

The Reimann Hypothesis

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

November 10, 2020

THE RIEMANN HYPOTHESIS

FRANK VEGA

ABSTRACT. In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. Many consider it to be the most important unsolved problem in pure mathematics. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US 1,000,000 prize for the first correct solution. In 1915, Ramanujan proved that under the assumption of the Riemann Hypothesis, the inequality $\sigma(n) < e^{\gamma} \times n \times \log \log n$ holds for all sufficiently large n, where $\sigma(n)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. In 1984, Guy Robin proved that the inequality is true for all n > 5040 if and only if the Riemann Hypothesis is true. In 2002, Lagarias proved that if the inequality $\sigma(n) \leq H_n + exp(H_n) \times \log H_n$ holds for all $n \geq 1$, then the Riemann Hypothesis is true, where H_n is the n^{th} harmonic number. In this work, we show certain properties of these both inequalities that leave us to a proof of the Riemann Hypothesis.

1. INTRODUCTION

As usual $\sigma(n)$ is the sum-of-divisors function of n [Cho+07]:

$$\sum_{d|n} d$$

Define f(n) to be $\frac{\sigma(n)}{n}$. Say Robins(n) holds provided

$$f(n) < e^{\gamma} \times \log \log n.$$

The constant $\gamma \approx 0.57721$ is the Euler-Mascheroni constant, and log is the natural logarithm. Let H_n be $\sum_{j=1}^n \frac{1}{j}$. Say Lagarias(n) holds provided

$$\sigma(n) \le H_n + \exp(H_n) \times \log H_n.$$

²⁰¹⁰ Mathematics Subject Classification. Primary 11M26; Secondary 11A41, 26D15.

Key words and phrases. number theory, inequality, sum-of-divisors function, harmonic number, prime.

This work was supported by another researcher that shall be included as an author after his approval.

The importance of this property is:

Theorem 1.1. [RH] If Robins(n) holds for all n > 5040, then the Riemann Hypothesis is true [Lag02]. If Lagarias(n) holds for all $n \ge 1$, then the Riemann Hypothesis is true [Lag02].

It is known that $\mathsf{Robins}(n)$ and $\mathsf{Lagarias}(n)$ hold for many classes of numbers n. We know this:

Lemma 1.2. [condition] If Robins(n) holds for some n > 5040, then Lagarias(n) holds [Lag02].

We recall that an integer n is said to be square free if for every prime divisor q of n we have $q^2 \nmid n$ [Cho+07]. Robins(n) holds for all n > 5040 that are square free [Cho+07]. Let core(n) denotes the square free kernel of a natural number n [Cho+07]. We can show this:

Theorem 1.3. [pi] Let $\frac{\pi^2}{6} \times \log \log \operatorname{core}(n) \leq \log \log n$ for some n > 5040. Then $\operatorname{Robins}(n)$ holds.

Moreover, we finally prove these theorems:

Theorem 1.4. [1-main] Robins(n) holds for all n > 5040 when $q_m \nmid n$ for $q_m \leq 113$.

Theorem 1.5. [2-main] Let n > 5040 and $n = r \times q_m$, where $q_m \ge 113$ denotes the largest prime factor of n. If Lagarias(r) holds, then Lagarias(n) holds.

In this way, we finally conclude that

Theorem 1.6. [final] Lagarias(n) holds for all $n \ge 1$ and thus, the Riemann Hypothesis is true.

Proof. Every possible counterexample in Lagarias(n) for n > 5040 must have that its greatest prime factor q_m complies with $q_m \ge 113$ because of lemmas 1.2 [condition] and 1.4 [1-main]. In addition, Lagarias(n) has been checked for all $n \le 5040$ by computer. Moreover, for all n > 5040we have that Lagarias(n) has been recursively verified when its greatest prime factor q_m complies with $q_m \ge 113$ due to theorems 1.4 [1-main] and 1.5 [2-main]. In conclusion, we show that Lagarias(n) holds for all $n \ge 1$ and therefore, the Riemann Hypothesis is true.

2. KNOWN RESULTS

We use that the following are known:

Lemma 2.1. [sigma-bound]

 $f(n) < \prod_{p|n} \frac{p}{p-1}.$ [Cho+07]

Lemma 2.2. [zeta]

$$\prod_{k=1}^{\infty} \frac{1}{1 - \frac{1}{q_k^2}} = \zeta(2) = \frac{\pi^2}{6}.$$
 [Edw01]

Lemma 2.3. [harmonic-bound]

 $\log(e^{\gamma} \times (n+1)) \ge H_n \ge \log(e^{\gamma} \times n).$ [Lag02]

3. A CENTRAL LEMMA

The following is a key lemma. It gives an upper bound on f(n) that holds for all n. The bound is too weak to prove $\mathsf{Robins}(n)$ directly, but is critical because it holds for all n. Further the bound only uses the primes that divide n and not how many times they divide n. This is a key insight.

Lemma 3.1. [pro] Let n > 1 and let all its prime divisors be $q_1 < \cdots < q_m$. Then,

$$f(n) < \frac{\pi^2}{6} \times \prod_{i=1}^m \frac{q_i + 1}{q_i}.$$

Proof. We use that lemma 2.1 [sigma-bound]:

$$f(n) < \prod_{i=1}^{m} \frac{q_i}{q_i - 1}.$$

Now for q > 1,

$$\frac{1}{1 - \frac{1}{q^2}} = \frac{q^2}{q^2 - 1}.$$

 So

$$\frac{1}{1 - \frac{1}{q^2}} \times \frac{q+1}{q} = \frac{q^2}{q^2 - 1} \times \frac{q+1}{q} = \frac{q}{q-1}.$$

Then by lemma 2.2 [zeta],

$$\prod_{k=1}^m \frac{1}{1-\frac{1}{q_k^2}} < \zeta(2) = \frac{\pi^2}{6}.$$

Putting this together yields the proof:

$$f(n) < \prod_{i=1}^{m} \frac{q_i}{q_i - 1}$$

$$\leq \prod_{i=1}^{m} \frac{1}{1 - \frac{1}{q_i^2}} \times \frac{q_i + 1}{q_i}$$

$$< \frac{\pi^2}{6} \times \prod_{i=1}^{m} \frac{q_i + 1}{q_i}.$$

4. A CONDITION ON core(n)

4.1. **A Particular Case.** We prove the Robin's inequality for this particular case:

Lemma 4.1. [case] Robins(n) holds for all n > 5040 when core(n) $\in \{2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210\}.$

Proof. Let n > 5040. Specifically, let $\operatorname{core}(n)$ be the product of the primes q_1, \ldots, q_m , such that $\{q_1, \ldots, q_m\} \subseteq \{2, 3, 5\}$. We need to prove that

$$f(n) < e^{\gamma} \times \log \log n$$

that is true when

$$\prod_{i=1}^m \frac{q_i}{q_i - 1} \le e^\gamma \times \log \log n$$

is also true, because of lemma 2.1 [sigma-bound]. Then, we have that

$$\prod_{i=1}^{m} \frac{q_i}{q_i - 1} \le \frac{2 \times 3 \times 5}{1 \times 2 \times 4} = 3.75 < e^{\gamma} \times \log \log(5040) \approx 3.81.$$

However, for n > 5040

 $e^{\gamma} \times \log \log(5040) < e^{\gamma} \times \log \log n$

and hence, the proof is completed for that case. Hence, we only need to prove the Robin's inequality is true for every natural number $n = 2^{a_1} \times 3^{a_2} \times 5^{a_3} \times 7^{a_4} > 5040$ such that $a_1, a_2, a_3 \ge 0$ and $a_4 \ge 1$ are integers. In addition, we know the Robin's inequality is true for every natural number n > 5040 such that $7^k \mid n$ and $7^7 \nmid n$ for some integer $1 \le k \le 6$ [Her18]. Therefore, we need to prove this case for those natural numbers n > 5040 such that $7^7 \mid n$. In this way, we have

$$\prod_{i=1}^{m} \frac{q_i}{q_i - 1} \le \frac{2 \times 3 \times 5 \times 7}{1 \times 2 \times 4 \times 6} = 4.375 < e^{\gamma} \times \log \log(7^7) \approx 4.65.$$

However, we know for n > 5040 and $7^7 \mid n$ such that

$$e^{\gamma} \times \log \log(7^7) \le e^{\gamma} \times \log \log n$$

and as a consequence, the proof is completed.

4.2. Main Insight. The next theorem is a main insight. It extends the class of n so that $\operatorname{Robins}(n)$ holds. The key is that the class on n depend on how close n is to $\operatorname{core}(n)$. The usual classes of such n are defined by their prime structure not by an inequality. This is perhaps one of the main insights.

Theorem 4.2. Let $\frac{\pi^2}{6} \times \log \log \operatorname{core}(n) \le \log \log n$ for some n > 5040. Then $\operatorname{Robins}(n)$ holds.

Proof. Let $n' = \operatorname{core}(n)$. Let n' be the product of the distinct primes q_1, \ldots, q_m . By assumption we have that

$$\frac{\pi^2}{6} \times \log \log n' \le \log \log n.$$

When $n' \leq 5040$, $\operatorname{Robins}(n')$ holds if $n' \notin \{2, 3, 5, 6, 10, 30\}$ [Cho+07]. However, we can ignore this case, since $\operatorname{Robins}(n)$ holds for all n > 5040when $\operatorname{core}(n) \in \{2, 3, 5, 6, 10, 30\}$ because of lemma 4.1 [case]. When n' > 5040, we know that $\operatorname{Robins}(n')$ holds and so

$$f(n') < e^{\gamma} \times \log \log n'.$$

By previous lemma 3.1 [pro]

$$f(n) < \frac{\pi^2}{6} \times \prod_{i=1}^m \frac{q_i + 1}{q_i}$$

Suppose by way of contradiction that $\mathsf{Robins}(n)$ fails. Then

$$f(n) \ge e^{\gamma} \times \log \log n.$$

We claim that

$$\frac{\pi^2}{6} \times \prod_{i=1}^m \frac{q_i+1}{q_i} > e^{\gamma} \times \log \log n.$$

Since otherwise we would have a contradiction. This shows that

$$\frac{\pi^2}{6} \times \prod_{i=1}^m \frac{q_i+1}{q_i} > \frac{\pi^2}{6} \times e^{\gamma} \times \log \log n'.$$

Thus

$$\prod_{i=1}^{m} \frac{q_i + 1}{q_i} > e^{\gamma} \times \log \log n',$$

and

$$\prod_{i=1}^m \frac{q_i+1}{q_i} > f(n'),$$

This is a contradiction since f(n') is equal to

$$\frac{(q_1+1)\times\cdots\times(q_m+1)}{q_1\times\cdots\times q_m}.$$

5. Robin's Divisibility

Lemma 5.1. [up-bound] For $x \ge 11$, we have

$$\sum_{q \le x} \frac{1}{q} < \log \log x + \gamma - 0.12$$

where $q \leq x$ means all the primes lesser than or equal to x.

Proof. For x > 1, we have

$$\sum_{q \le x} \frac{1}{q} < \log \log x + B + \frac{1}{\log^2 x}$$

where

$$B = 0.2614972128 \cdots$$

is the (Meissel-)Mertens constant, since this is a proven result from the article reference [RS62]. This is the same as

$$\sum_{q \le x} \frac{1}{q} < \log \log x + \gamma - (C - \frac{1}{\log^2 x})$$

where $\gamma - B = C > 0.31$, because of $\gamma > B$. If we analyze $(C - \frac{1}{\log^2 x})$, then this complies with

$$(C - \frac{1}{\log^2 x}) > (0.31 - \frac{1}{\log^2 11}) > 0.12$$

for $x \ge 11$ and thus, we finally prove

$$\sum_{q \le x} \frac{1}{q} < \log \log x + \gamma - (C - \frac{1}{\log^2 x}) < \log \log x + \gamma - 0.12.$$

Theorem 5.2. [strict] Given a square free number

$$n = q_1 \times \dots \times q_m$$

such that q_1, q_2, \cdots, q_m are odd prime numbers, the greatest prime divisor of n is greater than 7 and $3 \nmid n$, then we obtain the following inequality

$$\frac{\pi^2}{6} \times \frac{3}{2} \times \sigma(n) \le e^\gamma \times n \times \log \log(2^{19} \times n)$$

Proof. This proof is very similar with the demonstration in theorem 1.1 from the article reference [Cho+07]. By induction with respect to $\omega(n)$, that is the number of distinct prime factors of n [Cho+07]. Put $\omega(n) = m$ [Cho+07]. We need to prove the assertion for those integers with m = 1. From a square free number n, we obtain

$$\sigma(n) = (q_1 + 1) \times (q_2 + 1) \times \dots \times (q_m + 1)[eq:1]$$
 5.1

when $n = q_1 \times q_2 \times \cdots \times q_m$ [Cho+07]. In this way, for every prime number $q_i \geq 11$, then we need to prove

$$\frac{\pi^2}{6} \times \frac{3}{2} \times (1 + \frac{1}{q_i}) \le e^{\gamma} \times \log \log(2^{19} \times q_i).[\text{eq}:2]$$
 5.2

For $q_i = 11$, we have

$$\frac{\pi^2}{6} \times \frac{3}{2} \times (1 + \frac{1}{11}) \le e^{\gamma} \times \log \log(2^{19} \times 11)$$

is actually true. For another prime number $q_i > 11$, we have

$$(1+\frac{1}{q_i}) < (1+\frac{1}{11})$$

and

$$\log \log(2^{19} \times 11) < \log \log(2^{19} \times q_i)$$

which clearly implies that the inequality 5.2 is true for every prime number $q_i \ge 11$. Now, suppose it is true for m-1, with $m \ge 2$ and let us consider the assertion for those square free n with $\omega(n) = m$ [Cho+07]. So let $n = q_1 \times \cdots \times q_m$ be a square free number and assume that $q_1 < \cdots < q_m$ for $q_m \ge 11$. Case 1: $q_m \ge \log(2^{19} \times q_1 \times \cdots \times q_{m-1} \times q_m) = \log(2^{19} \times n)$.

By the induction hypothesis we have

 $\frac{\pi^2}{6} \times \frac{3}{2} \times (q_1+1) \times \dots \times (q_{m-1}+1) \le e^{\gamma} \times q_1 \times \dots \times q_{m-1} \times \log \log(2^{19} \times q_1 \times \dots \times q_{m-1})$

and hence

$$\frac{\pi^2}{6} \times \frac{3}{2} \times (q_1+1) \times \dots \times (q_{m-1}+1) \times (q_m+1) \le$$

 $e^{\gamma} \times q_1 \times \cdots \times q_{m-1} \times (q_m+1) \times \log \log(2^{19} \times q_1 \times \cdots \times q_{m-1})$ when we multiply the both sides of the inequality by (q_m+1) . We want to show

$$e^{\gamma} \times q_1 \times \cdots \times q_{m-1} \times (q_m+1) \times \log \log(2^{19} \times q_1 \times \cdots \times q_{m-1}) \le$$

 $e^{\gamma} \times q_1 \times \cdots \times q_{m-1} \times q_m \times \log \log(2^{19} \times q_1 \times \cdots \times q_{m-1} \times q_m) = e^{\gamma} \times n \times \log \log(2^{19} \times n).$ Indeed the previous inequality is equivalent with

 $q_m \times \log \log(2^{19} \times q_1 \times \dots \times q_{m-1} \times q_m) \ge (q_m + 1) \times \log \log(2^{19} \times q_1 \times \dots \times q_{m-1})$ or alternatively

$$\frac{q_m \times (\log \log(2^{19} \times q_1 \times \dots \times q_{m-1} \times q_m) - \log \log(2^{19} \times q_1 \times \dots \times q_{m-1}))}{\log q_m} \ge \frac{\log \log(2^{19} \times q_1 \times \dots \times q_{m-1})}{\log q_m}.$$

From the reference [Cho+07], we have if 0 < a < b, then

$$\frac{\log b - \log a}{b - a} = \frac{1}{(b - a)} \int_{a}^{b} \frac{dt}{t} > \frac{1}{b} \cdot [\text{eq}:3]$$
 5.3

We can apply the inequality 5.3 to the previous one just using b = $\log(2^{19} \times q_1 \times \cdots \times q_{m-1} \times q_m)$ and $a = \log(2^{19} \times q_1 \times \cdots \times q_{m-1})$. Certainly, we have

$$\log(2^{19} \times q_1 \times \cdots \times q_{m-1} \times q_m) - \log(2^{19} \times q_1 \times \cdots \times q_{m-1}) = \log \frac{2^{19} \times q_1 \times \cdots \times q_{m-1} \times q_m}{2^{19} \times q_1 \times \cdots \times q_{m-1}} = \log q_m.$$

In this way, we obtain

$$\frac{q_m \times (\log \log(2^{19} \times q_1 \times \dots \times q_{m-1} \times q_m) - \log \log(2^{19} \times q_1 \times \dots \times q_{m-1}))}{\log q_m} > \frac{q_m}{\log(2^{19} \times q_1 \times \dots \times q_m)}.$$

Using this result we infer that the original inequality is certainly satisfied if the next inequality is satisfied

$$\frac{q_m}{\log(2^{19} \times q_1 \times \dots \times q_m)} \ge \frac{\log\log(2^{19} \times q_1 \times \dots \times q_{m-1})}{\log q_m}$$

which is trivially true for $q_m \ge \log(2^{19} \times q_1 \times \cdots \times q_{m-1} \times q_m)$ [Cho+07]. Case 2: $q_m < \log(2^{19} \times q_1 \times \cdots \times q_{m-1} \times q_m) = \log(2^{19} \times n)$.

We need to prove

$$\frac{\pi^2}{6} \times \frac{3}{2} \times \frac{\sigma(n)}{n} \le e^{\gamma} \times \log \log(2^{19} \times n).$$

We know $\frac{3}{2} < 1.503 < \frac{4}{2.66}$. Nevertheless, we could have

$$\frac{3}{2} \times \frac{\sigma(n)}{n} \times \frac{\pi^2}{6} < \frac{4 \times \sigma(n)}{3 \times n} \times \frac{\pi^2}{2 \times 2.66}$$

and therefore, we only need to prove

$$\frac{\sigma(3 \times n)}{3 \times n} \times \frac{\pi^2}{5.32} \le e^{\gamma} \times \log \log(2^{19} \times n)$$

where this is possible because of $3 \nmid n$. If we apply the logarithm to the both sides of the inequality, then we obtain

$$\log(\frac{\pi^2}{5.32}) + (\log(3+1) - \log 3) + \sum_{i=1}^m (\log(q_i+1) - \log q_i) \le \gamma + \log\log\log(2^{19} \times n).$$

From the reference [Cho+07], we note

$$\log(q_1+1) - \log q_1 = \int_{q_1}^{q_1+1} \frac{dt}{t} < \frac{1}{q_1}.$$

In addition, note $\log(\frac{\pi^2}{5.32}) < \frac{1}{2} + 0.12$. However, we know

$$\gamma + \log \log q_m < \gamma + \log \log \log (2^{19} \times n)$$

since $q_m < \log(2^{19} \times n)$ and therefore, it is enough to prove

$$0.12 + \frac{1}{2} + \frac{1}{3} + \frac{1}{q_1} + \dots + \frac{1}{q_m} \le 0.12 + \sum_{q \le q_m} \frac{1}{q} \le \gamma + \log \log q_m$$

where $q_m \ge 11$. In this way, we only need to prove

$$\sum_{q \le q_m} \frac{1}{q} \le \gamma + \log \log q_m - 0.12$$

which is true according to the lemma 5.1 [up-bound] when $q_m \ge 11$. In this way, we finally show the theorem is indeed satisfied.

Theorem 5.3. [btw2-3] Robins(n) holds for all n > 5040 when $3 \nmid n$. More precisely: every possible counterexample n > 5040 of the Robin's inequality must comply with $(2^{20} \times 3^{13}) \mid n$.

Proof. We will check the Robin's inequality is true for every natural number $n = q_1^{a_1} \times q_2^{a_2} \times \cdots \times q_m^{a_m} > 5040$ such that q_1, q_2, \cdots, q_m are prime numbers, a_1, a_2, \cdots, a_m are natural numbers and $3 \nmid n$. We know this is true when the greatest prime divisor of n > 5040 is lesser than or equal to 7 according to the lemma 4.1 [case]. Therefore, the remaining case is when the greatest prime divisor of n > 5040 is greater than 7. We need to prove

$$\frac{\sigma(n)}{n} < e^{\gamma} \times \log \log n$$

that is true when

$$\frac{\pi^2}{6} \times \prod_{i=1}^m \frac{q_i+1}{q_i} \le e^\gamma \times \log \log n$$

according to the lemma 3.1 [pro]. Using the equation 5.1, we obtain that will be equivalent to

$$\frac{\pi^2}{6} \times \frac{\sigma(n')}{n'} \le e^\gamma \times \log \log n$$

where $n' = q_1 \times \cdots \times q_m$ is the core(n) [Cho+07]. However, the Robin's inequality has been proved for all integers n not divisible by 2 (which are bigger than 10) [Cho+07]. Hence, we only need to prove the Robin's inequality is true when $2 \mid n'$. In addition, we know the Robin's inequality is true for every natural number n > 5040 such that $2^k \mid n$ and $2^{20} \nmid n$ for some integer $1 \le k \le 19$ [Her18]. Consequently, we only need to prove the Robin's inequality is true for all n > 5040 such that $2^{20} \mid n$ and thus,

$$e^{\gamma} \times n' \times \log \log(2^{19} \times \frac{n'}{2}) < e^{\gamma} \times n' \times \log \log n$$

because of $2^{19} \times \frac{n'}{2} < n$ when $2^{20} \mid n$ and $2 \mid n'$. In this way, we only need to prove

$$\frac{\pi^2}{6} \times \sigma(n') \le e^{\gamma} \times n' \times \log \log(2^{19} \times \frac{n'}{2}).$$

According to the equation 5.1 and $2 \mid n'$, we have

$$\frac{\pi^2}{6} \times 3 \times \sigma(\frac{n'}{2}) \le e^{\gamma} \times 2 \times \frac{n'}{2} \times \log \log(2^{19} \times \frac{n'}{2})$$

which is the same as

$$\frac{\pi^2}{6} \times \frac{3}{2} \times \sigma(\frac{n'}{2}) \le e^{\gamma} \times \frac{n'}{2} \times \log \log(2^{19} \times \frac{n'}{2})$$

that is true according to the theorem 5.2 [strict] when $3 \nmid \frac{n'}{2}$. In addition, we know the Robin's inequality is true for every natural number n > 5040 such that $3^k \mid n$ and $3^{13} \nmid n$ for some integer $1 \leq k \leq 12$ [Her18]. Consequently, we only need to prove the Robin's inequality is true for all n > 5040 such that $2^{20} \mid n$ and $3^{13} \mid n$. To sum up, the proof is completed.

Theorem 5.4. [btw5-7] Robins(n) holds for all n > 5040 when $5 \nmid n$ or $7 \nmid n$.

Proof. We need to prove

$$f(n) < e^{\gamma} \times \log \log n$$

when $(2^{20} \times 3^{13}) \mid n$. Suppose that $n = 2^a \times 3^b \times m$, where $a \ge 20$, $b \ge 13, 2 \nmid m, 3 \nmid m$ and $5 \nmid m$ or $7 \nmid m$. Therefore, we need to prove

$$f(2^a \times 3^b \times m) < e^{\gamma} \times \log \log(2^a \times 3^b \times m).$$

We know

$$f(2^a \times 3^b \times m) = f(3^b) \times f(2^a \times m)$$

since f is multiplicative [Voj20]. In addition, we know $f(3^b) < \frac{3}{2}$ for every natural number b [Voj20]. In this way, we have

$$f(3^b) \times f(2^a \times m) < \frac{3}{2} \times f(2^a \times m).$$

Now, consider

$$\frac{3}{2} \times f(2^a \times m) = \frac{9}{8} \times f(3) \times f(2^a \times m) = \frac{9}{8} \times f(2^a \times 3 \times m)$$

where $f(3) = \frac{4}{3}$ since f is multiplicative [Voj20]. Nevertheless, we have

$$\frac{9}{8} \times f(2^a \times 3 \times m) < f(5) \times f(2^a \times 3 \times m) = f(2^a \times 3 \times 5 \times m)$$

and

$$\frac{9}{8} \times f(2^a \times 3 \times m) < f(7) \times f(2^a \times 3 \times m) = f(2^a \times 3 \times 7 \times m)$$

where $5 \nmid m$ or $7 \nmid m$, $f(5) = \frac{6}{5}$ and $f(7) = \frac{8}{7}$. However, we know the Robin's inequality is true for $2^a \times 3 \times 5 \times m$ and $2^a \times 3 \times 7 \times m$ when $a \geq 20$, since this is true for every natural number n > 5040 such that $3^k \mid n$ and $3^{13} \nmid n$ for some integer $1 \leq k \leq 12$ [Her18]. Hence, we would have

$$f(2^a\times 3\times 5\times m) < e^\gamma \times \log\log(2^a\times 3\times 5\times m) < e^\gamma \times \log\log(2^a\times 3^b\times m)$$
 and

$$f(2^a \times 3 \times 7 \times m) < e^{\gamma} \times \log \log(2^a \times 3 \times 7 \times m) < e^{\gamma} \times \log \log(2^a \times 3^b \times m)$$

when $b \ge 13$.

Theorem 5.5. [btw11-47] Robins(n) holds for all n > 5040 when $q_m \nmid n$ for $11 \leq q_m \leq 47$.

Proof. We know the Robin's inequality is true for every natural number n > 5040 such that $7^k \mid n$ and $7^7 \nmid n$ for some integer $1 \le k \le 6$ [Her18]. We need to prove

$$f(n) < e^{\gamma} \times \log \log n$$

when $(2^{20} \times 3^{13} \times 7^7) \mid n$. Suppose that $n = 2^a \times 3^b \times 7^c \times m$, where $a \geq 20, b \geq 13, c \geq 7, 2 \nmid m, 3 \nmid m, 7 \nmid m, q_m \nmid m$ and $11 \leq q_m \leq 47$. Therefore, we need to prove

$$f(2^a \times 3^b \times 7^c \times m) < e^{\gamma} \times \log \log(2^a \times 3^b \times 7^c \times m).$$

We know

$$f(2^a \times 3^b \times 7^c \times m) = f(7^c) \times f(2^a \times 3^b \times m)$$

since f is multiplicative [Voj20]. In addition, we know $f(7^c) < \frac{7}{6}$ for every natural number c [Voj20]. In this way, we have

$$f(7^c) \times f(2^a \times 3^b \times m) < \frac{7}{6} \times f(2^a \times 3^b \times m).$$

However, that would be equivalent to

$$\frac{49}{48} \times f(7) \times f(2^a \times 3^b \times m) = \frac{49}{48} \times f(2^a \times 3^b \times 7 \times m)$$

where $f(7) = \frac{8}{7}$. In addition, we know

$$\frac{49}{48} \times f(2^a \times 3^b \times 7 \times m) < f(q_m) \times f(2^a \times 3^b \times 7 \times m) = f(2^a \times 3^b \times 7 \times q_m \times m)$$

where $q_m \nmid m$, $f(q_m) = \frac{q_m+1}{q_m}$ and $11 \leq q_m \leq 47$. Nevertheless, we know the Robin's inequality is true for $2^a \times 3^b \times 7 \times q_m \times m$ when $a \geq 20$ and $b \geq 13$, since this is true for every natural number n > 5040 such that $7^k \mid n$ and $7^7 \nmid n$ for some integer $1 \leq k \leq 6$ [Her18]. Hence, we would have

$$f(2^{a} \times 3^{b} \times 7 \times q_{m} \times m) < e^{\gamma} \times \log \log(2^{a} \times 3^{b} \times 7 \times q_{m} \times m) < e^{\gamma} \times \log \log(2^{a} \times 3^{b} \times 7^{c} \times m)$$

when $c \ge 7$ and $11 \le q_{m} \le 47$. \Box

Theorem 5.6. [btw53-113] Robins(n) holds for all n > 5040 when $q_m \nmid n$ for $53 \leq q_m \leq 113$.

Proof. We know the Robin's inequality is true for every natural number n > 5040 such that $11^k \mid n$ and $11^6 \nmid n$ for some integer $1 \leq k \leq 5$ [Her18]. We need to prove

$$f(n) < e^{\gamma} \times \log \log n$$

when $(2^{20} \times 3^{13} \times 11^6) \mid n$. Suppose that $n = 2^a \times 3^b \times 11^c \times m$, where $a \geq 20, b \geq 13, c \geq 6, 2 \nmid m, 3 \nmid m, 11 \nmid m, q_m \nmid m$ and $53 \leq q_m \leq 113$. Therefore, we need to prove

$$f(2^a \times 3^b \times 11^c \times m) < e^{\gamma} \times \log \log(2^a \times 3^b \times 11^c \times m).$$

We know

$$f(2^a \times 3^b \times 11^c \times m) = f(11^c) \times f(2^a \times 3^b \times m)$$

since f is multiplicative [Voj20]. In addition, we know $f(11^c) < \frac{11}{10}$ for every natural number c [Voj20]. In this way, we have

$$f(11^c) \times f(2^a \times 3^b \times m) < \frac{11}{10} \times f(2^a \times 3^b \times m).$$

However, that would be equivalent to

$$\frac{121}{120} \times f(11) \times f(2^a \times 3^b \times m) = \frac{121}{120} \times f(2^a \times 3^b \times 11 \times m)$$

where $f(11) = \frac{12}{11}$. In addition, we know

$$\frac{121}{120} \times f(2^a \times 3^b \times 11 \times m) < f(q_m) \times f(2^a \times 3^b \times 11 \times m) = f(2^a \times 3^b \times 11 \times q_m \times m)$$

where $q_m \nmid m$, $f(q_m) = \frac{q_m+1}{q_m}$ and $53 \leq q_m \leq 113$. Nevertheless, we know the Robin's inequality is true for $2^a \times 3^b \times 11 \times q_m \times m$ when $a \geq 20$ and $b \geq 13$, since this is true for every natural number n > 5040 such that $11^k \mid n$ and $11^6 \nmid n$ for some integer $1 \leq k \leq 5$ [Her18]. Hence, we would have

 $f(2^{a} \times 3^{b} \times 11 \times q_{m} \times m) < e^{\gamma} \times \log \log(2^{a} \times 3^{b} \times 11 \times q_{m} \times m) < e^{\gamma} \times \log \log(2^{a} \times 3^{b} \times 11^{c} \times m)$ when $c \ge 6$ and $53 \le q_{m} \le 113$.

6. Proof of Main Theorems

Theorem 6.1. Robins(n) holds for all n > 5040 when $q_m \nmid n$ for $q_m \leq 113$.

Proof. This is a compendium of the results from the Theorems 5.3 [btw2-3], 5.4 [btw5-7], 5.5 [btw11-47] and 5.6 [btw53-113].

Theorem 6.2. Let n > 5040 and $n = r \times q_m$, where $q_m \ge 113$ denotes the largest prime factor of n. If Lagarias(r) holds, then Lagarias(n) holds.

Proof. We need to prove

$$\sigma(n) \le H_n + \exp(H_n) \times \log H_n.$$

We have that

$$\sigma(r) \le H_r + exp(H_r) \times \log H_r$$

since Lagarias(r) holds. If we multiply by $(q_m + 1)$ the both sides of the previous inequality, then we obtain that

 $\sigma(r) \times (q_m + 1) \le (q_m + 1) \times H_r + (q_m + 1) \times exp(H_r) \times \log H_r.$

REFERENCES

We know that σ is submultiplicative (that is $\sigma(n) = \sigma(q_m \times r) \leq \sigma(q_m) \times \sigma(r)$) [Cho+07]. Moreover, we know that $\sigma(q_m) = (q_m + 1)$. In this way, we obtain that

$$\sigma(n) = \sigma(q_m \times r) \le (q_m + 1) \times H_r + (q_m + 1) \times exp(H_r) \times \log H_r.$$

Hence, it is enough to prove that

$$(q_m + 1) \times H_r + (q_m + 1) \times exp(H_r) \times \log H_r$$

$$\leq H_n + exp(H_n) \times \log H_n$$

$$= H_{q_m \times r} + exp(H_{q_m \times r}) \times \log H_{q_m \times r}.$$

If we apply the lemma 2.3 [harmonic-bound] to the previous inequality, then we could only need to analyze that

$$(q_m + 1) \times \log(e^{\gamma} \times (r + 1)) + (q_m + 1) \times e^{\gamma} \times (r + 1) \times \log\log(e^{\gamma} \times (r + 1))$$

$$\leq \log(e^{\gamma} \times q_m \times r) + e^{\gamma} \times q_m \times r \times \log\log(e^{\gamma} \times q_m \times r).$$

This has been checked by computer when the prime q_m is the largest prime factor of n and complies with $q_m \ge 113$.

References

[Cho+07]YoungJu Choie et al. "On Robin's criterion for the Riemann hypothesis". In: Journal de Théorie des Nombres de Bor*deaux* 19.2 (2007), pp. 357–372. DOI: 10.5802/jtnb.591. [Edw01]Harold M. Edwards. Riemann's Zeta Function. Dover Publications, 2001. ISBN: 0-486-41740-9. [Her18] Alexander Hertlein. "Robin's Inequality for New Families of Integers". In: Integers 18 (2018). [Lag02]Jeffrey C. Lagarias. "An Elementary Problem Equivalent to the Riemann Hypothesis". In: The American Mathematical Monthly 109.6 (2002), pp. 534–543. DOI: 10.2307/2695443. [RS62] J. Barkley Rosser and Lowell Schoenfeld. "Approximate Formulas for Some Functions of Prime Numbers". In: Illinois Journal of Mathematics 6.1 (1962), pp. 64–94. DOI: 10.1215/ijm/1255631807. Robert Vojak. "On numbers satisfying Robin's inequality, [Voj20] properties of the next counterexample and improved specific bounds". In: arXiv preprint arXiv:2005.09307 (2020).

COPSONIC, 1471 ROUTE DE SAINT-NAUPHARY 82000 MONTAUBAN, FRANCE *E-mail address*: vega.frank@gmail.com