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Abstract High-performance computing (HPC) clusters are traditionally
managed statically, i.e., user jobs maintain a fixed number of computing
nodes for their entire execution. This approach becomes inefficient with
the increasing prevalence of dynamic and irregular workloads, which have
unpredictable computation patterns that result in fluctuating resource
needs at runtime. For instance, nodes cannot be released when they are
not needed, limiting the overall supercomputer performance. However,
the realization of jobs that can grow and shrink their number of node
allocations at runtime is hampered by a lack of support in both resource
managers and programming environments.
This work leverages evolving programs that grow and shrink autonomously
through automated decision-making, making them well-suited for dy-
namic and irregular workloads. The Asynchronous Many-Task (AMT)
programming model has recently shown promise in this context. In AMT,
computations are decomposed into many fine-grained tasks, enabling the
runtime system to transparently migrate these tasks across nodes.
Our study builds on the APGAS-AMT runtime system, which supports
evolving capabilities, i.e., handles process initialization and termination
automatically requiring minimal additions to user code. We enable interac-
tions between APGAS and a prototype resource manager as well as extend
the Easy-Backfilling job scheduling algorithm to support evolving jobs.
We conduct real-world job batch executions on 10 nodes—involving a
mix of rigid, moldable, and evolving programs—to evaluate the impact of
evolving APGAS programs on supercomputers. Our experimental results
demonstrate a 23% reduction in job batch makespan and a 29% reduction
in job turnaround time for evolving jobs.

Keywords: Resource Adaptivity · Evolving Programs · Asynchronous
Many-Task

1 Introduction

Today’s High-performance computing (HPC) clusters, also called supercomputers,
comprise thousands of interconnected computing nodes. Traditionally, supercom-
puters are managed using a static resource allocation approach. Users do not run
their applications directly on the nodes; instead, they submit their applications
as jobs to a resource manager, specifying the exact number of nodes and time
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required. The resource manager then decides the starting order of the jobs and a
fixed set of nodes for each job, called job scheduling. Because of this static alloca-
tion approach, jobs never change their node allocations at runtime, making them
rigid. This rigidity limits the flexibility of the resource manager in scheduling jobs,
often resulting in underutilization of nodes because the job shapes submitted by
users may not perfectly match the available node capacity. This mismatch results
in gaps in the schedule (i.e., unused nodes) even when there are waiting jobs that
cannot be started, thereby limiting overall performance, as shown in Figure 1.

Additionally, the prevalence of dynamic and irregular workloads—characterized
by unpredictable computation patterns resulting in fluctuations in resource needs
at runtime—is increasing. Fluctuations in resource needs mean that applications
have different phases in which they require or can efficiently exploit varying num-
bers of nodes. However, static resource allocations prevent jobs from adjusting
their allocated number of nodes at runtime to accommodate these fluctuations.
Consequently, users often request more nodes than they need to ensure availability
during peak demand. This leads to inefficiencies as nodes remain unused during
certain job phases but cannot be reallocated to other jobs. Examples of such
workloads include adaptive mesh refinement (AMR) simulations [2,22], multi-
scale analysis [21], fast multipole methods (FMM) [28], and graph analytics [19].
Specific examples of impacted applications are tsunami simulations [20] and flow
solvers used in Computational Fluid Dynamics (CFD) [4].

Resource adaptivity offers a promising solution by allowing jobs to dynamically
grow and shrink their number of node allocations at runtime. These resource
changes can be initiated either by the jobs themselves (called evolving) or by the
resource manager (called malleable) [10]. As shown in Figure 2, adaptive jobs can
take advantage of gaps in the job schedule that would otherwise remain unused,
thereby accelerating their completion. Thus, this flexibility holds the promise of
improving both node utilization and job turnaround times [8,24].

However, realizing resource adaptivity’s full potential requires significant
changes across the entire HPC software stack, including resource managers,
runtime systems, and applications. This challenge is evident in widely used
resource managers like SLURM and the MPI standard, both of which are based
on static resource allocation assumptions.

Despite recent research on resource adaptivity, no widely adopted solution
exists. MPI extensions often target iterative workloads or require significant
programming effort [1]. The Asynchronous Many-Task (AMT) programming
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model offers a promising alternative to enable resource adaptivity. In AMT,
computations are decomposed into many fine-grained tasks that the runtime
system can migrate across nodes. This transparent resource management enables
efficient realization of both dynamic load balancing and resource adaptivity.

This study builds on the APGAS (Asynchronous Partitioned Global Address
Space) AMT runtime system [26]. APGAS extends the PGAS model by enabling
the spawning of asynchronous tasks at runtime. APGAS was recently extended
to support malleability [11,12] and evolving capabilities [23]. It automatically
manages processes for growing and shrinking, and provides easy-to-use abstrac-
tions. Evolving programs autonomously adjust the number of allocated nodes
based on real-time resource needs. However, the prior study [23] only evaluated
single program runs. This work addresses this shortcoming by evaluating the
impact of evolving jobs on supercomputers, making the following contributions:

– We enable interactions between APGAS [23] and a prototype resource man-
ager [11]—originally supported malleable jobs—to support evolving jobs.

– We extend the well-known Easy-Backfilling job scheduling algorithm [27] to
support evolving jobs.

– We conduct real-world job batch executions on 10 nodes, involving a mix of
rigid, moldable, and evolving programs. We use an existing synthetic program
with an irregular and dynamic workload that is fully configurable [23].

– Our experimental results demonstrate a 23% reduction in job batch makespan
and a 29% reduction in job turnaround times for evolving jobs.

The remainder of this work begins with background on APGAS in Section 2.
Then, Section 3 outlines our developed interactions between APGAS and the
resource manager, and Section 4 describes our experimental results. We conclude
with related work in Section 5 and a summary in Section 6.

2 Background

This section briefly describes APGAS [26], its recently added evolving capabili-
ties [23], and the GLB (Global Load Balancing) library [29] used as an example.

APGAS is a Java library that builds on the core concepts of IBM’s X10
language [5]. It allows the creation of asynchronous tasks either locally or remotely.
While APGAS automatically schedules tasks among worker threads within each
process, programmers are responsible for the mapping of tasks to processes.
For synchronization, APGAS provides the finish construct, which ensures all
spawned tasks, including recursive and remote ones, complete before proceeding.

Recently, APGAS was extended to support malleability [11,12] and evolving
capabilities [23]. These features enable programs to dynamically adjust their
node allocations by growing or shrinking. Programmers only need to implement
methods to specify the actions required when adjusting resources, such as before
and after removing or adding a process.

APGAS handles all process management automatically, including starting
and terminating processes. Evolving programs use heuristics to determine when
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to start a new process (if there is sufficient computational load) or terminate
a process (if there are underutilized nodes). This requires no additional code
modifications or interactions from the programmer or user.

In previous studies [11,12,23], APGAS was used to make the Global Load
Balancing (GLB) [29] library malleable and evolving. GLB automatically balances
dynamic and irregular workloads at runtime via work-stealing between processes.
A process with no tasks sends a steal request to another process, which transfers
some of its tasks or rejects the request. All GLB programs are automatically
malleable and evolving without further code changes. The combination of GLB
and APGAS allows node changes without interrupting the computations.

3 Interactions between Evolving Jobs and Resource
Managers

When evolving programs are run as jobs on supercomputers, the resource manager
must support evolving capabilities to allow running jobs to request new nodes
and release nodes dynamically. To enable this, we extend APGAS [23] to interact
with a prototype resource manager that can already interact with malleable
APGAS programs [11]. All software is available as open source on GitHub 1.

Workflow of Evolving Jobs. Evolving jobs are submitted to the resource
manager with a minimum and maximum number of nodes, rather than a fixed
number. The resource manager decides the initial number of nodes to be allocated
to the job within the specified range. At startup, APGAS runs a daemon thread
that monitors the computational load on all nodes every second and decides
whether new nodes are needed or whether nodes can be released. Currently, only
one node at a time is requested or released [23].

Releasing Nodes. APGAS automatically initiates a shrinkage without re-
questing feedback from the resource manager. As soon as APGAS has completed
the actions defined by the programmer, the corresponding process is terminated,
and APGAS sends a release-message with the name of the node to the resource
manager. The resource manager then removes the node from the job and can
assign it to another job in the next scheduling-interval. Since an evolving APGAS
program has a more detailed insight into its dynamic computing load, it can
shrink to one node, regardless of the originally specified minimum.

Requesting Nodes. If a new node is needed, APGAS sends a request-
message to the resource manager. The resource manager queues all incoming
requests and processes them in the next scheduling-interval. Only if the resource
manager grants the request, i.e., assigns a new node to the job and sends the
name of the node to the running program, APGAS starts a new process on the
new node and calls the actions defined by the programmer. Jobs does not send
a new request until the previous one has been answered. If a job releases a

1 https://github.com/ProjectWagomu/APGAS 10.5281/zenodo.12634598
https://github.com/ProjectWagomu/LifelineGLB 10.5281/zenodo.12634602
https://github.com/ProjectWagomu/ElasticJobScheduler 10.5281/zenodo.12634497
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https://doi.org/10.5281/zenodo.12634602
https://github.com/ProjectWagomu/ElasticJobScheduler/releases/tag/v0.2
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node after it has made a request, the pending request is canceled by the resource
manager. After a release, the job can send a new request.

(Evolving) Easy-Backfilling. The prototype resource manager already
supports the well-known EasyBackfilling algorithm for scheduling rigid jobs [27].
EasyBackfilling starts jobs in order of their arrival time. It attempts to fill gaps
in the schedule caused by waiting jobs with earlier start times but larger node
requirements, with jobs arriving later with smaller node requirements. However,
only jobs that do not delay the start of the leading job are backfilled. Moldable
jobs, for which the number of nodes can be determined at the start, are started
with the maximum possible number of available nodes.

We implement a new job scheduling algorithm, called EvolvEasyBack, to
support evolving jobs. As mentioned above, all incoming node requests are queued.
At the next scheduling-interval, EvolvEasyBack processes these requests first, in
the order they were received. As long as there are idle nodes, EvolvEasyBack
assigns nodes to the requesting jobs. If a requesting job is no longer running or
has already been assigned its maximum number of nodes, the request is canceled.
If there are no requests left and there are idle nodes, the job scheduling algorithm
of EasyBackfilling is executed.

4 Evaluation

In this section, we experimentally evaluate the impact of evolving APGAS
programs on supercomputers. We conduct job batch executions consisting of
rigid, moldable, and evolving programs on 10 nodes, varying the proportion of
moldable/evolving jobs from 0% to 100%.

First, we describe the experimental setting in Section 4.1. We then analyze
the results in Section 4.2 and discuss the findings in Section 4.3.

4.1 Experimental Setting

Environment. Experiments were conducted on the cluster at the University
of Kassel2. Each node consists of two 6-core Intel Xeon E5-2643 CPUs and 128 GB
of main memory. We encapsulated each job batch into a SLURM job having
11 nodes. One node runs our resource manager, while the remaining 10 nodes
serve as computing nodes for executing jobs. Java was used in version 19.0.2.

Jobs. For all jobs, we use the EvoTree benchmark [23], a synthetic benchmark
designed to simulate highly irregular and dynamic workloads. As shown in
Figure 3, EvoTree starts with a single task (1) that dynamically creates a perfect
m-ary task tree. It then creates (2) a sequential branch (3) that ends in another
tree (4). An evolving program could grow for the first tree, shrink to a single
node for the sequential branch, and then grow for the second tree. EvoTree is
implemented with APGAS + GLB, thus automatically balancing the load as
well as releasing nodes and requesting new ones as needed.

2 https://www.hkhlr.de/en/clusters/linux-cluster-kassel

https://www.hkhlr.de/en/clusters/linux-cluster-kassel
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Figure 3: EvoTree example run: two perfect m-ary task trees, each with two
children and a depth of three, connected by a sequential branch of two [23].

Table 1: Job configurations of EvoTree

Rigid: Number of Nodes Moldable/Evolving: Range of Nodes
1 1-2
2 1-4
4 2-8
8 4-10

For rigid jobs, we configured each tree with a computation time of 50 seconds
and the sequential branch with a computation time of 100 seconds. These times
remain constant regardless of the number of initial processes, due to EvoTree’s
smooth weak scaling.

Job Batches. We pseudo-randomly generated five job batches, each contain-
ing 20 rigid jobs. For each of these job batches, we created additional job batches
where 20%, 40%, up to 100% of the jobs were made evolving. Our job configura-
tions are listed in Table 1. The job submission times are generated stochastically
using a uniform distribution between 0 and 10 minutes. We scheduled each job
batch with both EasyBackfilling and EvolvEasyBack. Evolving jobs submitted
to EasyBackfilling are treated as moldable.

4.2 Experimental Results

In the following, we evaluate our averaged experimental results.
Evolving Runtime Performance. The running time costs of the programs

were as follows: 4.82 seconds for starting, 3.94 seconds for growing and 3.89
seconds for shrinking. These times only pertain to the durations logged in the
respective methods; the actual task computations and work-stealing by unaffected
workers continue uninterrupted. These findings are consistent with the results of
previous studies [11,23].

Figure 4 shows the number of shrinking and growing events per evolving job.
The number of shrinking events decreases as the proportion of evolving jobs
increases. With 20% evolving jobs, there are 3.5 shrinking events per job; while
with 100% evolving jobs, there are 2.2 shrinking events per job. In contrast, the
number of growing events fluctuates less, ranging between 1.9 and 2.2 per job.

https://orcid.org/0000-0002-6491-1626
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Figure 4: Average number of shrinking and growing events per evolving job for
EvolvEasyBack

The higher frequency of shrinking events is because, unlike growing events, they
are executed without needing a response from the resource manager. A previous
study evaluating malleable APGAS programs on supercomputers showed always
less than one shrinking and one growing event per job [11]. The higher number of
events in this study is due to the significantly more dynamic nature of the jobs.

Supercomputer Performance. Supercomputer operators and individual
users may have different perspectives on performance metrics. Operators focus
on the time needed to compute a job batch (job batch makespan) and node
utilization. In contrast, users are more concerned with the time it takes to get
their job results (job turnaround time). We will first address the operators’
perspective and then the users’ perspective.

Makespan. Figure 5 shows the job batch makespans. With 0% mold-
able/evolving jobs, EasyBackfilling and EvolvEasyBack perform similarly, result-
ing in makespans of 1507 and 1510 seconds, respectively. This is expected, as both
EasyBackfilling and EvolvEasyBack execute the same algorithm for rigid jobs.
The makespan decreases with an increasing proportion of moldable/evolving jobs,
as expected. EasyBackfilling achieves a makespan of 1385 seconds with 100%
moldable jobs, due to increased flexibility for job scheduling. However, between
20% and 80% moldable jobs, EasyBackfilling shows no improvement or even a
degradation, as the flexibility of moldable jobs is insufficient to fill scheduling
gaps.

In contrast, EvolvEasyBack consistently decreases the makespan with an
increasing proportion of evolving jobs. With 100% evolving jobs, EvolvEasyBack
achieves a makespan of 1157 seconds, representing a 23% reduction compared to
0% evolving jobs and a 16% reduction compared to EasyBackfilling with 100%
moldable jobs.

Node Utilization. Figure 6 shows the node utilization. With 0% mold-
able/evolving jobs, EasyBackfilling and EvolvEasyBack have similar node uti-
lizations of 81%. With increasing proportion of moldable/evolving jobs, node
utilization generally increases.
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Figure 5: Average job batch makespan depending on the proportion of mold-
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Figure 6: Average node utilization depending on the proportion of mold-
able/evolving jobs and the job scheduling algorithm used
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Figure 7: Average job turnaround times depending on the proportion of mold-
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EasyBackfilling has a node utilization of 91% with 100% moldable jobs. Evolv-
EasyBack has a node utilization of 85% with 100% evolving jobs, although it
reaches 88% utilization with 80% evolving jobs. However, it is crucial to note
that while EasyBackfilling appears to have higher node utilization compared to
EvolvEasyBack, this is not necessarily beneficial. When considering the previous
makespan values, we see that EasyBackfilling allocates nodes to jobs that cannot
fully utilize them due to their evolving nature, particularly during phases where
they need only one node.

In contrast, EvolvEasyBack slightly increases node utilization (from 81% to
85%) but significantly reduces makespan (from 1510 seconds to 1157 seconds).
This improvement is because evolving jobs can release unused nodes, which can
then be reallocated to other jobs, optimizing overall performance.

Job Turnaround Time. Figure 7 shows the job turnaround times, which in-
clude both job waiting time and job computing time. With 0% moldable/evolving
jobs, both EasyBackfilling and EvolvEasyBack have similar turnaround times,
with waiting times of 425-438 seconds, and computation times of 181 seconds.

As the proportion of evolving jobs increases, EvolvEasyBack consistently
reduces job waiting times. For instance, with 100% evolving jobs, the waiting
time is significantly reduced to 191 seconds, compared to 376 seconds with
EasyBackfilling . Although the computation time increases slightly with Evolv-
EasyBack, the overall turnaround time is still greatly improved due to the
reduction in waiting time. Specifically, EvolvEasyBack achieves a 29% reduction
(from 605 seconds to 428 seconds) when compared to EasyBackfilling with 0%
evolving jobs, and a 23% reduction (from 564 seconds to 428 seconds) when
compared to EasyBackfilling with 100% evolving jobs.

4.3 Discussion

The experimental results confirm our expectations that evolving jobs increase
flexibility, leading to a positive impact on the supercomputer’s performance. The
most efficient setting was EvolvEasyBack with 100% evolving jobs, resulting
in a 23% reduction of the makespan and a 29% reduction in job turnaround
times. Node utilization was only slightly improved by EvolvEasyBack, suggesting
that further improvements could be possible with different job batches. The
results from EasyBackfilling indicate that merely analyzing node utilization is
not sufficient, as jobs may not use their allocated nodes efficiently.

This study has some limitations due to the experimental setup. Future work
should include larger-scale experiments and the use of real-world applications
rather than synthetic ones. Additionally, EvolvEasyBack is currently simplistic,
as node requests are always fulfilled when possible. Consideration should be given
to fairness, such as limiting or prioritizing node requests. This could also involve
enabling a mix of malleable and evolving jobs. APGAS is classified as a prototype,
and implementing the techniques with, e.g., C and MPI could significantly reduce
the running time cost of resource allocation changes [15].
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5 Related Work

In practice, only a few applications can change the number of their processes
at runtime due to the complexity of such mechanisms [3,18]. However, resource
adaptivity has recently gained research interest, leading to various techniques
and prototypes [1,13].

While MPI supports process spawning at runtime since version 2, it has
several limitations [14]. For instance, spawn operations are synchronous and
collective, blocking calling processes during the creation and initialization of new
processes [7]. MPI extensions such as Elastic MPI [7] and DMRlib [17] have been
proposed to address issues like this. Recently, MPI Sessions formed the basis for
a novel adaptive MPI runtime environment that conceptualizes resource changes
as transformations between process sets, overcoming previous limitations such
as global synchronization [16]. However, most MPI studies focus on iterative
workloads and not on irregular and dynamic ones like this work.

Programming environments outside MPI that provide resource adaptivity
are still rare. Notable examples include X10 [5] and Charm++ [25]. X10 and
APGAS initially had similarities, including basic support for removing and
starting processes. Charm++ also supports resource adaptivity by decomposing
computations into independent objects that can migrate between processes.

Research on adaptive job scheduling algorithms is comparatively sparse com-
pared to rigid ones, but they are known to improve performance on various
metrics, such as node utilization. Some proposed adaptive scheduling algorithms
have been implemented directly in practical settings either by extending existing
resource managers such as SLURM [7,17] and Torque/Maui [25], or by develop-
ing custom prototype resource managers [11,12,15]. These implementations are
tailored to specific runtime environments, allowing for real-world experiments.

Other adaptive job scheduling algorithms are evaluated via simulations [6,9,24],
offering benefits such as speed, reproducibility, and resource efficiency over real-
world experiments. Simulations enable thorough algorithm evaluations under
diverse conditions, but ensuring accurate input modeling, especially for job traces,
application scaling, and adaptivity, remains challenging for reliable outcomes.

6 Conclusion

This study demonstrated the benefits of evolving programs on supercomputers,
especially for handling dynamic and irregular workloads. We leveraged APGAS,
which provides evolving capabilities, allowing programs to autonomously adjust
their allocated nodes. We enabled interactions between APGAS and a prototype
resource manager, and extended Easy-Backfilling to support evolving jobs.

Real-world job executions on a 10-node cluster showed a 23% reduction in job
batch makespans and a 29% reduction in job turnaround times for evolving jobs.

Future work should explore mixing malleable and evolving jobs to further
validate these benefits.

Acknowledgements I thank Patrick Finnerty for all the fruitful discussions we
have at our meetings.
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