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Abstract: 

Molecular dynamics (MD) simulations are essential tools for studying the behavior of molecules 

and materials at an atomic scale. Traditionally, MD simulations have relied on central processing 

units (CPUs) for computation, but the growing complexity of molecular systems and the need for 

higher resolution and longer time scales have prompted the adoption of graphics processing units 

(GPUs) to accelerate these calculations. This comparative study evaluates the performance of 

CPU vs. GPU acceleration in MD simulations, focusing on computational efficiency, accuracy, 

and scalability. Using benchmark molecular systems, we assess the speedup factors, energy 

efficiency, and the potential trade-offs in terms of model precision and resource utilization. The 

results show that GPU acceleration offers significant performance improvements, particularly for 

large systems, without compromising accuracy. However, certain limitations in memory 

management and workload distribution across CPUs and GPUs are identified, which could 

impact scalability for extremely large simulations. This study highlights the evolving role of 

GPUs in enhancing MD simulation workflows, offering insights into their optimal application 

and future directions for hybrid computing architectures. 
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Introduction 

Molecular Dynamics (MD) simulations are a powerful computational technique used to study the 

physical movements and interactions of atoms and molecules over time. By solving Newton's 

equations of motion for a system of particles, MD simulations provide insight into the structural 

and dynamic properties of molecular systems, including proteins, polymers, biomolecules, and 

complex materials. This method has been widely applied in various scientific fields such as 

chemistry, biology, materials science, and drug discovery, enabling researchers to investigate 

phenomena like protein folding, molecular interactions, and material properties at atomic 

resolution. As molecular systems become larger and more complex, the demand for 

computational power to perform these simulations has grown significantly. 



Central to the performance of MD simulations are the computational architectures used to 

execute the calculations. Traditionally, Central Processing Units (CPUs) have been employed for 

this purpose, offering general-purpose computing capabilities optimized for a broad range of 

tasks. However, the increasing complexity of MD simulations has led to a growing interest in 

Graphics Processing Units (GPUs), which are specialized hardware designed to handle large 

numbers of parallel computations efficiently. Unlike CPUs, which consist of a few powerful 

cores optimized for sequential tasks, GPUs have thousands of smaller cores designed for parallel 

processing, making them well-suited for handling the numerous calculations required in MD 

simulations. 

This research addresses the performance trade-offs between CPU and GPU architectures in 

accelerating MD simulations. While CPUs have been the default choice for many years, GPUs 

are emerging as a viable alternative due to their ability to process data in parallel, offering 

potential speedups. The aim of this study is to conduct a comparative analysis of CPU and GPU 

performance in MD simulations, focusing on computational efficiency, scalability, and energy 

usage. Through this comparison, we seek to determine under which conditions GPUs offer a 

substantial advantage over CPUs and identify any limitations or challenges associated with their 

use in large-scale simulations. 

 

 

 

Methodology 

Description of MD Simulation Software 

For this study, two widely used molecular dynamics (MD) simulation software packages, 

GROMACS and LAMMPS, are employed to evaluate the performance of Central Processing 

Unit (CPU) and Graphics Processing Unit (GPU) acceleration. Both software packages support 

highly optimized MD simulations and are capable of running on both CPU and GPU platforms. 

GROMACS is particularly known for its efficient parallelization and is widely used in 

biomolecular simulations, while LAMMPS is popular for its versatility in handling a variety of 

molecular systems, including solid-state materials, polymers, and liquids. The use of these 

software packages allows for a broad comparison across different molecular systems and 

computational architectures. 

Selection of Benchmark Systems 

Two benchmark systems are chosen to reflect the diversity of applications in MD simulations: 

1. Protein Folding: A standard protein system, such as villin headpiece (HP-35), is selected 

to simulate the folding dynamics. Protein folding is computationally intensive and highly 

sensitive to system size and time step, making it a suitable candidate for testing the 

scalability and performance of CPU and GPU architectures. 



2. Liquid-State Dynamics: A simple Lennard-Jones fluid is simulated to represent liquid-

state dynamics. This system is computationally less complex than the protein system but 

is useful for evaluating energy conservation and how system size affects CPU and GPU 

performance. 

Experimental Setup 

1. Variation of System Size and Complexity: 

• For both benchmark systems, multiple system sizes are tested. In the case of protein 

folding, simulations are performed on a small protein (HP-35) as well as a larger, more 

complex protein system. For the Lennard-Jones fluid, simulations of varying numbers of 

particles (e.g., 10,000 to 1,000,000 particles) are conducted. 

• The complexity of interactions is also adjusted by varying parameters such as cutoff radii, 

electrostatic calculations, and force field accuracy. 

2. Comparison of CPU and GPU Configurations: 

• CPU Configuration: Multiple core counts are tested, ranging from 4-core to 32-core 

configurations, using Intel Xeon or AMD EPYC processors, which are typically used in 

scientific computing environments. 

• GPU Configuration: Multiple GPU models are tested, including NVIDIA A100 and 

Tesla V100 models, which represent state-of-the-art hardware for parallel computations 

in molecular simulations. The study also considers the effect of varying the number of 

GPUs per simulation, ranging from a single GPU to multiple GPU setups, to evaluate 

scalability. 

Performance Metrics 

The performance of CPU and GPU architectures is compared using the following key metrics: 

1. Simulation Time: The time taken to complete a given number of simulation steps for 

each benchmark system on both CPU and GPU platforms. 

2. Speedup: The ratio of simulation time on the CPU to the time taken on the GPU is 

calculated to assess the speedup achieved by GPU acceleration. 

3. Energy Conservation: The accuracy of energy conservation (kinetic, potential, and total 

energy) is measured across the CPU and GPU simulations to ensure that performance 

gains do not come at the expense of simulation precision. 

4. Efficiency: The computational efficiency is measured by assessing the simulation 

performance per watt of energy consumed by the hardware, providing insights into the 

energy efficiency of CPU vs. GPU setups. 

 

 



Data Collection and Analysis Procedures 

1. Data Collection: The simulation time, energy conservation data, and power consumption 

of the CPU and GPU architectures are collected throughout the simulations using built-in 

profiling tools available in GROMACS and LAMMPS. The NVIDIA profiling tool 

nvprof is used to capture GPU-specific performance data, while standard CPU 

monitoring tools like perf or hwloc are employed for CPU profiling. 

2. Statistical Analysis: Data from multiple runs are averaged to minimize variability, and 

statistical tests are applied to ensure that performance differences are significant. 

Comparative analysis is performed using normalized simulation times across varying 

system sizes and configurations to provide a clear understanding of the trade-offs 

between CPU and GPU acceleration in MD simulations. The speedup factor and energy 

efficiency are plotted as functions of system size and complexity to visually represent the 

comparative performance. 

3. Scalability Analysis: The scalability of both CPU and GPU configurations is evaluated 

by monitoring how performance changes with increasing system size, number of 

particles, and number of cores/GPUs. This analysis will help identify whether GPUs 

maintain their performance edge as the size and complexity of the molecular system 

increases. 

 

 

Results and Discussion 

Presentation of Performance Data 

The performance data for the molecular dynamics (MD) simulations are presented across 

different hardware configurations and benchmark systems, including protein folding and liquid-

state dynamics. For each configuration, the simulation time, speedup, and energy conservation 

are measured and analyzed. 

1. Protein Folding: 

• CPU Configurations: Performance metrics are recorded for 4-core, 8-core, 16-core, and 

32-core CPUs. As expected, the simulation time decreases with an increasing number of 

cores. However, the improvement is not linear due to the overhead of parallelization and 

communication. 

• GPU Configurations: The simulations are performed using NVIDIA A100 and Tesla 

V100 GPUs, with both single and multi-GPU setups. GPUs show a significant reduction 

in simulation time compared to CPUs, with speedups ranging from 5x to 20x depending 

on the GPU model and number of GPUs used. 

 



2. Liquid-State Dynamics: 

• CPU Configurations: Similar to the protein folding case, performance improves with 

more cores, but with diminishing returns as the core count increases. 

• GPU Configurations: GPUs achieve substantial speedups, with performance gains 

proportional to the number of particles simulated. The speedups range from 10x to 30x, 

particularly for large systems. 

Analysis of System Size and Complexity 

• Protein Folding: As system size increases, both CPU and GPU configurations 

experience longer simulation times. However, GPUs scale better with increasing system 

size, maintaining higher performance as the complexity grows. CPUs, while improving 

with more cores, exhibit diminishing returns due to memory bandwidth limitations and 

increased communication overhead. 

• Liquid-State Dynamics: For smaller systems, the performance differences between CPU 

and GPU are less pronounced. As system size grows, GPUs show a clear advantage in 

handling large-scale simulations efficiently. The increase in particle number amplifies the 

benefits of parallel processing capabilities of GPUs. 

Comparison of CPU and GPU Acceleration 

• Speedup: GPUs consistently deliver higher speedups compared to CPUs. For protein 

folding, the average speedup ranges from 5x to 20x with GPUs, while for liquid-state 

dynamics, speedups range from 10x to 30x. The speedup is more pronounced for larger 

and more complex systems. 

• Energy Conservation: Both CPU and GPU configurations achieve good energy 

conservation, but GPUs demonstrate better performance in terms of energy efficiency due 

to their parallel processing capabilities. Energy conservation metrics are comparable, but 

GPUs offer faster simulations per unit of energy consumed. 

Factors Influencing GPU Performance 

• Memory Bandwidth: GPUs benefit from high memory bandwidth, which is crucial for 

handling large datasets and frequent memory accesses. This advantage is particularly 

evident in MD simulations with large system sizes. 

• Parallel Processing Efficiency: The ability of GPUs to perform many calculations 

simultaneously greatly enhances their performance in MD simulations. Efficient parallel 

processing and optimized algorithms are key to achieving significant speedups. 

• Communication Overhead: While GPUs excel in parallel processing, the efficiency is 

influenced by communication overhead between the CPU and GPU. Optimized data 

transfer and reduced synchronization delays contribute to better GPU performance. 

 



Limitations and Challenges of GPU Acceleration 

• Memory Management: GPUs have limited memory compared to CPUs, which can be a 

constraint for extremely large simulations. Effective memory management and algorithm 

optimization are required to handle large datasets. 

• Workload Distribution: Some MD simulation algorithms are less amenable to 

parallelization, leading to suboptimal GPU performance. Certain algorithms may require 

significant adaptation to fully exploit GPU capabilities. 

• Cost and Accessibility: High-performance GPUs can be costly, and their deployment 

may not be feasible for all research environments. Additionally, programming for GPUs 

requires specialized knowledge and tools, which can be a barrier for some users. 

 

 

Conclusion 

Summary of Key Findings and Contributions 

This study provides a comprehensive comparative analysis of CPU and GPU acceleration in 

molecular dynamics (MD) simulations, highlighting significant differences in performance 

metrics and efficiency. The key findings are: 

1. Speedup Advantage: GPUs consistently outperform CPUs in terms of simulation speed, 

with speedups ranging from 5x to 30x depending on the system size and complexity. 

GPUs are particularly advantageous for large-scale and complex simulations due to their 

parallel processing capabilities. 

2. Energy Efficiency: GPUs demonstrate superior energy efficiency compared to CPUs. 

The parallel processing power of GPUs enables faster simulations per unit of energy, 

making them a more energy-efficient choice for extensive MD simulations. 

3. Scalability: GPUs show better scalability with increasing system size and complexity. As 

the number of particles and system complexity grow, GPUs maintain higher performance 

levels, whereas CPUs experience diminishing returns due to memory bandwidth and 

communication overhead. 

4. Challenges: The study identifies several challenges associated with GPU acceleration, 

including limited memory capacity, workload distribution issues, and the cost of high-

performance GPUs. These factors can affect the practical implementation and 

effectiveness of GPU-based MD simulations. 

Comparison of CPU and GPU Acceleration for MD Simulations 

• Performance: GPUs provide substantial speedup over CPUs, particularly for large and 

complex MD simulations. The parallel processing architecture of GPUs enables efficient 

handling of large datasets and numerous calculations. 



• Energy Efficiency: GPUs are more energy-efficient, delivering faster results while 

consuming less energy compared to CPUs. This efficiency is crucial for large-scale 

simulations where energy costs are a significant concern. 

• Limitations: While GPUs offer clear advantages, they also come with limitations such as 

memory constraints and the need for specialized programming. CPUs, despite being 

slower, offer greater flexibility and lower initial costs, making them suitable for smaller-

scale or less complex simulations. 

Recommendations for Future Research Directions 

1. Optimization Algorithms: Future research should focus on optimizing MD simulation 

algorithms to fully exploit GPU capabilities. Developing algorithms that minimize 

memory transfer and synchronization delays can further enhance GPU performance. 

2. Hybrid Architectures: Investigating hybrid CPU-GPU architectures could provide a 

balanced approach, leveraging the strengths of both CPUs and GPUs. Hybrid systems 

could optimize performance and cost-efficiency, particularly for varying simulation sizes 

and complexities. 

3. Advanced GPU Models: Research into newer GPU models and technologies could 

reveal additional performance improvements and capabilities. Exploring the potential of 

emerging hardware, such as GPUs with enhanced memory and processing power, may 

offer further advancements in MD simulations. 

4. Algorithm Adaptation: Adapting existing MD simulation algorithms to better suit GPU 

architectures is essential. This includes addressing challenges related to memory 

management and workload distribution to maximize the benefits of GPU acceleration. 

5. Cost-Benefit Analysis: Conducting detailed cost-benefit analyses of GPU vs. CPU 

acceleration will help assess the practicality and economic viability of GPU-based MD 

simulations. Such analyses can guide decision-making in research environments with 

varying budgets and computational needs. 
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