché 
mapping”: 𝑃𝑃+ ⊗  𝑃𝑃− → 𝑃𝑃0. 

On the contrary, MMT is available in each of  𝑃𝑃+,𝑃𝑃−,𝑃𝑃0 only secondarily, i.e. in virtue of the 
eventual proof of MFD, which divides the variables of 𝑥𝑥,𝑦𝑦, 𝑧𝑧 (if Fermat’s equation is notated to 
be: 𝑥𝑥𝑛𝑛 = 𝑦𝑦𝑛𝑛 + 𝑧𝑧𝑛𝑛) as 𝑦𝑦 ∈ 𝑃𝑃+, 𝑥𝑥 ∈  𝑃𝑃−, 𝑧𝑧 ∈ 𝑃𝑃0 (that convention is more for the sake of clarity 
because of the idempotency of 𝑃𝑃+ and  𝑃𝑃−, on the one hand, and the commutativity of “𝑦𝑦” and 
“𝑧𝑧”, on the other hand). In other words, each variable of 𝑥𝑥,𝑦𝑦, 𝑧𝑧 belongs to just one, but different 
Peano arithmetic correspondingly, which circumstance allows any arithmetical product containing 
both  “𝑦𝑦” and “𝑧𝑧” to be equated to zero, and MMT to be inferred immediately from:  

(𝑥𝑥𝑛𝑛+1 → 𝑥𝑥𝑛𝑛) ⇔ {¬[𝑥𝑥𝑛𝑛 = (𝑦𝑦 + 𝑧𝑧)𝑛𝑛] → ¬[𝑥𝑥𝑛𝑛+1 = (𝑦𝑦 + 𝑧𝑧)𝑛𝑛+1]  

After that, it appears in Peano arithmetic in virtue of the “epoché bijection” and then, it can be 
found (as if even initially and inherently also in 𝑃𝑃+,𝑃𝑃−,𝑃𝑃0 but without utilizing it for the proof of 
MMT, which allows absolute correctness due to avoiding any “vicious circle”44). 

The philosophical consideration by the relation of idempotency and hierarchy assists to 
elucidate how Hilbert arithmetics (embodying that relation by itself: i.e. definitively) allows for 

 
44 If one passes from Fermat arithmetic to an eventual original proof of Fermat in his age, the avoidance of 
that vicious circle seems to be much more difficult and that is omitted in the previous publication: Penchev 
2020 August 10.  



FLT to be proved arithmetically (whether with the actual infinity of set theory in Hilbert arithmetic 
or without it in Fermat arithmetic45). Hilbert arithmetic introduces the perfect symmetry of 
idempotency and hierarchy though traditionally to be illustrated by the idempotency as a 
metarelation to hierarchy (i.e. not less hierarchy can be considered as a metarelation to 
idempotency just in virtue of which FLT can be proved even “only” arithmetically). That is what 
allows for hierarchy and idempotency to be exchanged  and it can be illustrated by the equivalent 
transformation of the model of a quantum computer into a Turing machine accomplishing an 
infinite calculation by processing an infinite binary tape even by means of a finite binary 
program46.  

Introducing Hilbert arithmetic allows for the proof of FLT to be made absolutely correctly 
including for that there exist no insoluble statements in Hilbert mathematics, but first of all, the 
exchange of idempotency and hierarchy to be justified consistently in the framework of the 
completeness of Hilbert mathematics, and as to FLT particularly, by the ground of MFD in that 
exchange. Indeed just this allows for the three variables of Fermat’s equation, 𝑦𝑦, 𝑧𝑧, 𝑥𝑥 
correspondingly, to be considered initially as each of them belonging to just one of 𝑃𝑃+,𝑃𝑃−,𝑃𝑃0 and 
the proof without any “vicious circle” by the mediation of Hilbert arithmetic, though it can be 
removed as a “Wittgenstein ladder” in the final analysis.      

VI THE MAPPING OF HILBERT ARITHMETIC INTO PEANO ARITHMETIC 
The mapping of Hilbert arithmetic into Peano arithmetic defined formally by [𝑃𝑃+ ⊗  𝑃𝑃− →

𝑃𝑃0] ↔ 𝑃𝑃 belongs to a more general class of mappings, which can be called “informational”, 
because of the following observation. It replaces bijectively all the elements of a set into bits of 
them, i.e. by its informational image. The same kind of formal informational mapings is 
fundamental for “scientific transcendentalism” to be formulated rigorously (and thus, getting 
falsifiable) in other papers (e.g. Penchev 2020 October 20). 

However, the set, an informational image of which is built, is supplied now by an algebraic 
structure: that, established by Peano axioms for all natural numbers. Furthermore, it makes sense 
to be introduced in the context of the eventual, only arithmetical proof of FLT if that kind of 
mappings is able to distinguish consistently the two algebraic operations defined for all natural 
numbers, addition and multiplication, in a way not to admit the operation of multiplication as to 
natural numbers belonging to different arithmetics 𝑃𝑃+,𝑃𝑃−,𝑃𝑃0, but simultaneously, the same way 
is to conserve somehow the operation of addition. In other words, the specific service of that 
informational mapping as to the case of proving FLT arithmetically consists in the justification of 
dividing the operation of addition from that of multiplication in the case of Peano arithmetic so 

 
45 “Actual infinity” is avoided by Cauchy’s “delta - epsilon approach”, and one can trace Hilbert’s “epsilon” 
back to it as a relative idea directed to the same objective: i.e. “ actual infinity” (Grabiner 2009). Slater 
(1994; 1991) discusses epsilon calculus in an analogical context.   
46 The approach can be further continued with Gödel incompleteness (e.g. as in Shankar 1994), then with 
the philosophical problem about the (un)knowability of the world (e.g. as in Svozil 2011), on the one hand, 
or with computer science (e.g. as in Uspenski 1994), on the other hand. 



that addition is valid including elements belonging to those three different arithmetics, but 
multiplication is definitively zero in the same case: 

For example this is possible, or respectively can be visualized, if the three arithmetics are 
situated on three orthogonal axes corresponding unambiguously to each of them and furthermore: 
(1) all operations within each axis are kept to be those in Peano arithmetic; (2) the multiplication 
of natural numbers belonging to different arithmetics (but only generalizing the case if they belong 
to a single arithmetic) is defined by the scalar product of the corresponding vectors and thus being 
definitively zero because of the mutual orthogonality of the axes of the three arithmetics; (3) the 
addition of natural numbers belonging to different arithmetics (again only generalizing the case if 
they belong to a single arithmetic is defined by the sum of the modules (“absolute values”) of the 
corresponding vectors. Those conventions are sufficient to guarantee the informational mapping 
of the three arithmetics into Peano arithmetic to possess the property necessary for proving FLT.  

One is to interpret the compose mapping “[𝑃𝑃+ ⊗  𝑃𝑃− → 𝑃𝑃0] ↔ 𝑃𝑃” being in essence and in fact 
a bijection, but rather extraordinary. Its nonstandard unusualness, speaking loosely or 
conventionally, might be represented by the rather paradoxical notation of a “2:1 bijection” since 
“bijection” is a synonym of “1:1 mapping”, and then in turn, involving mappings of infinite sets, 
only to which the immediate logical consistency would be possible. Derivatively, this needs the 
concept of choice inherent for the axiom of choice in particular.  

Indeed, a bit of information as the simplest and elementary choice can quite illustrate that “2:1 
bijection”, i.e. a 2:1 mapping getting equated to a 1:1 one, which is a usual bijection: any bit before 
choice means a 1:2 mapping for both alternatives are possible; but the same bit after choice means 
an unambiguous 1:1 bijection for either single alternative has been chosen. Thus the concept of 
bit, after equating the states before and after choice, by itself definitely involves the interpretation 
of “2:1” and “1:1” as the same; and then, information as a quantity whether mathematical or 
physical, but always measurable by bits, means the same relation of  “2:1” and “1:1” just sharing 
the same quality as its unit of a bit. One can trace back to scientific and even philosophical 
transcendentalism as well as to the link between them, discussed already in other papers (e.g. 
Penchev 2020 October 20). 

The compose mapping [𝑃𝑃+ ⊗  𝑃𝑃− → 𝑃𝑃0] ↔ 𝑃𝑃 means that fundamental idea linked to Hilbert 
arithmetic and able to supply mathematics underlain by it (i.e. Hilbert mathematics being grounded 
on Hilbert arithmetics) with ultimate completeness inferable from itself. The same is necessary for 
proving FLT arithmetically, and more precisely for proving MMT as to FLT because this means 
the transposition just of a bit from the meta-position to a position therefore needing idempotency 
or completeness as a necessary condition for its consistency. However, it has been transferred so 
that neither idempotency nor  completeness (nor Hilbert arithmetic consequently) is necessary 
anymore and accordingly all can be abandoned as “Wittgenstein's ladder” in favor of Fermat 
arithmetic being sufficient for proving FLT arithmetically. 

Meaning the above notices, one can realize the mapping [𝑃𝑃+ ⊗  𝑃𝑃− → 𝑃𝑃0] ↔ 𝑃𝑃 as an extended 
tautology, namely; “∀𝐴𝐴: [𝐴𝐴⊗𝐴𝐴 → 𝐴𝐴] ↔ 𝐴𝐴” where “A” can be interpreted as any set as any 



proposition47 (conventionally granting for “⊗” to be whether “conjunction” or “disjunction”); and 
all 𝑃𝑃+,𝑃𝑃−,𝑃𝑃0,𝑃𝑃 to be defined unambiguously by their unique position (or ordering) in the 
tautology. (For example, “∀𝐴𝐴: [𝐴𝐴⊗𝐴𝐴 → 𝐴𝐴] ↔ 𝐴𝐴” can be interpreted particularly to a “proposition 
of identity”: “"𝑥𝑥 = 𝑦𝑦" ↔ "𝑥𝑥 = 𝑥𝑥"” after realizing: “𝐴𝐴⊗ 𝐴𝐴 → 𝐴𝐴” as “𝑥𝑥 = 𝑦𝑦”.) 

Then, the former and latter mappings in the framework of the composed mapping at issue need 
different interpretations: the former is neither a “usual bijection” nor a logical equivalence unlike 
the latter being both. Therefore, the composed mapping is just what is necessary to embody the 
idea for “2:1” (the former mapping in the composed one) and “1:1” (the latter mapping) as the 
same.  

Only the rigorous formal proof of MMT needs that rather complicated construction under the 
convention above. It serves as follows: the three arithmetic variables of Fermat’s equation are 
distributed unambiguously in the three Peano arithmetics (e.g. as above) so that MMT is provable 
in that case (and valid only to the variables  of Fermat’s equation and possibly to other special 
cases without any attitude to FLT). The bijection to the usual Peano arithmetic conserves MMT 
and transforms the three variables of FLT, distributed to belong to the three different arithmetics, 
to be unified into FLT as usual. Since the other crucial element of the proof, MFD is valid also to 
a single Peano arithmetic, both MFD and MMT, necessary from the proper arithmetical proof of 
FLT, are proved to be valid into a single Peano arithmetic, and the proof of FLT to be immediately 
accomplished. 

One can notice that the arithmetical solution by utilizing successively MMT and MFD seems 
to be too exotic and inexplicable as to why it turns out to resolve the centuries-old puzzle if one 
seeked for them in Fermat’s age. In fact, the context of their relevance to the problem has become 
clear nowadays, that is after all troubles about the foundations of mathematics and the 
completeness of quantum mechanics and within their framework synthesized in “Hilbert 
arithmetic” now applied to FLT, the combination of MMT and MFD does not seem more to be so 
extraordinary and ridiculous, even almost “insane”, but quite natural and justified.  

Nonetheless, both elements, which, if they had been somehow, but unclearly how, got 
discovered and caught, would be sufficient for the arithmetic proof of FLT in Fermat’s age. The 
next section will try to suggest, anyway, an idea how they might be more or less naturally “caught” 
even in the 17th century by an auxiliary concept of “integer volume” (or “natural volume”) 
interpreting the arithmetical variable ∀𝑥𝑥,𝑛𝑛 ∈ 𝑁𝑁: 𝑓𝑓(𝑥𝑥,𝑛𝑛) = 𝑥𝑥𝑛𝑛 as a “𝑛𝑛-dimensional” volume 
generalizing variable of the volume of a cube with side length of an integer (i.e. consisting of 𝑥𝑥𝑛𝑛 
unit cubes) from “𝑛𝑛 = 3” to the general case of an arbitrary natural number. 

One can synthesize concisely the parts of the contemporary mathematical viewpoint, 
enumerated in different contexts in the paper until now, and which all are necessary to justify the 
application of both MMT and MFD to the proof of FLT.   

 
47 Interpreting loosely, this can be embodied in a quite brief, but less rigorous proof of MMT as to FLT 
based only on the properties of the relation of identity (but needing why it is valid only to FLT to be 
additionally justified).  



First of all, the introduction of Hilbert mathematics based on Hilbert arithmetic is crucial since 
there exist no insoluble statements in its framework unlike that of Gödel mathematics. In turn, this 
needs the Gödel incompleteness to be re-released as an independent axiom rather than as a theorem 
inferable from arithmetic, set theory and propositional logic. However, the negation of the Gödel 
incompleteness (already) axiom meets common sense’s categorical rejection since it contradicts 
the fundamental organization of science, cognition and experience in Modernity based on the 
fundamental opposition of “body” (i.e. the material world) versus “mind” (i.e. the mental world, 
calling for a kind of quantum neo-Pythagoreanism and a quite different place of mathematics in 
an absolutely reformed and newly “episteme” coined by Michel Foucault’s conception).  

That fundamental change even not only in the paradigm of mathematics, but in philosophy 
(ontology, epistemology, philosophy of science, etc.) can be compared with the cognitive 
“earthquake” of Lobachevski’s geometry48, Einstein’s relativity or quantum mechanics. So, that 
“instinctive” resistance of the scientific (i.e. not only mathematical) “mainstream” prevents 
fundamentally any corollaries (though being “gains” for science after the intended philosophical 
reformation), among which the proof of FLT turns out to be: 

Indeed, one can demonstrate that FLT is inherently unprovable in Gödel mathematics after an 
almost elementary consideration based on Yablo’s paradox and its equivalence to the Gödel 
incompleteness. In fact, Wiles’s proof of FLT obeys the same insolubility in the framework of 
standard mathematics, i.e. just Gödel mathematics, in turn obeying the dominating episteme of 
modernity.  

So, Wiles’s proof can be called a “wise decision in Solomon’s manner”: it goes beyond the 
epistemological framework of Modernity because this is unavoidable for anybody wishing to 
prove FLT, but only as an extremely specialized mathematical result, namely the “modularity 
theorem” able to link discrete mathematics (i.e. arithmetic) to continuous mathematics (only 
possible based on set theory) as a really fundamental result but only for mathematics and even 
only for its most advanced development accessible and understandable by several dozen 
mathematicians.  

So he, whether intentionally or not, wanted to avoid common sense’s resistance (for which 
Gauss utilized the metaphor of the “Boeotians’s scream” to explain why he did not publish his 
results in non-Euclidean geometry49) as far as what might get angry the contemporary “Boeotians” 
is “wrapped in ten veils”, the unwrapping of which is accessible only to exceptionally high-
qualified professional mathematicians. So, any mathematician can use the modularity theorem, but 
simultaneously its potential revolutionarity is prevented.  

That decision is perhaps wise, but not true. The proof of FLT by itself is far not so sophisticated 
if one dare go beyond the modern episteme by Hilbert mathematics. Even more, Hilbert arithmetic 
underlying Hilbert mathematics admits a kind of “projection” into arithmetic as “Fermat 

 
48 Boi (1996) discusses a kind of implicit scientific transcendentalism in the history of physics and 
mathematics and in the context of non-euclidean geometry, on the one hand, and that of philosophical 
transcendentalism, on the other hand. 
49 For example in: Rosenfeld 1988 or Schein 1979. 



arithmetic” definiable by an “epoché to infinity” (analogical to Husserl’s epoché to reality, which 
is borrowed and adapted) and thus pionering even a bridge to a proof of FLT accessible in Fermat’s 
age (and which can be popularized as restoring the alleged “original proof of Fermat”).  

So, the conclusion that the proof FLT is rather a philosophical result needing a new worldview 
than an extremely difficult puzzle only for very, very professional mathematicians. On the 
contrary, it seems to be almost elementary in Hilbert arithmetic and its real difficulty consists in 
the courage to be challenged the contemporary “Boeotians”, scientific mainstream and even 
common sense rather than in its technical and conceptual, but only mathematical complexity (now 
interpretable as a kind of “Solomon’s wisdom”). 

Once FLT has been realized to be an insoluble statement in Gödel mathematics, but soluble in 
Hilbert mathematics, the structure of Hilbert arithmetic itself, unifying both idempotency and 
hierarchy in a symmetric way can suggest heuristically the two enough tools for the only arithmetic 
proof of FLT, namely described already in detail above MMT (for idempotency) and MFD (for 
hierarchy). While the latter is valid even in a single Peano arithmetic, this is false in general as to 
MMT needing the mapping  “𝑃𝑃+ ⊗  𝑃𝑃− → 𝑃𝑃0” to be only proved and then   
“[𝑃𝑃+ ⊗  𝑃𝑃− → 𝑃𝑃0] ↔ 𝑃𝑃” to be utilizable together with MMT, on the one hand, or in the 
framework of Fermat arithmetic, on the other hand. Hilbert arithmetic is absolutely necessary to 
deliver MMT in Peano arithmetic as provable, and thus getting removed as a “Wittgenstein 
ladder”: the proved validity of MMT to the case of Fermat’s equation turns out to be removed, too 
and unfortunately: so the only way out, but only at first glance, is it to be postulated as a necessary 
condition for the proof of FLT in Peano arithmetic alone; or said otherwise, the arithmetical proof 
of FLT to be reduced to that of MMT.  

Fortunately, the next section is able to offer an equivalent of the arithmetical proof of MMT, 
sufficient for the arithmetical proof of FLT, by excluding the operation of multiplication in Peano 
arithmetic in a way relevant to FLT and introducing algebraic structure, which is a substructure  of 
Peano arithmetic (but maybe not a true substructure, and thus equivalent to it); furthermore, by the 
aforementioned  generalized “integer volumes”: an idea accessible to Fermat or his age.    

 VII THE MAPPING OF PROVABILITY OF FLT  IN HILBERT ARITHMETIC INTO ITS 
PROVABILITY INTO PEANO ARITHMETIC 

The metaphor of “Wittgenstein ladder” has been utilized as a notation of the method for many 
parts of the proof of FLT in Hilbert arithmetic to be transferred consistently into Peano arithmetic. 
However, trouble appears about that method as for MMT since it needs the “Wittgenstein ladder” 
to be conveyed by itself, therefore generating once again a paradox inherent for self-referentiality, 
though in a modified, “negative” version. It has to be removed for its transport into Peano 
arithmetic to be ended, but if it is removed, what is transferred also vanishes since this is itself. 

One can reflect on that “paradox of the Wittgenstein ladder transferring itself” as a natural 
paraphrase of the insolubility and thus fundamental unprovability of FLT in Gödel mathematics 
as the transport means the relation of Hilbert arithmetic and Peano arithmetic, and the former is an 
“image” of set theory, by which the Gödel dichotomy about the relation of set theory and arithmetic 
is restored though expressed a little otherwise. 



A way out of the problem, seeming to be a crucial refutation for the proof of FLT in Peano 
arithmetic once Hilbert arithmetic is utilized as a “Wittgenstein ladder” for it, can be visualized by 
the positive metaphor (instead the negative one of the “Wittgenstein ladder”) of the paradoxes 
about self-referentiality: that of “baron Munchausen who pulls himself out of a mire by his own 
hair”; for example as follows: 

Baron Munchausen could not pull himself, once he had fallen in that situation, because his 
hand pulling his hair is connected steadily to his body and to his hair in the final analysis in 
advance. So, if the link between his body and arm was somehow removed, he would manage to 
pull himself out of the mire. Indeed, one can easily figure an external device similar to an artificial 
mechanical “arm” controlled by his real hand and able to pull him out of the mire without any 
contradiction to physical laws since the bodily link has been transformed into an only 
informational one managing the additional arm without any physical  connection with it (more 
precisely, by a negligible slight connection, but sufficient for the carrier of controlling 
information). 

The metaphor of baron Munchausen can be understood in the case of FLT at issue as removing 
the interfering mediation of “multiplication”, observing that Fermat’s equation does not contain 
that operation, but it suggested implicitly for the exponential form, since the usual prejudice for an 
exponential form is it to be inferred as an abbreviated notation of multiplication. However, this is 
only a representation brought about redundantly and wrongly by the human mind in virtue of the 
above prejudice; as to Fermat’s equation itself, it is absolutely external and not originating from 
it:  

It can be described exhaustively by two orthogonal additive semigroups50 of natural numbers 
(i.e. excluding absolutely their multiplicative semigroup complemented by our minds 
automatically, but groundlessly): namely, the one of all exponents “𝑛𝑛”, and the other one, of all 
values of the variables “𝑥𝑥,𝑦𝑦, 𝑧𝑧”. Indeed, one can be convinced that they are orthogonal to each 
other by means of the following visualization: 

 
“n” 
… 
n  1𝑛𝑛, 2𝑛𝑛, 3𝑛𝑛, . . . , 𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛, 𝑧𝑧𝑛𝑛, . ..  
… 
3  13, 23, 33, . . . , 𝑥𝑥3,𝑦𝑦3, 𝑧𝑧3, . ..  
2  12, 22, 32, . . . , 𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2, . ..   
1  11, 21, 31, … , 𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1  …                              “𝑥𝑥,𝑦𝑦, 𝑧𝑧”  
 
One can involve Descartes’s invention (thus accessible to Fermat) of a coordinate system, the 

ordinate of which depicts the one additive semigroup of natural numbers (that of all exponents in 
Fermat’s equation), and the abscise of which accordingly, the other semigroup of natural numbers 

 
50 Kossak, Nadel, Schmerl (1989) discuss a relative approach: the “isomorphism type of the multiplicative 
semigroup uniquely determines the isomorphism type of the additive semigroup” (p. 936).  



(that of all variables of Fermat’s equation). Both orthogonality of two semigroups and missing 
multiplication in the representation of Fermat’s equation seem to be verified visually and 
obviously. 

The above visualization as the real algebraic structure underlying that of Peano arithmetic, to 
which FLT is defined explicitly, is quite accessible to Fermat himself by the auxiliary concept of 
natural volume (in fact, invented only in this paper, but also possible for Fermat to be able to prove 
FLT arithmetically, i.e. in the framework so-called Fermat arithmetic as here). Its basis is the 
observation that Fermat’s descent is easily to be modified to MFD, on the one hand, and MMT in 
turn can be proved after the idea of “natural volumes” therefore supplying Fermat himself with 
both tools sufficient for him to prove the theorem. 

Indeed, the only obstacle for proving FLT by induction consists in the mixed products of both 
variables 𝑦𝑦, 𝑧𝑧: 𝑦𝑦𝜆𝜆. 𝑧𝑧𝜈𝜈;  𝜆𝜆, 𝜈𝜈 = 1,2,3, . . . ,𝑛𝑛, . .. , and which can be interpreted as the distinction 
(respectively, subtraction) between the standard distributive law, “𝑓𝑓(𝑏𝑏 + 𝑐𝑐) = 𝑓𝑓𝑏𝑏 + 𝑓𝑓𝑐𝑐” and the 
“distributive law of natural volumes”: “(𝑏𝑏 + 𝑐𝑐)𝑎𝑎 = 𝑏𝑏𝑎𝑎 + 𝑐𝑐𝑎𝑎. Indeed, if “natural volume” has been 
defined as derivative from the usual three-dimensional volume “𝑏𝑏3” after the generalization from 
“3’ to any natural number, but under the condition for “b” to be also a natural number, the 
“distributive law of natural volumes” seems to be immediately satisfied by virtue of the concept 
itself for the mixed products do not make sense because the multiplication of any dimension of the 
one volume by that of the other volume is obviously meaningless.  

In other words, the concept of natural volumes is able to offer a simple and physical 
interpretation of “Hamilton arithmetic” (a term explained in detail above) originating from 
everyday human experience, and thus able to serve as a mediation from Hamilton arithmetic, in 
which MMT is easily provable, to Fermat’s age, in which MMT seems to be verifiable as to 
“natural volumes”. Consequently, though only hypothetically, Fermat might be weaponed by all 
tools enough for proving FLT in Fermat arithmetic.  

One can object that, nonetheless, that FLT refers to natural numbers therefore involving 
multiplication, whether we wish it or not, and thus the above way for excluding multiplication is 
not correct as to FLT. That objection can be avoided anyway by the following lemma: 

Lemma: Any solution of Fermat’s equation in Peano arithmetic is a solution in the just defined 
structure of two additive (“orthogonal”) semigroups of natural numbers as above. 

Thus, if one proves that there exists no solution of Fermat’s equation in that structure of two 
semigroups (which can be briefly called further “Hamilton arithmetic” for considerations which 
follow quite soon), this implies that Fermat’s equation cannot be resolved in Peano arithmetic 
under the same conditions. The lemma is already sufficient to be proved FLT in Peano arithmetic 
alone since:  

(1) MMT is valid in Hamilton arithmetic51 as to FLT in virtue of the validity in it of: 𝑦𝑦𝑛𝑛 +
𝑧𝑧𝑛𝑛 =  (𝑦𝑦 + 𝑧𝑧)𝑛𝑛 as far as one can grant that the condition “𝑦𝑦. 𝑧𝑧 = 0” in Peano arithmetic is 
equivalent to the absence of the multiplication in Hamilton arithmetic;  

 
51 One can admit the result can be generalized, e.g. to “diagonalizable algebras in Peano arithmetic” 
(Montagna 1980). 



(2) MFD is valid without any change in Hamilton arithmetic as in Peano arithmetic;  
(3) The proof of FLT(3) in Peano arithmetic is a proof of FLT(3) in Hamilton arithmetic in 

virtue of the lemma;  
(4) One can prove FLT in Hamiton arithmetic by induction for 𝑛𝑛 ≥ 3, and this implies FLT  

for 𝑛𝑛 ≥ 3 for Peano arithmetic in virtue of the lemma. 
As to the proof of the lemma itself, it seems to be rather trivial, e.g. by reductio ad absurdum,  

i.e. investigating the contradiction of the case of any solution of Fermat’s equation in Hamilton 
arithmetic, which is not a solution in Peano arithmetic.  

However, though the lemma is sufficient as to the immediate task to be proved FLT in Peano 
arithmetic, one can naturally conjecture the much stronger statement that Hamilton arithmetic and 
Peano arithmetic are equivalent to each other meanwhile making clear the notation of “Hamilton 
arithmetic” by the allusion to the relation of “Hamilton mechanics” to “Lagrange mechanics” 
meant under the relation at issue: namely that of Hamilton arithmetic to Peano arithmetic. 

The analogy can be traced back to the way in which one constructs Hamilton mechanics by 
postulating for mechanical quantities of “speed” (“impetus”) and “position” to be independent of 
each other rather than linked as in Lagrange mechanics so that “speed” is the time derivative of 
“position”. Indeed, Peano arithmetic similarly connects the additive semigroup with the 
multiplicative group as far as the operation of multiplication is derivative from that of addition. 
On the contrary, one can admit the second (only conditionally namable as “multiplicative”) 
semigroup to be introduced absolutely independently following the pattern of the relation of 
“speed” (“impetus’) and “position” in order to be “divorced” as in Hamilton mechanics,  

Further, one can assure immediately that the definition of Hamilton arithmetic above, by two 
independent semigroups (the one of the exponents “𝑛𝑛”, and the other, of the variables “𝑥𝑥,𝑦𝑦, 𝑧𝑧”) 
satisfies the condition for the two semigroups, to which arithmetic can be reduced, to be divided 
as getting absolutely independent of each other. However, this would not be surprising because 
the intention led to Hamilton arithmetic is a model of Hilbert arithmetic to be built in Peano 
arithmetic (though the conjecture now is that maybe the model at issue has turned out to be 
identical with Peano arithmetic rather than an true substructure within it). Indeed, Hilbert 
arithmetic itself is dual to the separable complex Hilbert space of quantum mechanics (by the 
mediation of the qubit Hilbert space), which in turn can be interpreted to be an embodiment of 
Hamilton mechanics so that its dual space corresponds to the dual Hamilton variable (e.g. 
“impetus” to “position”, but not less, also vice versa). 

That observation about the origin of Hamilton arithmetic, i.e. if one is able to link it to set 
theory using Hilbert arithmetic, can be continued further, to Peano arithmetic, once the conjecture 
of their equivalence has been granted in advance (as a little above). One is to mean the duality of 
“zero and infinity” discussed already in the two first sections, after which the two independent 
additive semigroups necessary for Hamilton arithmetic to be established are recorded as the 
additive group of all integers; that is: the dimensional-like limit of infinity (in the case of Hamilton 



arithmetic) is substituted by that shared limit of the two, negative and positive, semigroups of all 
integers52.  

Joining all those transitions to each other successively in virtue of the transitivity of each of 
them, one can trace back the structure of Peano arithmetic to the additive group of all integers53, 
on the one hand, and to Hilbert arithmetic (and thus to set theory), on the other hand, therefore 
noticing the equivalence of set theory and Peanto arithmetic (oppositely to the Gödel dichotomy 
about their relation): not surprising again since Hilbert arithmetic has been introduced after the 
negation of the Gödel incompleteness “theorem” (once it had been interpreted before that to be an 
axiom distinguishing fundamentally the area of Gödel mathematics from that of Hilbert 
mathematics).  

The eventual equivalence of Hamilton arithmetic with Peano arithmetic (both expressing the 
same in two alternative ways) in the present context of the inductive provability of  FLT can be 
suggested also by their mutual modelability in the following sense. On the one hand, Hamilton 
arithmetic allows for a model of Hilbert arithmetic within Peano arithmetic, referring to the 
inductive proof of FLT. On the other hand and before that, Peano arithmetic itself is a substructure 
and thus interpretable as a model of Hilbert arithmetic. One can admit that two structures are to be 
equivalent if each of them is able to contain a model of the other one just as two sets, for each of 
which one can  prove to be a subset of the other one. Anyway, the conjecture of the equivalence 
of Hamilton and Peano arithmetic (and thus, and Hilbert arithmetic) is not yet proved rigorously, 
but more probable by that tenet (and other ones above). 

In the framework of the same discussion of the hypothesis, one may investigate its ontological 
corollaries (which can be interpreted as epistemological not worse). So, two options to define the 
same (i.e. “arithmetic”) are granted to be eventually equivalent to each other, namely: (1) by two 
semigroups with two absolutely independent operations (Hamilton arithmetic); (2) by two 
semigroups with dependent operations, e.g. such as the usual “addition” and “multiplication” 
linked by just one distributive law determining which of the two operations is the derivative one 
(but not vice versa) and this is the case of Peano arithmetic, in which both commutative, both 
associative laws, but one distributive law can be inferred from the Peano axioms, which postulate 
only the fundamental operation of an operand, the “function successor”. Nonetheless, Peano 
arithmetic can be determined alternatively (e.g. similar to the way for Boolean algebra) only  
algebraically, by the two semigroups subordinated to each other by the single distributive law. 

Then, the question of what about the distributive law in Hamilton arithmetic is natural after its 
two semigroups are absolutely independent of each other (and this is a necessary condition for 
FLT to be proved inductively). One can consider two alternative options: 

  (1) If it cannot be admitted (e.g. if one insists on it to be that of multiplication to addition as 
in Peano arithmetic since multiplication is not defined in Hamilton arithmetic), any two arbitrary 

 
52 A much wider mathematica context suggests the automorphism groups of models of Peano arithmetic 
(e.g. as in Nurkhaidarov 2010).  
53 One can be curious about the transformation of FLT and its arithmetical proof into the negative and 
positive semigroups of all integers. At least at first glance though, that interpretation of FLT does not 
suggest any link to other essential statements different from FLT itself.     



semigroups might constitute a Hamilton arithmetic relevant to them, if they are unified for any 
reason. Then, one can transform it into a kind of Peano arithmetic after complementing it by just 
one distributive law. (Peano arithmetic in turn can be reformed into a Boolean algebra by adding 
the second distributive law dual to the first one.)           

(2) However, the suggested example (a little above in this section) of Hamilton arithmetic 
relevant for proving FLT demonstrates just the distributive law for MMT to be proved as valid in 
Hamilton arithmetic (but being invalid in Peano arithmetic): (𝑦𝑦 + 𝑧𝑧)𝑛𝑛 =  𝑦𝑦𝑛𝑛 + 𝑧𝑧𝑛𝑛. Thus, the new 
distributive law is a necessary condition for FLT to be proved, and thus presumably the conjecture 
of the equivalence of Peano and Hamilton arithmetic (if or once their operations obey the same 
algebraic laws) seems to be also conjectable for proving arithmetically (inductively) FLT.  

Then, if one has managed to prove FLT in this way, that hypothetical equivalence should be 
also proved in virtue of being a necessary condition for the proof at issue. In other words, the 
option (1) above is to be rejected.  Meaning that consideration, one is already weaponed enough 
to trace back and attack the relevant ontological foundations (or respectively, corollaries as being 
necessary conditions) once FLT is provable inductively, and thus, Hamilton and Peano arithmetic 
might be equivalent eventually:        

VIII INTERIM CONCLUSION: THE ONTOLOGICAL COROLLARIES FROM FLT  BY 
INDUCTION SEEN BY THE MAPPING OF PROVABILITIES 

The interim conclusion intends to connect the present, first part of the paper to the next one. 
The former means only an arithmetical and inductive proof of FLT under the condition that the 
proof of FLT for 𝑛𝑛 = 3 is granted in advance, and also means Hilbert arithmetic to be a 
“Wittgenstein ladder” to it. The latter will try to describe an eventual proof of the initial case, i.e.  
𝑛𝑛 = 3, following the same or analogical ideas, so that they are to be summarized just in order to 
be applied for that objective in the next part.  

The approach to the forthcoming proof for FLT (3) relies on the Kochen - Specker (1967) 
theorem about the absence of hidden variables including not only the ultimate statement, but also 
their method for proving it. The link (or hint) to FLT consists in the following observation: 

The insolubility of Fermat’s equation (including for 𝑛𝑛 = 3) can be interpreted as that the 
solution is at least an irrational number (or eventually more irrational numbers, i.e. more than one). 
Then, if all solutions (independent of how many) of Fermat’s equation already for 𝑛𝑛 = 3 are 
irrational numbers, they can be represented as three qubits 𝑥𝑥,𝑦𝑦, 𝑧𝑧 (corresponding to the three 
arithmetic variables meant by FLT),  which cannot share any hidden variable since this would 
imply a rational solution for it. The Kochen - Specker theorem guarantees as a corollary that those 
three qubits cannot share any hidden variable, thus stating for the solution (if that exists) to be one 
or more irrational numbers and consequently, FLT(3) in fact.  

The conceptual background for applying the Kochen-Specker theorem relatable to an 
experimental science such as quantum mechanics and FLT being in the scope of “pure” 
mathematics and the abstract theory of natural numbers can be justified only in Hilbert 
mathematics, but seeming to be “ridiculous” in Gödel mathematics granted to be the “mathematics 
in default” in our epoch. Their link is available in advance in Hilbert arithmetic (in which FLT can 



be formulated again) being dual to the qubit Hilbert space (to which the Kochen - Specker theorem 
can refer). 

The incommensurability of two (or three qubits) is inferable from the Kochen - Specker 
theorem, and then, corresponsable to the limit of infinity dividing the two dual anti-isometric 
copies belonging to Hilbert arithmetic just as the eventual inductive proof of FLT in HIlbert 
arithmetic (above in the parer) suggests for the variables 𝑦𝑦, 𝑧𝑧  of Fermat’s equation to belong (e.g. 
“z” to the “straight” Peano arithmetic, and “y” to the reverse one), therefore also divided by the 
same limit of infinity.  

Meaning further the mapping of the proof in Hilbert mathematics in Peano arithmetic by the 
mediation of arithmetic defined by two absolutely independent operations for the two relevant 
semigroups (and called “Hamilton arithmetic” in the previous section), the same limit of infinity 
in Hilbert arithmetic is mapped just onto the independence of the two semigroups of Hamilton 
arithmetic. However, that mapping does not conserve the idempotency of the two dual Peano 
arithmetic since only a single distributive law is valid therefore implementing a certain asymmetry 
between the two semigroups though being independent in Hamilton arithmetics unlike Peano 
arithmetic involving an additive semigroup and a multiplicative semigroup after the operation of 
multiplication of the latter is derivative to that (“addition”) of the former. That derivativeness is 
one more corollary from the Peano axioms though they define only the function successor of a 
single operand.  

One can trace back (or further as to the context of the present section) the “spontaneous”54 
violation of the symmetry of idempotency after mapping into the two independent semigroups of 
Hamilton arithmetic even to the asymmetry of the states before and after choice in the axiom of 
choice, nonetheless implying the equivalence of the axiom of choice and the well-ordering 
“theorem” though the latter originates only from the state after choice in a sense.  

The same observation can be supported by the “conservation of energy conservation” in 
quantum mechanics (Penchev 2020 October 5) in virtue of unitarity, also in the area of physics 
(which is correlative or even reducible to that of mathematics after Hilbert mathematics, in turn 
underlain by Hilbert arithmetic being just relevant to FLT in the present context). On the one hand, 
the states before and after measurement in quantum mechanics are identified (even as a necessary 
condition for quantum mechanics to be an objective experimental science). On the other hand, the 
state after measurement is a true part of the state before measurement (or figuratively: the “half” 
of it, excluding just the “half” of variables, but continuing to be complete). Both premises imply 
that any quantum state is infinite (in a mathematical sense relevant to “quantum neo-
Pythagoreanism”) in order to equate a set with its true subset.    

 
54 It can be called “spontaneous” due to the absence of any other reason than the mapping itself. The allusion 
or connotation tо the spontaneous violation of symmetry of the Higgs mechanism is intentional. It hints at 
the fundamental asymmetry “before and after choich” (or “before and after quantum measurement”), thus 
both physical and mathematical, as the ultimate reason for mass at rest (and then, the Einstein energetic 
equivalent of mass) to appear at all. In other words, mass is to be understood as that fundamental quantity 
corresponding to the only qualitative “time arrow” also meaning the same asymmetry, furthermore by the 
correlation of time and energy if both are granted to be reversible like all other physical quantities.   



However, the same backdoor of infinity for avoiding the contradiction about any quantum state 
is to be modified as to Fermat arithmetic by its “epoché to infinity”, after which the contradiction 
itself is not possible since that epoché excludes it to be articulated explicitly. For example and 
following the same kind of epoché, one can state that it implies a derivative epoché to quantum 
measurement, respectively to the quantum states before and after measurement. Figuratively, if 
one involves the concept of the “phenomenon of quantum state” quantum mechanics refers to it 
explicitly or “experienced”, and Fermat arithmetic means an analogical “phenomenon of natural 
numbers”, but implicitly  or “inexperienced”, i.e. “naively”.  

However, repeating the mentioned link of the present, first part of the paper to the next, second 
part by the concept of quantum incommensurability, just it is utilized in the proof of the Kochen - 
Specker theorem, but now interpreted as the limit of infinity between two dual Peano arithmetics 
in the framework of Hilbert arithmetic, one is to represent it in two ways in Fermat arithmetic to 
the relation of Peano arithmetic and Hamilton arithmetic.  

On the one hand, this is the equivalence of Hamilton and Peano arithmetic in the framework 
of Fermat arithmetic and its epoché to infinity, which can be considered furthermore as a trivial 
(or stronger) form of idempotency (thus restorable from the relation of idempotency, but not trivial, 
of both dual Peano arithmetics of Hilbert arithmetic). On the other hand, this is the asymmetry of 
the two semigroups of Hamilton arithmetic due to the availability of one single law of 
distributivity. So, if the second part (similarly to the first one) tries to translate the tenet, inferred 
from the separable complex Hilbert space as the Kochen-Specker theorem applied for proving 
FLT(3), into the language of Fermat arithmetic, both “hands” above might be useful.  

One can notice that all versions of proving FLT arithmetically share the same ontology of 
Hilbert mathematics and the postulate of its completeness, implying as a corollary the inexistence 
of insoluble statements what FLT turns to be in Gödel mathematics due to Yablo’s paradox. In 
other words, the arithmetical proof of FLT needs the absence of any insoluble statement and only 
after postulating this FLT is provable, though, only hypothetically, it seems that FLT might be 
provable also in Gödel mathematics, i.e. being consistent to the existence of insoluble statements, 
however different from FLT. That observation suggests that FLT is a unique insoluble statement 
in the following sense: its eventual provability forces the necessary provability of any other 
insoluble statement. Anyway, one can admit that property is not unique for FLT but also valid for 
any statement, for which would be provable to be a Gödel insoluble statement.   

The formal condition, on which mathematical completeness relies, can be realized 
ontologically as a fundamental or permanent doubling postulated yet in “scientific 
transcendentalism” (e.g. Penchev 2020 October 20). Furthemore, one can trace back, starting from 
the ontological totality postulated by transcendentalism to be the absolute totality, a series оf more 
and more “special totalities”, which can be considered as derivative from each other (or 
regressively “recurrent” in a sense). So, one can consider an equivalent sequence of mappings 
(weather defined formally and mathematically or more loosely, in a philosophical manner) so that 
the next one is summoned to represent the previous two alternatives only into one of them. Both 
allusions, as to a bit of information or as to Hegel’s “synthesis of thesis and antithesis”, might be 



relevant to hint at the recurrent formula of any next mapping to be constructed; or successively in 
detail: 

The ultimate ontological totality of transcendentalism is mapped into the one “half” of it, e.g, 
into the Cartesian “mind”, only within which the episteme of Modernity situates mathematics 
thoroughly (independently of whether “mind” is granted to be “primary”, e.g. as in Platonism, or 
not), therefore halving mathematics itself into Hilbert mathematics, on the one hand, and Gödel 
mathematics, on the other hand. If the latter is the case FLT is an insoluble statement. As to the 
former, the chain of mappings continues bisecting it into Hilbert arithmetic (its foundation) and all 
the rest of mathematics, in the framework of which FLT seems to be again insoluble.  

Already, as to Hilbert arithmetic, FLT therefore getting interpreted as relevant just to the 
foundations of mathematics is already a soluble statement, for which it is soluble also in Hilbert 
mathematics as far as it contains Hilbert arithmetic as its ground. Hilbert arithmetic is halved in 
turn into two Peano arithmetics, dual and anti-isometric to each other, on the one hand, and the 
qubit Hilbert space (consisting also of two dual counterparts) complementary to the former unity 
of two dual Peano arithmetics. Now, the two dual Peano arithmetics (rather than the two dual qubit 
Hilbert spaces) are what is chosen.  Then and among those two arithmetics, each of them may be 
chosen as long as only one of them is chosen. 

This is the relevant stage in the series of recurrent mappings, on which the only arithmetical 
proof of FLT can begin since the concept of arithmetical induction already makes sense and can 
be involved. As to Hilbert arithmetic properly, that mapping can be depicted formally and 
mathematically as above as “[𝑃𝑃+ ⊗  𝑃𝑃− → 𝑃𝑃0] ↔ 𝑃𝑃” therefore specifying Peano arithmetic. as the 
next consecutive stage of mappings.  

In turn Peano arithmetic is forked again into its standard representation by two semigroups of 
multiplication and addition so that the former cooperation is derivative and thus dependent on the 
latter one, on the one hand, and the “Hamilton arithmetic” defined by two absolutely independent 
semigroups. Finally one can notice the asymmetry of the two semigrup following from the 
availability of one single distributive law (unlike e.g. Boolean algebra with two distributive laws 
dual to each other after de Morgan’s rule).  

One can generalize the observation of that uniform sequence (even recurrent in a sense) so that 
a certain subseries of it to be relevant to the arithmetic proof of FLT as an ontological basis for it, 
at that starting from the ultimate totality of transcendentalism in the final analysis, and described 
above. Simultaneously, this chain can be represented quite formally, by the recurrent formula 
generating a binary algorithm so that both relevant part and proof of FLT are also reducible to the 
same formula. 

Indeed, one can “stare” at the inductive proof of FLT needing both MMT and MFD from the 
viewpoint of the above recurrent inference, still more being equally relevant to the ontological 
basis. It was already considered as an embodiment of the relation of idempotency and hierarchy, 
also available in both Hilbert arithmetic and the qubit Hilbert space, from which the paper gets a 
boost in its introduction.  



So, one can trace a continuity starting as ontological and philosophical in transcendentalism, 
and gradually and parallelly transformed mathematically step by step to the endpoint of an only 
inductive and arithmetic proof of FLT. The next part of the paper will demonstrate how that 
continuity can be further pursued: first by an eventual proof of FLT(3) inferred from the properties 
of the qubit Hilbert space (respectively, the traditional complex Hilbert space of quantum 
mechanics), then, translated into Peano arithmetic by the mediation of Hilbert arithmetic again.           

          
 

APPENDIX I: PROOF OF FLT BY INDUCTION IN PEANO ARITHMETIC 
The appendix contains the concise, only technical exposition of the proof of FLT in Peano 

arithmetic (without set theory). It consists of the following stages: 
Statement 1. Any solution of FLT in Peano arithmetic is a solution of FLT in an auxiliary 

arithmetic defined as above by: 
 
“n” 
… 
n  1𝑛𝑛, 2𝑛𝑛, 3𝑛𝑛, . . . , 𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛, 𝑧𝑧𝑛𝑛, . ..  
… 
3  13, 23, 33, . . . , 𝑥𝑥3,𝑦𝑦3, 𝑧𝑧3, . ..  
2  12, 22, 32, . . . , 𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2, . ..   
1  11, 21, 31, … , 𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1  …                              “𝑥𝑥,𝑦𝑦, 𝑧𝑧”  
 
That arithmetic is denoted as “Hamilton arithmetic”. It can be interpreted also as an arithmetic 

of “natural volumes”. The multiplication “𝑓𝑓. 𝑏𝑏” (being dependent on “addition”) is substituted by 
“𝑓𝑓𝑏𝑏” as the second operation generating a relevant second semigroup (which is the semigroup of 
multiplication as to Peano arithmetic) therefore implying the corresponding distributive law 
(𝑓𝑓 + 𝑏𝑏)𝑐𝑐 = 𝑓𝑓𝑐𝑐 + 𝑏𝑏𝑐𝑐. Furthermore, the second semigroup is absolutely independent of the first one 
(being the same one of addition in both Peano and Hamilton arithmetics) since “multiplication” is 
not defined in Hamilton arithmetic at all, but it is necessary for “exponentiation” in Peano 
arithmetic to be meditatively derivative from “addition”55.    

A corollary from Statement 1: If FLT for any “𝑛𝑛”  and notatable as FLT(n) does not have any 
solution in Hamilton arithmetic, the same is valid in Peano arithmetic. Thus, if FLT is proved in 
Hamilton arithmetic, FLT is proved in Peano arithmetic.  

Statement 2. “[(𝑦𝑦𝑛𝑛+1 + 𝑧𝑧𝑛𝑛+1) → (𝑦𝑦𝑛𝑛 + 𝑧𝑧𝑛𝑛)] ⇔ [¬(𝑦𝑦𝑛𝑛 + 𝑧𝑧𝑛𝑛) → ¬(𝑦𝑦𝑛𝑛+1 + 𝑧𝑧𝑛𝑛+1)] in 
Hamilton arithmetic. This is true in virtue of modus tollens. 

 
55 That is: “addition” generates “multiplication”, which in turn generates “exponentiation” as to Peano 
arithmetic. However, “multiplication” is not defined in Hamilton arithmetic. This implies for “addition” 
and “exponentiation” to be absolutely independent of each other in it.   



Statement 3 (MMT). “(𝑥𝑥𝑛𝑛+1 → 𝑥𝑥𝑛𝑛) ⇔ [¬(𝑦𝑦𝑛𝑛 + 𝑧𝑧𝑛𝑛) → ¬(𝑦𝑦𝑛𝑛+1 + 𝑧𝑧𝑛𝑛+1)]” in Hamilton 
arithmetic. This is true as a corollary from Statement 2 and the distributive law in Hamilton 
arithmetic, according to which, “(𝑦𝑦 + 𝑧𝑧)𝑛𝑛 = 𝑦𝑦𝑛𝑛 + 𝑧𝑧𝑛𝑛”  

Statement 4 (MFD). If FLT(3) and MMT (“Statement 3”) are valid, FLT is true in Hamilton 
arithmetic. This is true since the axiom of induction in Peano arithmetic and referring only to the 
additive semigroup being the same in both Peano and Hamilton arithmetics allows for it to be 
transferred in Hamilton arithmetic without any change. 

Statement 5. The validity of FLT(3) in Peano arithmetic implies the validity of FLT(3) in 
Hamilton arithmetic. This is true, because both validities refer to the same subset of the additive 
semigroup, and therefore being identical in Peano arithmetic and Hamilton arithmetic, namely: 
13, 23, 33, . . . ,𝑛𝑛3, . ..  . The same subset, to which FLT refers, is the set of all “natural volumes” in a 
narrow sense (in other words, the interpretation of the at issue subset in Hamilton arithmetic for 
the case 𝑛𝑛 = 3 in a way accessible in Fermat’s age), i.e. the geometrical volumes of cubes, the 
sides of which are all natural numbers. 

Statement 6 (proved in advance, e.g. by Kummer 1847). FLT(3) is true (since “3” is a “regular 
number” in  Kummer’s meaning). 

The sequence of all six statements above implies FLT getting proved only arithmetically and 
inductively. The option of that kind of proving of FLT is justified as logically and mathematically, 
as philosophically in detail in the previous corpus of the study. What follows is a rather technical 
discussion of a few steps necessary for proving correspondingly each of those six statements (and 
which might seem doubtful and objectionable for somebody): 

In Statement 1: Any statement or mathematical expression, which does not involve the 
operation of multiplication explicitly, however remaining the operation of exponentiation 
absolutely legitimate, is identical in both Peano and Hamilton arithmetics. Thus, Fermat’s equation 
as well as FLT itself are the same in both: this implies that if a triple 𝑥𝑥,𝑦𝑦, 𝑧𝑧 is a solution of  Fermat’s 
equation for some exponent 𝑛𝑛, it is a solution in both arithmetics simultaneously since the equation, 
for which the triple is a solution, is the same.  

In Statement 2: This is an identical statement in both Peano and Hamilton arithmetic as two 
first-order logics to propositional logic. Indeed, modus tollens is true in propositional logic, and 
the mathematical expressions, not referring to multiplication, but only to addition and 
exponentiation are also identical.  

In Statement 3: The expressions “𝑥𝑥𝑛𝑛” and “𝑥𝑥𝑛𝑛+1” are to be interpreted as the propositions 
“There exist ‘𝑥𝑥𝑛𝑛’ in Peano arithmetic or in Hamilton arithmetic” and “There exist ‘𝑥𝑥𝑛𝑛+1’ in Peano 
arithmetic or in Hamilton arithmetic” accordingly. Statement 2 and the distributive law in 
Hamilton arithmetic,  “(𝑦𝑦 + 𝑧𝑧)𝑛𝑛 = 𝑦𝑦𝑛𝑛 + 𝑧𝑧𝑛𝑛”, (which, however, is false in Peano arithmetic) 
implies Statement 3.  Indeed, that distributive law can be inferred from the same expression in 
Peano arithmetic under the additional condition valid only in Hamilton arithmetic that any “mixed 
product” such as "𝑦𝑦𝜆𝜆. 𝑧𝑧𝜈𝜈";  𝜆𝜆, 𝜈𝜈 = 1, 2, 3, . . . ,𝑛𝑛, . .. does not exist in Hamilton arithmetic and it can 
be consequently equated to zero, since it does not influence just because it does not exist.  



One can pay attention to the distinction of non-existing from not-defining, if what is not defined 
can be granted to be uncertain rather than certain, but as zero. What is not defined in mathematics 
is usually accepted not to exist, but this is to be formulated more precisely: the “mixed product” 
as above cannot be defined fundamentally in Hamilton arithmetic, since its inexistence is an 
axiomatic property of Hamilton arithmetic (without which, it is not more “Hamilton arithmetic”) 
rather than not to be defined however being definiable in principle. Consequently, the “mixed 
product” is equivalent just to zero in Hamilton arithmetic, but not uncertain.    

In Statement 4: The axiom of induction is a valid statement in Hamilton arithmetic, too, since 
the axiom of induction involves only “addition” (i.e. does not utilize “multiplication”), and thus it 
remains the same as a statement which does not include “multiplication”. The axiom of induction 
being a valid statement in Hamilton arithmetic implies Statement 4 itself.  

In Statement 5: The validity of FLT(3) in Peano arithmetic implies for it to be true in Hamilton 
arithmetic again in virtue of the fact that it does not involve “multiplication” (but only “addition” 
and “exponentiation”). Furthermore, it refers to a single “row” in Hamilton arithmetic, i.e to a 
certain exponent, namely “3”, thus not needing the simultaneous consideration of more than one 
row (a problem being neglectable in the framework of FLT alone).  

In Statement 6: At last, many mathematicians claimed that they proved FLT(3). Anyway, 
Kummer’s proof in 1847 is chosen to be cited since it is absolutely rigorous even in contemporary 
criteria.  

APPENDIX II: PROOF OF FLT BY INDUCTION IN HILBERT ARITHMETIC  
Тhe proof of FLT in Peano arithmetic (as in Appendix 1) can be considered as a proof in Hilbert 

arithmetic after the suggested “epoché to infinity”, i.e. in Fermat arithmetic. Indeed, the 
insolubility of FLT is valid only if Peano arithmetic and set theory are granted together in advance 
and thus the Cantor “actual infinity” along with all natural numbers of Peano arithmetic, the 
finiteness of which follows immediately from the axiom of induction (being invalid in set theory 
as far as it contradicts the axiom of infinity, e.g. in ZFC). Consequently, the insolubility at issue 
cannot appear if one does not involve “actual infinity” or set theory since this implies the  
“abstinence from judgment” meant by “epoché to infinity”.  

However, one can consider the proof of FLT in Hilbert arithmetic in a wider sense, since just 
Hilbert arithmetic serves a “Wittgenstein ladder” or as a heuristic pathway for the proof of FLT in 
Peano arithmetic by a consistent method (rather than suddenly and unexpectedly as if 
mathematicians “trick up their sleeve”). That approach involves two notices as specific for the 
proof of FLT in Hilbert arithmetic: 

1. The one refers to the mapping “[𝑃𝑃+ ⊗  𝑃𝑃− → 𝑃𝑃0] ↔ 𝑃𝑃” as a “nonstandard bijection” 
described in detail above. It is not necessary to be “retold” only in terms of Peano arithmetic and 
avoiding any explicit address to Hilbert arithmetic (e.g. for being inexistent in Fermat’s age). So, 
the need to paraphrase it relevantly drops out and one can utilize directly the proper terms of 
Hilbert arithmetic. Indeed, the pair  𝑃𝑃+,𝑃𝑃− can generate immediately a Hamilton arithmetic by 
themself, being divided from each other by the limit of infinity (rather than by that of zero and 
described in detail in the first two sections). Hamilton arithmetic in relation to Peano arithmetic 



can be only postulated e.g. as in Appendix I, though Hilbert arithmetic is what might hint at its 
idea.  

2. The proof of MMT can be accomplished without any explicit reference to Hamilton 
arithmetic restricting itself only to the properties of the nonstandard bijection: 

“[𝑃𝑃+ ⊗  𝑃𝑃− → 𝑃𝑃0] ↔ 𝑃𝑃”. 
Indeed, one can right equate the mixed product “𝑦𝑦. 𝑧𝑧” to zero if the case is either 𝑦𝑦 ∈ 𝑃𝑃+;  𝑧𝑧 ∈

 𝑃𝑃− or vice versa, but keeping both operations of addition and exponentiation just as this is 
necessary for MMT to be proved in the discussed case. Properly, FLT is to be proved for that case 
(𝑦𝑦 ∈ 𝑃𝑃+;  𝑧𝑧 ∈  𝑃𝑃−) analogically to the initial proof of FLT only to Hamilton arithmetic meaning 
in fact Peano arithmetic as in Appendix I. Then and similarly, any solution in P is a solution in the 
case “𝑦𝑦 ∈ 𝑃𝑃+;  𝑧𝑧 ∈  𝑃𝑃−” (or vice versa), and modus tollens implies FLT in the general case.  
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