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Abstract—Humanity’s quest to comprehend the nature has
led to increasing demand in predictive sciences. Much of this
is due to the exponential growth of energy production and the
ever increasing power prices. Regions with power productions
that are carried out with imported coal and oil will be more
self-sustaining if alternative sources of power generation such as
wind power is discharged. In this paper two predictive models,
Markov Chain and Regression are implemented to predict wind
power. In the first model, Markov Chains with 15 and 30 states
has been constructed for the short- term forecast of the wind
power. Following this a second order polynomial regression with
independent variable as wind speed and dependent variable as
wind power has been implemented for the medium-term forecast
of wind power. A comparative study of both the models has
been made to give a picture of the best model that suits the
forecast. The geographical region under study is a wind farm
in Chitradurga, Karnataka. The wind speed values have been
sampled at an interval of 10 minutes for a period of 3 years
starting from 1st January 2010 to 31st December 2012. Various
forecasting errors have been enumerated to audit the credibility
of the models.

Index Terms—Stochastic models, Markov Chains, Transition
matrix, Transition Diagram, Regression Analysis, Polynomial
Regression, Correlation, Forward Selection Procedure.

I. INTRODUCTION

Electricity grid demands a balance between the energy
generation and consumption, incessant use of electricity and its
applications seek to take complete advantage of its versatility
and clean form. As long as sun exists major renewable energy
forms continue to thrive perpetually. Wind power is the most
prepossessing form of renewable energy, much of it is due to
the wide range of benefits. Electricity generated from wind
has no carbon dioxide emissions and hence does not account
for greenhouse effects, it is labour intensive and thus creates
more jobs. The total power that can be extracted using wind is
considerably more than the current human power consumption,
given that the wind power generation is a direct function of
wind speed, focus on wind speed forecasts should be given the
utmost importance. Considering the wind energy generation to
be economical, India’s major amount of energy that is being
imported could be substituted with this renewable energy form.

In this paper two models of wind power forecast has been
implemented and each fall into different forecasting time-
scales. The two models considered for forecast is Markov
Chain and Regression. Markov models are omnipresent having
wide range of applications due to its simplicity and the
property of ‘memorylessness’. This condition is used to make
future forecasts in series of time-steps in each of which a
random choice is made [1][10]. In this paper Markov Chain is
exhibited using two states to compare the state wise accuracy.
Increasing the number of states in a Markov model with a
narrowed range set leads to a more precise state jump. This in
turn leads to obtaining better accuracies with reduced MAPE.
Wind power forecast has been made and compared with the
two states implemented and the results are validated with
the past data [1][2][10].Forecasts made using this model fall
under short-term forecasts What follows this model is the
Regression Analysis, a second order Polynomial Regression
has been applied to the wind speed and formulated wind power
which are considered as independent and dependent variables
respectively [3]. An explanatory model that has a relationship
between input and output facilitates a better understanding
of the situation and permits experimentation with different
arrangement of input to analyse their influence on the forecast
i.e. the output. The forecasts made using this model on wind
power falls under medium-term forecass [4]. Finally these two
models are compared to know the better forecasting technique
for wind power. The geographical area studied is a wind farm
in Chirtadurga where wind speed values are sampled at an
interval of 10 minutes over a period of three years. One year
data that falls under the optimal range i.e. the cut-in and cut-
off speed is used as the training data, the forecasts made are
validated using various errors.

II. MODELS FOR PREDICTION

The Wind speed values have been sampled at an interval of
10 minutes for a period of 3 years starting from 1st January
2010 to 31st December 2012. The three years wind speed data



obtained has been used to compute synthetic wind power using
the formula,

P = 0.5ρAV 3 (1)

Several factors related to the site of interest shown in Table
1 have been considered to compute wind power.

TABLE I
ENERCON E40 MACHINE SPECIFICATIONS

Rated Power 600KW
Rotor Diameter 44m
Swept area 1521m2

Cut-in Wind Speed 2.5 m/s
Cut-off Wind Speed 29 m/s
Air Density 1.188Kg/m3

Average Temperature 24oC

A. Markov Chain

Markov Chain is the simplest form of stochastic model
showing its simplicity in its property which states that the
historic events do not affect the future given the present event.
It is a stationary model and hence independent of the initial
value. Using a discrete valued Markov Chain, forecasts are
made such that the system only changes during those discrete
time values [1]. A discrete valued Markov Chain has states ‘s’
all belonging to a countable set ‘S’ and is represented as,

S = (1, 2, 3.......n) (2)

Two state categories – 15 states and 30 states are implemented
using a second order Markov Chain. If a state ‘s’ moves from
state ‘i’ to ‘j’ in one step, two steps so on till ‘r’ steps then
the transition probability is of the order 1, 2, . . . .., ‘r’ [2]
[3]. The transition probability is given by the equation,

Pij = P [Xs + 1 = j|Xs = i] (3)

Where Pij is independent of-the time period, any Markov
Chain with this property is said to be a time homoge-
neous Markov Chain or a Stationary Markov Chain. This
phenomenon can also be called as the Steady-State Markov
Chain as it is a steady state vector-of-the Transition matrix.
A steady-state is an eigenvalue for a stochastic matrix, where
a probability vector multiplied by a probability transition step
matrix results in the same probability vector [1]. For all the
stochastic processes the eigenvalues are fixed to λ = 1. The
transition probabilities are encapsulated in the form of a matrix
thereby forming the Markov matrix. A more comprehensive
explanation using Chapman-Kolmogorov equation has been
made in the paper written by us on Markov Chains [10].

The Markov matrix forms the basis of the forecasts, each
row in the matrix is a conditional distribution and each
column gives the probability of landing in state ‘j’ from some
initial state ‘i’. The matrix formed is a right transition matrix
whose single rows add up to ‘1’. The second order transition
probabilities are used to generate a Markov matrix of 15x15
and 30x30 and Fig. 1 represents a state transition diagram
schematically. Most importantly the transition matrix gives an

adequate idea about the behaviour of the Markov Chain [3].
The following points have been observed from our transition
matrix in Table 2.

• The highest transition probabilities fall in the diagonal of
the matrix thereby indicating that a wind value is highly
likely to remain in the same state once in that state.

• The probabilities increase till the highest probability is
attained and then decreases drastically.

• The farthest a wind values can increase is just two – three
states beyond the present state and the least it can come
down is just two – three preceding states.

Fig. 1. State Transition Diagram Of 15x15 Markov Chain

One year data excluding the values falling outside optimal
range that is the cut-in speed 2.5 m/s and cut-out speed 29
m/s is used as the training data. Varying the range of training
data the best accuracy is chosen for a short term forecast for
15 states and 30 states and validated using Various errors like
MSE, RMSE, MAE, MAPE.

B. Regression Analysis

A quantitative analysis which determines the relationship
between the estimator and the predictor that are catego-
rized into dependent and independent variables respectively
is known as Regression Analysis. Here, the known data is
regressed to its primitive form which is mathematical. The
goal of Regression analysis is to fit a line in such a way
that the difference between the data points and the regressed
points is minimized [4] [5]. Correlation between the data under
consideration determines the extent of dependency, linking
the dependent and independent variable. We have ‘n’ pairs
of values (Y

′

i , Yi) which are the forecasted values and real
values respectively. It is important to know how these two
terms are related to each other and their degree of dependency.
The correlation between these two values is designated as ‘R’
which is usually represented in the squared form as ‘R2’ and
is known as the ‘Coefficient of Determination’. Correlation
is in squared form because it can explain the meaning of
proportional variation in ‘Y

′
’ which is explained by ‘Y’.

R2 =

∑
(Y

′′
–Y

′
)∑

(Y –Y ′)
(4)



TABLE II
A 15X15 TRANSITION MATRIX SHOWING THE INDIVIDUAL PROBABILITIES OF THE STATES

0.528 0.400 0.054 0.011 0.004 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.156 0.604 0.205 0.028 0.005 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.014 0.187 0.578 0.193 0.022 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.002 0.022 0.215 0.564 0.173 0.021 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.001 0.004 0.028 0.245 0.533 0.169 0.017 0.003 0.001 0.001 0.000 0.000 0.000 0.000 0.000
0.001 0.003 0.003 0.037 0.255 0.514 0.160 0.023 0.003 0.001 0.000 0.000 0.000 0.000 0.000
0.000 0.001 0.001 0.008 0.039 0.295 0.457 0.162 0.031 0.005 0.002 0.000 0.000 0.000 0.000
0.000 0.000 0.001 0.000 0.008 0.074 0.281 0.423 0.169 0.036 0.005 0.003 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.003 0.011 0.083 0.306 0.397 0.154 0.044 0.001 0.001 0.000 0.000
0.000 0.000 0.002 0.002 0.000 0.004 0.012 0.095 0.307 0.390 0.177 0.009 0.000 0.002 0.000
0.000 0.000 0.000 0.000 0.000 0.009 0.011 0.020 0.087 0.242 0.513 0.116 0.002 0.000 0.000
0.000 0.000 0.009 0.000 0.009 0.000 0.000 0.026 0.043 0.470 0.342 0.094 0.009 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.143 0.429 0.250 0.143 0.036
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.455 0.364 0.182
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.167 0.500 0.000 0.333 0.000

Because the ‘Y’ values are explained in association to the
estimated regression equation, It can also be expressed as,

R2 =
Explained variance of Y

Total variance of Y
(5)

The closer the value of R to ‘1’ more the dependency and
better the results. The data under consideration is wind speed
and power and are categorized as follows:-
-Wind speed - Independent variable
-wind power - Dependent variable.
Our initial understanding was that the two variables under
study had a relationship that is directly proportional, hence
a linear model was applied to the data set. However it was
identified that Linear Regression was not a best fit for the data.
Very high errors in MAPE and scattered values in the run plot
against wind speed were among the first few indications of
the inappropriate model. Nevertheless merely looking at the
original scatterplot does not confirm non- linearity, it is the
Residual graph with no pattern, i.e. no increasing or decreasing
trend curve that confirms if the model is linear or non-linear.
Run plots generated for linear and non-linear regression shown
in Fig. 2 and Fig. 3 explain the shift from linear to non-linear
comprehensively. The blue circle in Fig. 2 below represents
the defined section for which the Linear regression line fits the
data almost perfectly resulting in predicted values very close
to actual values. Hence, the error in this region is less, but the
vertical deviation of the predicted values at the extreme ends
of the curve are very far from the regression line resulting
in large error. From the graph it is evident that the region
best explained by the model is very less in comparison to the
totality of the model. In some cases it is seen that though
the prediction is made for a small duration the error is much
higher, this is because the predicted regression line passing
through the graph only defines a part of the curve, in some
cases it is seen that the linear graph does not even account
for even one point of the original data set and hence has an
accuracy of 0%. Consequently a Non-linear Regression has
been employed to forecast the wind power because of the

definite curvature observed in the residual plot representing
a non-constant variance spread across the graph [6]. Fig. 3
shows a second order Polynomial Regression applied to the
same set of data as seen in Fig. 2.

Fig. 2. Linear Regression Applied On Windspeed And Power

Fig. 3. Second Order Polynomial Regression Applied On Windspeed And
Power

It can be observed that this model has adapted itself to fit the
data curve hence explaining all points. However it is important
to keep the order of the polynomial low, setting arbitrary



orders to the data can lead to misuse of the Regression
model. The model building strategy employed is of ’Forward
Selection Procedure’. In this method the order of the model
is successively increased to attain an appreciable value of
the regression coefficient and order that fits the data well.
Polynomial Regression is such that as the order of the model
is increased the curve is altered in such a way that it fits
the data covering even the outliers leading to an overfitting
model. The overfitting model may be suitable to the present
computing data but gives erroneous values when new data
points are added, this results in unreliable future predictions.
Hence a second order polynomial regression has been applied
to the data set to obtain more reliable balanced curves. The
second order polynomial is represented as,

α = a0 + a1T + a2T
2 (6)

Where ‘α’ is the independent variable and ‘T’ is the dependent
variable. The coefficients in equation 7 is calculated using the
formula, n

∑
Ti

∑
T 2
i∑

Ti
∑
T 2
i

∑
T 3
i∑

T 2
i

∑
T 3
i

∑
T 4
i

a0a1
a2

 =

 ∑
αi∑
αiTi∑
αiT

(2)

 (7)

Application of the second order quadratic equation for the
forecast of wind power with very high accuracy for 1 day
and a considerably good accuracy for three days has been
presented in Table 5 with the graph in Fig. 5. The presence
of a dependent variable increases the model accuracy in
Regression Analysis giving a detailed interpretation of the
correlation between the estimator and predictor. Due to the
high accuracies obtained Regression Analysis can be used for
long term forecast.

C. Comparative Analysis

The two Stochastic models that have been implemented and
described for the estimation and forecast of wind power are
second order Markov Chain and Second order Polynomial
Regression. It has been noticed that increasing the number
of states in a Markov model with a narrowed range set leads
to a more precise state jump. This in turn leads to obtaining
better accuracies with reduced MAPE. In regression Analysis
the forecast is given by a function with certain number of
factors that affect its output. An explanatory model that has
a relationship between input and output facilitates a better
understanding of the situation and permits experimentation
with different arrangements of input to analyze their influence
on the forecast. By doing this the explanatory models can
be geared toward intervention, influencing the future through
decisions made today. It has been observed that the forecasts
made using Markov Chains are not applicable for long term
prediction given the acceptable MAPE and accuracy being
25% and 75% respectively. However it can be used for short-
term forecast up to 14 hours with acceptable MAPE being
25%. The Polynomial Regression of order two better explains
the data than the linear model, therefore, the nonlinear model
makes better predictions and also predicts for a good amount

of time, hence it can be used for a medium-term forecast.
Table 6 shows the comparative results of the two models.

Fig. 4. 14 Hour Forecast Of Wind Power Using 30x30 Markov Chain

Fig. 5. 72 Hours Forecast Of Wind Power Using second order Polynomial
Regression

CONCLUSION

Most of the times there is a time lag between awareness of
an impending event or need and occurrence of that event. This
lag in time is the main reason for planning and forecasting. If
the lead time is zero or very small there is no need for planning
else the outcome of the final event is conditional on identifiable
factors, planning can perform an important role . In such
situations , forecasting is needed to determine when an event
will occur and a need arises, so that appropriate action can
be taken.Employing Stochastic and Statistical models for the
prediction of wind energy can be a game changer in the history
of energy production minimizing all the negative effects the
current form of energy production has. Wind energy itself
has the potential to suffice the current electricity requirements
without any other forms of energy and has to be given
noteworthiness. In this paper two models are implemented for
the forecast of wind power and the results are compared to
give the better forecasting model. The aim of this paper is to



TABLE III
RESULTS OF 15 X 15 AND 30X30 MARKOV CHAIN

No. of Wind No. of Time Period Error Calculation
speed input Predictions (hrs) MAE MSE RMSE MAPE% Accuracy%

States 15 30 15 30 15 30 15 30 15 30
45995 288 48 0.662 0.547 0.181 4.761 0.621 0.169 62.1 53.7 37.88 46.28
45995 144 24 0.326 0.304 0.129 3.002 0.349 0.118 34.9 22.5 65.07 77.48
45995 100 14 2.445 0.171 0.115 1.926 0.265 0.103 26.5 19.9 73.41 80.05

TABLE IV
RESULTS OF SECOND ORDER POLYNOMIAL REGRESSION

No.of Wind No.of Time Period R2 MAPE Accuracy
Speed inputs Predictions (hrs)

10000 100 14 0.9987 2.06 97.93
10000 144 24 0.9935 7.99 92.01
10000 288 48 0.9916 11.12 88.87
10000 432 72 0.9201 15.61 82.16

TABLE V
COMPARATIVE RESULTS OF THE TWO PREDICTIVE MODELS

No. of Stochastic MAPE Accuracy
Predictions Model

14 hours Second Order Markov Chain 19.9% 80.05%
14 hours Second order Polynomial Regression 2.06% 97.93%

present a fundamental and simple- minded survey. The models
under consideration fall under two forecasting time-scales,
Short-term and Medium-term which are second order Markov
Chain using 15 and 30 states and second order Polynomial
Regression respectively. It has been observed that the second
order Polynomial Regression can predict wind power values
up to 3 days with excellent accuracy. Though third and
higher order polynomials result in almost zero errors it is not
considered as it may lead to over-fitting.
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